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Abstract
The popularity of social media creates a large
amount of user-generated content, playing an im-
portant role in addressing cold-start problems in
recommendation. Although much effort has been
devoted to incorporating this information into rec-
ommendation, past work mainly targets explicit
feedback. There is still no general framework tai-
lored to implicit feedback, such as views, listens,
or visits. To this end, we propose a sparse Bayesian
content-aware collaborative filtering framework es-
pecially for implicit feedback, and develop a scal-
able optimization algorithm to jointly learn latent
factors and hyperparameters. Due to the adaptive
update of hyperparameters, automatic feature se-
lection is naturally embedded in this framework.
Convincing experimental results on three differ-
ent implicit feedback datasets indicate the superi-
ority of the proposed algorithm to state-of-the-art
content-aware recommendation methods.

1 Introduction
Recommender systems provide users with personalized rec-
ommendations for items (e.g., products and services), hope-
fully suiting their unique needs. In the past years, they
have been used for functions like increasing sales in e-
commerce and clicking rates on websites, and improving
general visitor satisfaction, and thus are attracting a lot of
attention from academia and industry [Linden et al., 2003;
Adomavicius and Tuzhilin, 2005; Koren, 2008]. Typically,
these systems profile users and items from the implicitly or
explicitly generated data and recommend user the most re-
lated items. Due to the large amount of implicit feedback,
such as views, listening, or visiting behaviors, and the spe-
cific characteristics of lacking substantial evidence on which
items that users dislike (i.e., negative items), recommenda-
tion for implicit feedback datasets has already become an im-
portant research direction [Hu et al., 2008; Pan et al., 2008;
Rendle et al., 2009; Gopalan et al., 2015].

The popularity of social media makes the availability of
a large amount of user-generated content and user infor-
mation, playing an important part in addressing the cold-
start problems in recommendation. Although much effort

has been devoted to incorporating content into recommen-
dation, such as LibFM [Rendle, 2012], MatchBox [Stern
et al., 2009], regression-based latent factor model [Agar-
wal and Chen, 2009] and MF-EFS [Koenigstein and Paquet,
2013], they are mainly designed for explicit feedback. Al-
though recommendation for implicit feedback has been in-
tegrated with topic modeling for incorporating items’ text-
content [Wang and Blei, 2011; Gopalan et al., 2014], there
is still no general framework tailored to implicit feedback to
take any type of features. Applying the previously developed
general algorithms for explicit feedback requires randomly
sampling negative items from missing entries in the user-
item matrix for better learning efficiency. However, such a
strategy is empirically sub-optimal, compared to treating all
missing entries as negative but assigning them a lower confi-
dence, according to [Wang and Blei, 2011; Lian et al., 2014;
Liu et al., 2014]. The varying confidence for negative and
positive preference can also be modeled by a two stage pro-
cess recommendation model, according to [Gopalan et al.,
2015], the first of which appropriately fit the volume of user
activity, i.e., budget. However, their evaluation doesn’t indi-
cate a strong advantage on implicit feedback. Another alter-
native modeling approach for varying confidence is to lever-
age ranking-based factorization algorithms, especially opti-
mizing metrics at the top positions [Weston et al., 2010].
Nevertheless, it does not perform as well as expected empir-
ically according to our evaluation results, and even suffered
from computation issues [Li et al., 2015].

Due to the effectiveness and efficiency of [Hu et al., 2008],
we propose a content-aware collaborative filtering framework
tailored to implicit feedback based on their algorithm. It can
incorporate any kind of content of users and items at the same
time of both steering clear of negative sampling and modeling
the varying confidence. It takes a user-item preference matrix,
a user-feature matrix (e.g., gender, age) and an item-feature
matrix (e.g., categories, descriptions) as input and maps each
user, each item, and each feature of both users and items
into a joint latent space. This framework can exploit gra-
dient descent for parameter learning, but suffers from time-
consuming search (e.g., grid search) for the learning rate and
the regularization coefficients.

To address this issue, we first present an equivalent but
more generalized probabilistic generative model for implicit
feedback, where both latent factors and hyperparameters (i.e.,
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regularization coefficients) are considered hidden variables.
Based on this model, we develop a scalable optimization al-
gorithm for jointly learning latent factors and hyperparame-
ters. Due to the adaptive update of hyperparameters, auto-
matic relevance determination and even feature selection for
content is naturally embedded in this framework according
to the sparse Bayesian learning framework [Tipping, 2001].
This also leads to another distinguishing characteristic com-
pared to Libfm, svdfeature [Chen et al., 2012] and et al., in
addition to steering clear of negative sampling based on a
highly efficient learning algorithm.

The proposed algorithm is then evaluated on three different
implicit feedback datasets and compared with several state-
of-the-art content-aware recommendation algorithms, includ-
ing Libfm and svdfeature. Convincing experimental results
indicate that the proposed algorithm is not only capable of
pruning non-informative features, but also best tailored to
content-aware recommendation for implicit feedback.

2 Preliminary
2.1 Matrix Factorization for Implicit Feedback
Matrix factorization for implicit feedback operates a user-
item preference matrix R 2 {0, 1}M⇥N , including M users
and N items. Each entry ri,j 2 R indicates whether the en-
try is observed or not, where i and j are reserved for indexing
users and items, respectively. In matrix factorization, users
and items are represented in a joint latent space of dimen-
sion K: user i is represented by a latent vector si 2 RK and
item j by a latent vector tj 2 RK . We form the predict-
ing preference of user i for item j with an inner product, i.e.,
r̂i,j = s

0
itj .

Due to the lack of negative preference in implicit feed-
back, matrix factorization in this case needs to either sample
pseudo-negative items for each user from missing entries in
the user-item matrix [Pan et al., 2008; Rendle et al., 2009] or
treat the data as an indication of positive and negative prefer-
ence with vastly varying confidence [Hu et al., 2008]. Due to
empirically observed superiority, we focus on the latter algo-
rithm [Lian et al., 2014; Liu et al., 2014], which minimizes
the weighted squared loss with a regularized term:

L =

1

2

X

i,j

wi,j(ri,j � s

0
itj)

2
+

�

2

(

X

i

ksik2 +
X

j

ktjk2),

where � is a regularization coefficient and wi,j indicates the
confidence of user preference, i.e.,

wi,j =

⇢
� if (i, j) observed
1 otherwise ,

where � is a tuning parameter satisfying � � 1, so that the
confidence of the observed entries are much larger than the
missing ones.

However, such a matrix factorization will fail in the cold-
start problem. A general solution is to integrate collaborative
filtering with content-based filtering [Pazzani, 1999] and has
been yielded by some popular content-aware collaborative fil-
tering frameworks, such as LibFM, MatchBox, and SVDFea-
ture. However, they mainly target explicit feedback datasets,

which include both positively and negatively preferred sam-
ples. Feeding implicit feedback into them is presumed to be
suboptimal, due to the empirically observed superiority of the
above algorithm for implicit feedback. This thus motivates
us to develop a general content-aware collaborative filtering
framework tailored to implicit feedback.

2.2 Content-Aware Collaborative Filtering for
Implicit Feedback

In content-aware collaborative filtering frameworks, in addi-
tion to users and items, their features are also represented
as latent vectors in the joint latent space [Stern et al., 2009;
Chen et al., 2012; Rendle, 2012]. Assuming users have F

features and items have L features, the predicting prefer-
ence of a user i for an item j is then formulated as r̂i,j =

(si +U

0
xi)

0
(tj +V

0
yj), where U 2 RF⇥K is a latent ma-

trix of user features and V 2 RL⇥K is a latent matrix of item
features.

If the ids of both users and items are also considered fea-
tures and encapsulated into {˜xi} and {˜yj}, the predicting
preference is simplified as r̂i,j =

˜

x

0
i
˜

U

˜

V

0
˜

yj , where ˜

U 2
R(M+F )⇥K is obtained by concatenating {si} and U by rows
( ˜V shares a similar meaning). Then, as proposed in [Lian et
al., 2015], the objective function is formulated as:

L =

1

2

X

i,j

wi,j(ri,j � ˜

x

0
i
˜

U

˜

V

0
˜

yj)
2
+

�

2

(k ˜Uk2F + k ˜Vk2F ).

Although we can use gradient descent directly for optimiza-
tion w.r.t ˜

U and ˜

V, it is more appealing to apply alternative
least square due to the removal of the tuned learning rate.
However, by simple algebra, we find the analytic solutions of
latent vectors of different features are coupled and thus un-
able to compute efficiently. By rewriting the objective func-
tion, according to [Lian et al., 2015], the overall optimization
can be split into two stages, i.e.,

L =

1

2

X

i,j

wi,j(ri,j � p

0
iqj)

2
+

�

2

X

i

kpi �U

0
xik2

+

�

2

X

i

kqi �V

0
yik2 + �

2

(kUk2F + kVk2F ). (1)

The first stage learns summed latent vectors (i.e., pi , ˜

U

0
˜

xi

and qj , ˜

V

0
˜

yj); the second stage learns the feature latent
matrices, U and V. Both stages have analytical solutions.

3 Sparse Bayesian Content-Aware
Collaborative Filtering for Implicit
Feedback

Although user/item content can be incorporated by the above
framework, it suffers from the following three problems.
First, when deriving the analytical solution for the feature
latent matrix, we discover the disadvantage of only using a
single regularization coefficient �. Second, the regulariza-
tion parameters should be tuned carefully, otherwise this ap-
proach is prone to overfitting. Third, the relevance of different

1733



features should be differentiated from each other, and even
some of them are fully irrelevant and should be discarded. To
address these shortcomings, we introduce a sparse Bayesian
learning algorithm, which places priors on the hyperparam-
eters so that they can be learned directly without manually
tuning. Due to the adaptive update of hyperparameters, au-
tomatic feature selection is naturally embedded within this
framework.

3.1 Generative Model
Before introducing a sparse Baysian learning algorithm, we
first generalize the above content-aware collaborative filtering
framework as a probabilistic generative model. In particular,
the preference ri,j of the matrix R is independently generated
by Gaussian distributions,

Pr(R|P,Q) =

Y

i,j

N(ri,j |p0
iqj , w

�1
i,j ). (2)

The prior distributions over the user/item latent factors are
assumed to be Gaussian:

Pr(P|U,�P ) =

MY

i=1

N(pi|U0
xi,�

�1
P ), (3)

Pr(Q|V,�Q) =

MY

j=1

N(qj |V0
yj ,�

�1
Q ), (4)

where �P and �Q are both precisions of Gaussian distribu-
tions, determining the importance of user/item features in
learning interaction between users and items. On these two
precisions, we place a Gamma distribution prior with shape a
and rate b, to capture prior knowledge of feature importance.
For convenience, we assume that �P and �Q are distributed
over a logarithmic scale, as suggested in [Tipping, 2001].

The prior distributions over the latent matrix of user/item
features are assumed to be matrix normal, conjugate priors:

Pr(U|↵U ) = MNF,K(U|0, diag(↵U )
�1

, IK), (5)

Pr(V|↵V ) = MNL,K(V|0, diag(↵V )
�1

, IK), (6)

↵U 2 RF
+,↵V 2 RL

+ are vectors of non-negative hyperpa-
rameters governing the prior precision for each dimension of
the feature latent matrix. Matrix normal distribution is a gen-
eralization of the multivariate normal distribution to matrix-
valued random variables and described by a row based vari-
ance ⌃R and a column based variance ⌃C in addition to
mean. The second order central moments of matrix normal
distribution can be represented as E[(z � µ)(z � µ)0] =

⌃Rtr(⌃C) and E[(z � µ)0(z � µ)] = ⌃Ctr(⌃R). Here,
we don’t explicitly place independent Gamma prior on ↵U

and ↵V , since the improper prior (shape and rate parameter
approaching to zero) could incur the maximal sparsity.

Due to the conjugation, we can directly marginalize them
out, leading to matrix normal distributed user/item latent fac-
tors with zero mean and a content-dependent covariance. For
example, the marginal distribution over user latent factors P
has the following form:

Pr(P|↵U ,�P ) = MNM,K(P|0,⌃P , IK) (7)

where ⌃P = �

�1
P IM +XA

�1
U X

0 and AU = diag(↵U ). In
other words, the content information actually constrains the
similarity of latent factors between users and between items.
Therefore, if the content of two users/items is similar, in terms
of a metric related to their normalized dot product, their la-
tent factors should also be proximal in the latent space. How-
ever, different from previous work [Zhou et al., 2012], which
assumed content-based similarity between users or between
items is given in advance and thus independent to this gener-
ative model, this similarity metric is adaptive with the update
of the parameter ↵U and naturally embeds the capability of
feature selection. For example, when the prior precision ↵

f
U

for the f

th feature of user content increasingly approaches to
infinity, its contribution in ⌃P (i.e., measuring the content-
based similarity) becomes smaller until it is fully neglected.
Below, we will study how to learn hyperparameters under
the framework of evidence maximization or type II maximum
likelihood in addition to deriving the update formula of latent
factors of users/items and their features. For convenience, we
denote {P,Q,↵U ,↵V ,�P ,�Q} as ⇥ to learn.

3.2 Parameter Learning
Based on the generative model, combining Eq (7) and Eq (2)
with prior distributions of �P and �Q, we can derive the fol-
lowing objective function:

L(⇥) =

X

i,j

wi,j(ri,j � p

0
iqj)

2
+K log |⌃P |

+ tr(P

0
⌃

�1
P P) +K log |⌃Q|+ tr(Q

0
⌃

�1
Q Q)

� 2a(log �P + log �Q) + 2b(�P + �Q) (8)

Since each parameter for minimizing L(⇥) cannot be ob-
tained in a closed form given other fixed, it is possible to di-
rectly exploit gradient descent based alternative least square
for parameter learning, but it suffers from the difficulty of se-
lecting an appropriate learning rate.

For the sake of learning parameters more efficiently and
encouraging a sparse solution of the feature latent factors, we
resort to Bayesian Occam’s razor [MacKay, 1992], to obtain
iterative re-estimation for the parameters and the hyperparam-
eters. Bayesian Occam’s razor approximates the evidence,
e.g., Pr(P|↵U ,�P ) by Pr(P|UMP,�P )Pr(UMP|↵U )�U.
Since U follows the matrix normal distribution, such an ap-
proximation has an extract form. In particular, the extract
form can be obtained by noting that

tr(P

0
⌃

�1
P P) = tr(�P (P�XUMP)

0
(P�XUMP))

+ tr(U

0
MPAUUMP), (9)

and expressing |⌃P | as, using the matrix inversion lemma,

|⌃P | = |⌃�1
U ||�P IM |�1|AU |�1

, (10)

where ⌃

�1
U = (�PX

0
X + AU ) and UMP = �P⌃UX

0
P.

Substituting Eq (9) and Eq (10) into Eq (8), and applying
alternative least square for optimization, we can get update
equations of each parameter in the set ⇥.

Below, we only study how to update user-related parame-
ters because of the symmetry of the updating rules between
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user-related parameters (P,↵U ,�P ) and item-related param-
eters (Q,↵V ,�Q). In particular, computing the gradient of
L(⇥) w.r.t pi and setting them to zero, we can obtain,

pi = (Q

0
WiQ+ �P IK)

�1
(Q

0
Wiri + �PU

0
MPxi), (11)

where Wi = diag([wi,1, · · · , wi,N ]) and ri is the i

th row
of the preference matrix R. Thus, given Q fixed, the update
of latent factor for each user is independent to other users,
making it straightforward to update the latent factors for all
users in parallel. Similarly, deriving the gradient of L(⇥)

with respect to �P and ↵

f
U , and setting them to zero, we can

obtain the updating formulas for them,

�P =

K(M �P
f �

f
U ) + 2a

tr((P�XUMP)0(P�XUMP)) + 2b

(12)

↵

f
U =

K�

f
U

|uf
MP|22

(13)

where u

f
MP represents the f

th row of user feature latent ma-
trix UMP and �

f
U = 1 � ↵

f
U⌃

f,f
U , which is suggested in

MacKay fixed-point update rules [MacKay, 1992]. The latter
quantity �

f
U ranges from zero to one, measuring how well-

determined its corresponding parameter uf by the user con-
tent. The �

f
U of all user features are concatenated as a vector,

then �U = diag(I � ⌃UAU ) = �P diag(⌃UX
0
X). The

overall algorithm is given in Algorithm 1.
Due to tr(P

0
⌃

�1
P P)  tr(�P (P � XU)

0
(P � XU)) +

tr(U

0
AUU) according to Eq (9), the derived updating rules

actually optimize an upper bound of Eq (8) with an addi-
tional parameter U, which replaces the left-hand side of the
inequality with the right-hand side. Thus, the convergence of
the updating rules can be guaranteed according to the con-
vergence study of alternative least square [Grippo and Scian-
drone, 2000] and the convergence study of sparse Bayesian
learning [Wipf and Rao, 2004].

3.3 Complexity Analysis
Applying the trick used in [Hu et al., 2008], the overall cost
of computing user/item latent factors is O(kRk0K2

+ (M +

N)K

3
). Due to the independence of computation among dif-

ferent users/items, the actual cost can be reduced based on
simple task parallel techniques. The total time complexity
for computing UMP and VMP is O((kXk0 + kYk0)K#iter)

since we can apply any iterative algorithm, such as conjugate
gradient descent, for linear equations system, where #iter is
the maximum number of iterations for convergence. The ma-
jor cost in this algorithm is to compute the �U and �V , which
requires O((kXk0F + kYk0L)#iter) in the worst case in
total since it also involves solving linear equations system.
In practical, the time complexity also depends on the sparse
pattern of the feature matrices in addition to the number of
non-zero entries, thus it is hard to determine time complexity
exactly, but it is obvious that the algorithm will be much more
efficient when the feature matrices have special sparse struc-
tures. For the sake of more efficient parameter learning, we
suggest performing dimension reduction, such as SVD and
LDA, before feeding the feature matrices.

Algorithm 1: Sparse Bayesian Collaborative Filtering
Input : rating matrix R, dimension K of latent space,

user feature matrix X, item feature matrix Y,
confidence � for observed events, shape a and
rate b of gamma prior

Output: user latent factor P and item latent factor Q
1 Initialize UMP, VMP with zero, and randomly initialize

P and Q;
2 repeat
3 Update each user’s latent factor based on Eq (11);
4 Update each item’s latent factor similar to Eq (11);
5 repeat
6 Compute UMP and �U ;
7 Update �P based on Eq (12);
8 Update ↵U based on Eq (13);
9 until ↵U and �P is convergent;

10 repeat
11 Compute VMP and �V ;
12 Update �Q similar to Eq (12);
13 Update ↵V similar to Eq (13);
14 until ↵V and �Q is convergent;
15 until L(⇥) is convergent;

3.4 Induced Sparsity
In the case of the above setting, feature selection is natu-
rally embedded in this framework. Let’s inspect this prop-
erty below, studying the marginal prior distribution over user
feature factor U after marginalizing over the precision ↵U

(↵U ⇠ Q
f Ga(↵

f
U |c, d)). After an integral computation, we

observe it follows an independent multivariate Student’s t dis-
tribution, i.e. Pr(U|c, d) = Q

f T2c(uf |0, d
c IK). This distri-

bution is proportional to
Q

f |uf |�K
2 when c and d approach

zero, encouraging a row-wise sparsity on U.
However, instead of marginalizing over U, the marginal-

ization over the hyperparameters is not consistent with the
proposed optimization algorithm. To this end, based on [Wipf
and Nagarajan, 2008], we seek a tight upper bound of
log |⌃P | based on the concavity with respect to ↵�1

U =

[1/↵

1
U , · · · , 1/↵F

U ]. In particular, we can get

log |⌃P | = min

z
z

0↵�1
U � g

⇤
(z) (14)

where g

⇤
(z) is the concave conjugate of log |⌃P | w.r.t ↵�1

U .
Combining it with the upper bound of tr(P0

⌃

�1
P P), and op-

timizing over ↵U first, we can get ↵f
U =

p
zf/|uf | exactly.

At this moment, tr(U0
AUU), a part of the upper bound of

tr(P

0
⌃

�1
P P), can be rewritten as

P
f
p
zf |uf |2. When all

zf equal to one, it is just an `2,1 norm for U. Since this
procedure also optimizes over a variational parameter zfU , it
actually corresponds to an adaptive `2,1 regularization.

4 Experiments
We evaluated our model on three tasks, which recommends
locations on location-based social networks, articles on re-
searcher communities, and music on online music searching
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Table 1: Dataset statistics. Each user in Jiepang has age and
gender info, and each item has two levels of category hierar-
chy; each user in Last.fm has age, gender, and country info;
each CiteULike article is represented by learned 200 topics.

dataset #records #users #items density
Jiepang 1,521,105 28,050 27,405 0.00197

CiteULike 204,986 5,551 16,980 0.00217
Last.fm 819,995 981 107,397 0.00778

and browsing services. For the first task, we used self-crawled
human mobility data from Jiepang, a Chinese location-based
social network, and collected users’ profiles from Sina Weibo
(China’s Twitter), since Jiepang users can log in with Weibo
accounts. For the latter two tasks, we used public datasets,
that is, the CiteULike dataset used in [Wang and Blei, 2011]
and the Last.fm provided by [Celma, 2010], respectively. In
these three datasets except CiteULike, we filtered items on
which fewer than 10 users having actions (check-in, listening)
and filtered users who have actions on fewer than 10 items.
The CitULike dataset was kept unchanged to directly com-
pare our model with the algorithm of [Wang and Blei, 2011].
The statistics after filtering are shown in Table 1. Based on
three datasets, we performed 5-fold cross validation. For ev-
ery user, we evenly split their user-item pairs into 5 folds. For
each fold, we trained a model on other folds of data and tested
it on the within-fold items for each user.

4.1 Metric
We evaluated the recommendation algorithms on sets of held-
out observed entries. Presenting each user with the top k

candidate items sorted by their predicting preference, we
assessed recommendation performance by two widely used
metrics, recall@k and precision@k

[Wang and Blei, 2011]:

recall@k =
1
M

MX

u=1

|Su(k) \ Vu|
|Vu|

precision@k =
1
M

MX

u=1

|Su(k) \ Vu|
k

,

where Su(k) is the collection of top k recommended items
for a user u and Vu is the set of the observed entries for her.

4.2 Competing Algorithms
We compared our model, named SBICCF, with the following
five competing baselines on these three recommendation
tasks. SBICCF was configured by manually tuning the
confidence � of positive feedback. For location and article
recommendation, � = 30; for music recommendation,
� = 1. We can see that the latter � is much smaller than
others, probably due to much higher density of the dataset.

1) Libfm [Rendle, 2012], supports classification and regres-
sion tasks, but requires drawing negative examples when be-
ing applied for recommendation on implicit feedback. We
chose a MCMC-based training algorithm for avoiding manu-
ally tuning parameters. Based on empirical results, we used

the regression task and sampled 10 times more negative items
than positive ones for each user out of efficiency concern.
2) svdfeature [Chen et al., 2012], also requires negative item
sampling but optimizes a ranking-based loss function. It
doesn’t support MCMC-based training algorithms but only
leverages stochastic gradient descent, thus we should manu-
ally tune the regularization coefficients and the learning rate.
We followed the same sampling strategy as Libfm.
3) HBF [Gopalan et al., 2015], a hierarchical Poisson-based
matrix factorization, roots from non-negative matrix factor-
ization, but places gamma priors on user/item factors. We
used the source code in Github and followed the default set-
tings for parameters.
4) WARP [Weston et al., 2010], a ranking-based matrix fac-
torization, tries to optimize precision at the top position. We
used a python package developed by Mendeley [Levy and
Jack, 2013], where the parameters have been manually tuned.
5) ICF, a basis of SBICCF, without any feature provided,
will illustrate the effect of features.

CTR [Wang and Blei, 2011] was also used for the compar-
ison on article recommendation, but it was only designed for
combining LDA-based topic modeling with ICF. Thus CTR
cannot be considered a baseline of the other two tasks. Since
the dataset for article recommendation was the same as CTR,
we followed the same settings suggested in the paper. The
dimension K of latent space was set to 200 in this case. How-
ever, in the other two tasks, K was set to 50.

4.3 Results and Discussions
The overall experimental results of these three tasks are
shown in Figure 1. We have the following observations.

First, the proposed algorithm, i.e., SBICCF, outperformed
Libfm and svdfeature by a significant margin. This may arise
from downweighting the negative preference compared with
the positive preference and getting rid of negative sampling.
Although svdfeature optimizes a ranking-based loss function
and achieves the goal of downweighting negative preference,
it doesn’t directly target top-k based recommendation met-
rics. Besides, svdfeature always places the same regulariza-
tion on the latent factor of items as their features, as shown
in Eq (1), so that the regularization of latent factors of item
features can not be well controlled.

Second, ICF was significantly better than WARP and HBF.
This indicates ICF was still the best choice for collaborative
filtering for implicit feedback, at least from the perspectives
of the current empirical results. Although WARP directly op-
timizes the precision at the top position, it exploits the ap-
proximation techniques and never converges to the optimal
solution. Moreover, it suffers from the computational issues,
and becomes more severe with increasing predictive power,
just as described in [Li et al., 2015]. Although HBF also
downweights the effect of negative preference by an appro-
priate fit to user activity (i.e., the size of consumed items)
so as to capture the diversity of users and the diversity of
items, it was only slightly better than the model (i.e., BPF)
without downweighting. In other words, their modeling ap-
proach didn’t show the strong benefit of downweighting, i.e.,
the varying conference for positive and negative preference,
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(b) Article Recommendation (recall)
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(c) Music Recommendation (recall)
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(d) Location recommendation (precision)
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(e) Article Recommendation (precision)
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Figure 1: Comparison among different models on three implicit feedback datasets.

which is slightly different from what has been concluded
by [Hu et al., 2008]. However, we can still observe its su-
periority in some cases to other baselines.

Third, SBICCF was slightly better than CTR. The differ-
ence of SBICCF from CTR on article recommendation is
that before the addition operation it also maps each topic
into the latent space and adds them in the mapped space,
i.e., (tj + V

0✓j v.s. tj + ✓j). The linear mapping matrix
V was learned for aligning topics with items, so that it may
learn no more knowledge than the case without aligning, i.e.,
CTR. However, SPICCF is more general and flexible than
CTR since there is no constraint that the number of topics
should be the same as the dimension of the latent space.

Last, SBICCF was better than ICF when features were ef-
fective. For the tasks of location recommendation and article
recommendation, we observed that features played a very im-
portant role in improving recommendation, especially for the
long tail items. This is not only because SBICCF can de-
termine the relevance automatically but also directly drop ir-
reverent features. For example, in the case of location recom-
mendation, categories such as “my home” and “private place”
were determined as irrelevant and directly removed, probably
because these categories didn’t take any useful information.
However, for article recommendation, we found that sparse
Bayesian learning in this case almost didn’t discover any ir-
relevant features but only learned the individual contribution
of topics. This may be because dimension reduction was per-
formed first so that lots of noises and information with small
variances were discarded. For music recommendation, there

was no significant improvement, probably due to only a small
amount of available user profile information and high density
of the Last.fm dataset. When there were sufficient training
data for each user, their latent factor can be well learned.

5 Conclusion and Future Work
In this paper, we proposed a sparse Bayesian content-aware
collaborative filtering algorithm best tailored to implicit feed-
back, and developed a scalable optimization algorithm for
jointly learning latent factors and hyperparameters. The de-
veloped model was not only capable of determining the rele-
vance of each feature but also automatically tuning the regu-
larization coefficients. In theory, we showed that the designed
model was equivalent to imposing an adaptive `2,1 norm on
feature latent matrices; and in practical, we observed that it
successfully pruned non-informative features. We evaluated
the proposed model on three implicit feedback datasets, and
showed its consistent superiority to several state-of-the-art
content-aware recommendation algorithms.

However, in this framework, each dimension of latent
space is assumed independent to each other. Modeling
their correlation may lead to some advantages, as shown
in [Salakhutdinov and Mnih, 2008], and this goal can be
easily achieved based on matrix normal distributions. Al-
though the developed algorithm is capable of pruning non-
informative features, it doesn’t directly measure the informa-
tiveness of each feature. Defining an appropriate metric for
the informativeness of features will have significant and prac-
tical values, thus it will be studied in a future work.
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