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Abstract
Learning detectors that can recognize concepts, such
as people actions, objects, etc., in video content is
an interesting but challenging problem. In this pa-
per, we study the problem of automatically learning
detectors from the big video data on the web without
any additional manual annotations. The contextual
information available on the web provides noisy la-
bels to the video content. To leverage the noisy web
labels, we propose a novel method called WEbly-
Labeled Learning (WELL). It is established on two
theories called curriculum learning and self-paced
learning and exhibits useful properties that can be
theoretically verified. We provide compelling in-
sights on the latent non-convex robust loss that is
being minimized on the noisy data. In addition, we
propose two novel techniques that not only enable
WELL to be applied to big data but also lead to
more accurate results. The efficacy and the scalabil-
ity of WELL have been extensively demonstrated
on two public benchmarks, including the largest
multimedia dataset and the largest manually-labeled
video set. Experimental results show that WELL
significantly outperforms the state-of-the-art meth-
ods. To the best of our knowledge, WELL achieves
by far the best reported performance on these two
webly-labeled big video datasets.

1 Introduction
The Internet has been witnessing an explosion of video data.
Due to the huge volume of the data, automatic video under-
standing has received increasing attentions in both the artificial
intelligence and the machine learning community. Generally,
researchers are interested in training a large number of detec-
tors that can automatically recognize concepts occurring in
the video content, such as people, objects, actions, etc. These
concept detectors are important building blocks for many ap-
plications such as video search, summarization and question
answering [Jiang et al., 2015b].

Training concept detectors on videos is more challenging
than on still images. Manually labeling video requires playing
back the video, which is more time consuming and expensive
than labeling still images. As a result, the largest labeled

video collection, called FCVID [Jiang et al., 2015d], only
contains about 0.09 million labels, much less than the 14
million labels in the image collection ImageNet [Deng et al.,
2009]. Furthermore, since videos are more complex than
images, training robust video detectors require more labeled
data. However, paradoxically, we have significantly less labels
for videos than images where we should have more.

In fact, there exists considerable amount of videos on the
web that contain rich contextual information with a weak
annotation about the video content, such as the video title,
description or the social network of the uploader. We call
these videos webly-labeled. The webly-labeled videos can be
collected without any manual effort, and its amount is orders
of magnitude larger than that of any manually-labeled video
collection. Unlike the manual labels, the web labels are noisy
and have both low accuracy and low recall: the webly-labeled
concepts may not present in the video content and concepts
not in the web label may appear in the video.

Few studies have been proposed to leverage the noisy webly-
labeled data in training concept detectors. Most of them are in
the image domain [Fergus et al., 2005; Li and Fei-Fei, 2010;
Bergamo and Torresani, 2010]. For example, [Divvala et al.,
2014] proposed a semi-supervised learning method to extract
concept variations and train image variation models based
on downloaded images using text-based search. A study by
Google introduced an efficient large-scale video classifica-
tion [Varadarajan et al., 2015], where they utilized YouTube
videos with weak web labels. Existing studies demonstrated
promising results in this direction. However, they are mainly
built on heuristic approaches, and it is unclear, for example,
what objective is being optimized; where or even whether
the process converges. The lack of understanding of these
questions hinders not only the theoretical analysis but also the
practical advances of existing methods.

An ideal webly-labeled learning method would not only
utilize heuristic but also, importantly, prove to be theoretically
sound. To this end, this paper proposes a novel method called
WEbly-Labeled Learning (WELL). It is established on the
theories called curriculum learning [Bengio et al., 2009] and
self-paced learning [Kumar et al., 2010]. The learning theory
is inspired by the underlying cognitive processes of humans
and animals, which generally start with learning easier aspects
of a task, and then gradually take more complex examples into
consideration [Kumar et al., 2010; Bengio et al., 2009; Jiang
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et al., 2015a]. Following the idea, WELL learns a concept
detector iteratively from first using a few samples with more
confident labels, then incorporates more samples with noisy
labels. The algorithm combines the prior knowledge extracted
from the webly-labeled data with the dynamic information
learned from the statistical model.

WELL is a novel framework for training concept detectors
from webly-labeled data. It is a also general framework that
can incorporate state-of-the-art deep learning methods to learn
robust detectors from noisy data that can also be applied to
image domain. In summary, the contribution of this paper
is threefold. First, it proposes a novel webly-labeled learn-
ing method with solid theoretical justifications. Second, it
advances the state-of-the-art curriculum and self-paced the-
ory by introducing two novel techniques, namely, the partial-
order curriculum and dropout. The proposed techniques not
only enable WELL to be applied to big data, but also lead
to more accurate results. Finally, the efficacy and the scal-
ability have been empirically demonstrated on two public
benchmarks, including by far the largest manually-labeled
video set called FCVID [Jiang et al., 2015d] and the largest
multimedia dataset called YFCC100M [Thomee et al., 2015].
Experimental results show that WELL outperforms state-of-
the-art methods with statistically significant differences. The
promising results suggest that detectors trained on sufficient
webly-labeled videos may outperform detectors trained on any
existing manually-labeled sets.

2 Related Work
Curriculum and Self-paced Learning: Recently, Bengio et
al. proposed a learning paradigm called curriculum learning
(CL), in which a model is learned by gradually incorporating
from easy to complex samples in training so as to increase
the entropy of training samples [Bengio et al., 2009]. A cur-
riculum determines a sequence of training samples and is
often derived by predetermined heuristics in particular prob-
lems. For example, [Chen and Gupta, 2015] designed a cur-
riculum where images with clean backgrounds are ranked
before the images with noisy backgrounds, i.e. their method
first builds a feature representation by a Convolutional Neu-
ral Network (CNN) on images with clean background and
then fine tunes the models on images with noisy background.
In [Spitkovsky et al., 2009], the authors approached gram-
mar induction, where the curriculum is derived in terms of the
length of a sentence. Because the number of possible solutions
grows exponentially with the length of the sentence, and short
sentences are easier and thus should be learn earlier.

The heuristic knowledge in a problem often proves to be
useful. However, the curriculum design may lead to incon-
sistency between the fixed curriculum and the dynamically
learned models. That is, the curriculum is predetermined prior
knowledge and cannot be adjusted accordingly, taking into
account the feedback about the learner. To alleviate the issue
of CL, [Kumar et al., 2010] designed a new paradigm, called
self-paced learning (SPL). SPL embeds curriculum design as
a regularizer into the learning objective. This theory has been
successfully applied to various applications, such as matrix
factorization [Zhao et al., 2015], action/event detection [Jiang

et al., 2014b], domain adaption [Tang et al., 2012], track-
ing [Supancic and Ramanan, 2013], segmentation [Kumar et
al., 2011], reranking [Jiang et al., 2014a], etc.

Learning Detector in Web Data: Recently, a few stud-
ies have been proposed trying to utilize the huge amount of
noisy data from the Internet. For example, [Mitchell et al.,
2015] proposed a Never-Ending Language Learning (NELL)
paradigm and built adaptive learners that makes use of the web
data by learning different types of knowledge and beliefs con-
tinuously. Such learning process is mostly self-supervised, and
previously learned knowledge enables learning further types
of knowledge. [Sukhbaatar et al., 2014] designed loss layers
specifically for noisy label learning of images in Convolutional
Neural Network. It tried to estimate the distribution of noise
and was mainly verified on synthesized noisy labels. [Liang
et al., 2015] presented a weakly-supervised method called
Baby Learning for object detection from a few training im-
ages and videos. They first embed the prior knowledge into a
pre-trained CNN. When given very few samples for a new con-
cept, a simple detector is constructed to discover much more
training instances from the online weakly labeled videos. As
more training samples are selected, the concept detector keeps
refining until a mature detector is formed. [Varadarajan et al.,
2015] discussed a method that exploits the YouTube topic API
to train large scale video concept detectors on YouTube. The
method utilized a calibration process and hard negative mining
to train a second order mixture of experts model in order to
discover correlations within the labels. Existing methods are
mainly built on heuristic approaches and it is unclear what
objective is being optimized. In this paper, we theoretically
justify the proposed method and empirically demonstrate its
superior performance over representative existing methods.

3 WEbly-Labeled Learning (WELL)

3.1 Model and Algorithm

In this paper, we consider a concept detector as a binary clas-
sifier. The noisy web labels for a concept can be automatically
collected by matching the concept name to the latent topic of
video metadata. For example, a video may have a web label
“dog” as its title talks about dog. [Varadarajan et al., 2015]
utilizes the YouTube topic API, which is derived from the
textual metadata, to automatically get noisy labels for videos.
The web labels are quite noisy as the webly-labeled concepts
may not present in the video content whereas the concepts not
in the web label may well appear.

To leverage the noisy web labels in a principled way, we
propose WEbly-Labeled Learning (WELL). Formally, given
a training set D = {(xi, yi)}ni=1, where xi 2 Rm denotes
the feature for the i

th observed sample, and yi represents its
noisy web label. Let L(yi, g(xi,w)), or `i for short, denote
the loss function which calculates the cost between the noisy
label yi and the estimated label g(xi,w). Here w represents
the model parameter inside the decision function g. For exam-
ple, in our paper, w represents the weight parameters in the
Convolutional Neural Network (CNN). Our goal is to jointly
learn the model parameter w and the latent weight variable
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v = [v1, · · · , vn]T by:

min
w,v2[0,1]n

E(w,v;�, )=
nX

i=1

viL(yi,g(xi,w))+f(v;�),

subject to v 2  
(1)

where v = [v1, v2, · · · , vn]T denote the latent weight vari-
ables reflecting the labels’ confidence. The weights determine
a learning sequence of samples, where samples with greater
weights tend to learned earlier. Our goal is to assign greater
weights to the sample with confident labels whereas smaller
or zero weights to the samples with noisy labels. To this end,
we employ the self-paced regularizer f , which controls the
learning scheme. We consider the binary regularizer Eq. (2)
proposed in [Kumar et al., 2010] and the linear regularizer
Eq. (3) proposed in [Jiang et al., 2015a]:

fb(v;�) = ��kvk1, (2)

fl(v;�) =
1

2
�

nX

i=1

(v2i � 2vi). (3)

Generally, a self-paced regularizer determines the scheme for
penalizing the latent weight variables. Physically it resem-
bles the learning schemes human used in understanding new
concepts. The linear scheme corresponds to a prudent strat-
egy, which linearly penalizes the samples that are different
to what the model has already learned (see Eq. (4)); whereas
the binary scheme is more aggressive and only assigns binary
weights. The hyper-parameter � (� > 0) is called “model
age”, which controls the pace at which the model learns new
samples. When � is small only samples of with small loss will
be considered. As � grows, more samples with larger loss will
be gradually appended to train a “mature” mode.
 in Eq. (1) is a curriculum region that incorporates the

prior knowledge extracted from the webly-labeled data as a
convex feasible region for the weight variables. The shape of
the region weakly implies a prior learning sequence of sam-
ples, where the expected values for favored samples are larger.
The curriculum region can be derived in a variety of ways.
Section 7 will discuss this topic in details. A straightforward
approach is by counting the term frequency in the video meta-
data. That is, for example, the chance of a video containing
the concept “zebra” become higher when it has more word
“zebra” in its title or description.

Eq. (1) represents a concise and general optimization
model [Jiang et al., 2015a]. It combines the prior knowledge
extracted from the noisy webly-labeled data (as the curriculum
region) and the information dynamically learned during the
training (via the self-paced regularizer). Intuitively, the prior
knowledge serves as an instructor providing a guidance on
learning the latent weights, but it leaves certain freedom for
the model (the student) to adjust the actual weights according
to its learning pace. Experimental results in Section 4 demon-
strate the learning paradigm can better overcome the noisy
labels than just using either predetermined prior knowledge or
dynamically learned information.

Following [Kumar et al., 2010; Jiang et al., 2015a], we em-
ploy the alternative convex search algorithm to solve Eq. (1).

Algorithm 1: Webly-labeled Learning (WELL).
input :Input dataset D, curriculum region  ,

self-paced function f and a step size µ

output :Model parameter w
1 Initialize v

⇤, � in the curriculum region;
2 while not converged do
3 Update w

⇤ = argminw E(w,v

⇤;�, );
4 Update v

⇤ = argminv E(w⇤
,v;�, );

5 if � is small then increase � by the step size µ;
6 end
7 return w

⇤

Algorithm 1 takes the input of a curriculum region, an instanti-
ated self-paced regulizer and a step size parameter; it outputs
an optimal model parameter w. First of all, it initializes the
latent weight variables in the feasible region. Then it alternates
between two steps until it finally converges: Step 4 learns the
optimal model parameter with the fixed and most recent v⇤;
Step 5 learns the optimal weight variables with the fixed w

⇤.
In the beginning, the model “age” is gradually increased so
that more noisy samples will be gradually incorporated in the
training. Step 4 can be conveniently implemented by existing
off-the-shelf supervised learning methods such as the back
propagation. Gradient-based methods can be used to solve the
convex optimization problem in Step 5. According to [Gorski
et al., 2007], the alternative search in Algorithm 1 converges
as the objective function is monotonically decreasing and is
bounded from below.

At an early age when � is small, Step 4 in Algorithm 1 has
an evident suppressing effect over noisy samples that have
greater loss to the already learned model. For example, with
a fixed w, the unconstrained close-formed solution for the
regularizer in Eq. (3) equals

v

⇤
i =

⇢
� 1

�`i + 1 `i < �

0 `i � �

, (4)

where vi represents the ith element in the optimal solution
v

⇤ = [v⇤1 , · · · , v⇤n]T . Eq. (4) called linear regularizer indicates
the latent weight is proportional to the negative sample loss,
and the sample whose loss is greater or equals to � will have
zero weights and thus will not affect the training of the next
model. As the model age grows, the hyper-parameter � in-
creases, and more noisy samples will be used into training.
The prior knowledge embedded in the curriculum region  is
useful as it suggests a learning sequence of samples for the
“immature” model. Section 3.2 theoretically indicates that the
iterative learning process is identical to optimizing a robust
loss function on the noisy data.

If we keep increasing �, the model will ultimately use every
sample in the noisy data, which is undesirable as the labels of
some noisy samples are bound to be incorrect. To this end, ,
we stop increasing the age � after about a certain number of it-
erations (early stopping). The exact stopping iteration for each
detector is automatically tuned in terms of its performance on
a small validation set.
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Partial-order Curriculum
 is a feasible region that embeds the prior knowledge ex-
tracted from the webly-labeled data. It physically corresponds
to a convex search region for the latent weight variable. Given
a set of training samples X = {xi}ni=1, Jiang et al. proposed
an implementation of the total-order curriculum on training
samples [Jiang et al., 2015a]. It is defined as a ranking func-
tion: � : {xi}ni=1 ! {1, 2, · · · , n}, where �(xi) < �(xj)
represents that the sample xi should be learned earlier than
xj in training. However, predetermining a total-order learning
sequence for every pair of samples, especially in the big noisy
data, seems to be infeasible. In reality, we can only obtain in-
complete prior information from the noisy data. For examples,
we may know videos with certain keywords in its title should
be learned earlier, but may never know the learning priority
for the videos that do not have the keywords.

To this end, we propose a novel notion called partial-order
curriculum, which allows for leveraging the incomplete prior
information residing in the webly-labeled data. Define a partial
order relation � such that xi � xj indicates that the sample
xi should be learned no later than xj (i, j 2 [1, n]). Similarly
given two sample subsets Xa � Xb denotes the samples in
Xa should be learned no later than the samples in Xb.

Definition 1 (Partial-order Curriculum) Given the train-
ing samples X = {xi}ni=1 and their weight variables
v = [v1, · · · , vn]T . Define a partial-order set � = (X,�).
For every element in set Xp � Xq(Xp,Xq ✓ X), a feasible
region  = (AT

v  0) is called a partial-order curriculum
region of � if A = 0 except 8xi 2 Xp, 8xj 2 Xq we have 9t,
Ati = �1 and Atj = 1.

The partial-order curriculum in Definition 1 generalizes
the total-order curriculum by incorporating the incomplete
prior over groups of samples. Samples in the confident groups
should be learned earlier than samples in the less confident
groups. It imposes no prior over the samples within the same
group nor the samples not in any group. Definition 1 follows
the curriculum definition in [Jiang et al., 2015a] and will
degenerate to the curriculum in [Jiang et al., 2015a] when the
partial order becomes the full order relation.

In our problem, we extract the partial-order curriculum in
the following way: we only distinguish the training order for
groups of samples. We directly utilize the textual descriptions
of the videos generated by the uploaders. For each video,
we extract the latent topics of the video based on their titles,
descriptions and tags in their metadata. In terms of the distance
between the video’s latent topic to the target concept, we group
videos in a sequential order for each concept. The grouping
and ordering information of the videos can be used to construct
the partial-order curriculum. In our experiment, we divide
the data into two partial-order curriculum groups, where the
videos with matching scores larger than zero are in one group
and the rest are in the other group.

Dropout
The labels in webly-labeled data are much noisier than
manually-labeled data, and as a result, we found that the
learning is prone to overfitting the noisy labels. To address

this issue, inspired by the dropout technique in deep learn-
ing [Srivastava et al., 2014], we propose a dropout strategy for
webly-labeled learning. It is implemented in the self-paced
regularizer discussed in Section 3.1:

ri(p) ⇠ Bernoulli(p) + ✏, (0 < ✏ ⌧ 1)

fb(v;�, p) = ��kr · vk1,

fl(v;�, p) =
1

2
�

nX

i=1

(
1

ri
v

2
i � 2vi),

(5)

where r is a column vector of independent Bernoulli random
variables with the probability p of being 1. Each of the ele-
ment equals the addition of ri and a small positive constant
✏. Denote Ew =

Pn
i=1 vi`i + f(v;�) as the objective with

the fixed model parameters w without any constraint, and the
optimal solution v

⇤ = [v⇤1 , · · · , v⇤n]T = argminv2[0,1]n Ew:

Ew =
nX

i=1

(`i � ri�)vi;) v

⇤
i =

⇢
1 `i < ri�

0 `i � ri�
, (6)

Ew =
nX

i=1

`ivi + �(
1

2ri
v

2
i � vi);

@Ew

@vi
= `i + �vi/ri � � = 0;

) v

⇤
i =

⇢
ri(� 1

�`i + 1) `i < �

0 `i � �

.

(7)

The dropout effect can be demonstrated in the closed-form
solutions in the above equations: with the probability 1 �
p, v⇤i approaches 0; with the probability p, v⇤i approaches
the solution of the plain regularizer discussed in Eq. (2) and
Eq. (3). Recall the self-paced regularizer defines a scheme for
learning. Eq. (6) and Eq. (7) represent new learning schemes.

When the base learner is neural networks, the proposed
dropout can be used combined with the classical dropout
in [Srivastava et al., 2014]. The term dropout in this paper
refers to dropping out samples in the iterative learning. By
dropping out a sample, we drop out its update to the model. It
is useful for noisy data. When samples with incorrect noisy
labels update a model, it will encourage the model to select
more noisy labels. The dropout strategy prevents overfitting to
noisy labels. Experimental results substantiate this argument.
In practice, we recommend setting two Bernoulli parameters
for positive and negative samples on imbalanced data. Empiri-
cally, we apply a much smaller probability p on the negative
samples than on the positive samples.

3.2 Theoretical Discussions
Interestingly, it turns out that Algorithm 1 actually optimizes
an underlying non-convex robust loss on the noisy data. To
show this, let v⇤(�, `) represent the optimal weight of v for a
loss term ` imposed on a training sample in Eq (1), where

v

⇤(�, `) = argminv2[0,1] v`+ f(v,�). (8)

For convenience of notation, let the curriculum region be
the full space. According to [Meng and Zhao, 2015], the latent
objective has the form of E` =

Pn
i=1 F�(`i)(� > 0) with
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a latent loss function F�(`) obtained by integrating the loss
variable from v

⇤(�, `), i.e.,

F�(`) =

Z `

0
v

⇤(�; l)dl. (9)

Note that in the above ` and l means loss variables in the
latent loss function F�(`) and the optimal weight function
v

⇤(�, l), whereas `i denotes the loss value actually calculated
on the i-th sample. Incorporate the binary and linear self-paced
regularizers in Eq. (9), the latent objective becomes:

F

b
�(`) = min(`,�) (10)

F

l
�(`) = I(` � �)

�

2
+ I(` < �)(`� `

2

2�
) (11)

Eq. (10) and Eq. (11) are two common non-convex regu-
larized penalties in the machine learning community, where
Eq. (10) is the Capped-Norm based Penalty(CNP) [Zhang,
2010b; Gong et al., 2013] and Eq. (11) is the Minimax Con-
vex Plus (MCP) [Zhang, 2010a]. It has been showed that
both CNP and MCP can be used as robust loss functions that
threshold the samples of greater loss [Friedman et al., 2007].
Therefore, Algorithm 1 actually minimizes a non-convex ro-
bust loss derived from the original loss in the base learner
(e.g. hinge loss). On clean data, the effect of the robust loss
may not be evident, but on noisy data, without the robust loss,
the model can be easily dominated by a few noisy samples
or outliers. Experimental results substantiate this argument,
where we observed that the robust loss leads to more accurate
results than the original loss on the webly-labeled data.

The proposed WELL can be theoretically justified from
two independent perspectives. From the learning perspective,
WELL mimics the human and animal learning process that
learns a model gradually from confident to less confident
examples in the noisy data. From the optimization perspective,
it minimizes a non-convex robust loss (CNP or MCP) on the
noisy data. The robust loss tends to depress samples with noisy
labels or outliers. Due to the nature of non-convexity, WELL
utilizes the curriculum and self-paced learning, which have
been demonstrated to be instrumental in avoiding bad local
minima in non-convex problems [Bengio et al., 2009; Kumar
et al., 2010]. Interestingly, Meng and Zhao proved that when
� is fixed, Algorithm 1, in fact, is identical to the Majorization-
Minimization algorithm [Mairal, 2013], a popular solver for
non-convex problems [Meng and Zhao, 2015]. Based on
the understanding, one can justify the role of the curriculum
region, i.e. the curriculum confines the search space of a non-
convex problem to some reasonable subspace which tends to
improve the quality of the starting value and the final solution.
The dropout methods on the other hand, prevent overfitting in
the non-convex optimization problem.

4 Experiments
4.1 Experimental Setup
This section systematically verifies the accuracy and the scala-
bility of the proposed method on learning concept detectors
from webly labeled video data. The experiments are conducted
on two public benchmarks, where FCVID is by far one of the

biggest manually annotated video set, and the YFCC100M is
the largest multimedia benchmark.

Dataset and Feature Fudan-columbia Video Dataset
(FCVID) contains 91,223 YouTube videos (4,232 hours) from
239 categories. It covers a wide range of concepts like activ-
ities, objects, scenes, sports, etc. [Jiang et al., 2015d]. Each
video is manually labeled to one or more categories. In our
experiments, we do not use the manual labels in training, but
instead we automatically generate the web labels according
to the concept name appearance in the video metadata. The
manual labels are used only in testing to evaluate our and base-
line methods. Following [Jiang et al., 2015d], the standard
train/test split and the same static CNN feature from [Jiang
et al., 2015d] are used to have a fair comparison to existing
methods. The second set YFCC100M [Thomee et al., 2015]
contains about 800,000 videos on Flickr with metadata such
as the title, tags, the uploader, etc. There are no manual labels
on this set and we automatically generate the web labels from
the metadata. We use the features provided in [Jiang et al.,
2015c] where we first extract the keyframe level the VGG
neural network features [Chatfield et al., 2014] and create a
video feature by average pooling. The same features are used
across different methods on each dataset. Since there are no
annotations, we train the concept detectors on the most 101
frequent latent topics in the video metadata.

Baselines The proposed method is compared against the
following five baseline methods which cover both the classical
and the recent representative learning algorithms on webly-
labeled data. BatchTrain trains a single SVM model using all
samples with noisy labels. AdaBoost is a classical ensemble ap-
proach that combines the sequentially trained base classifiers
in a weighted fashion [Friedman, 2002]. Self-Paced Learning
(SPL) is a classical method where the curriculum is generated
by the learner itself [Kumar et al., 2010]. BabyLearning is a re-
cent method that simulates baby learning by starting with few
training samples and fine-tuning using more weakly labeled
videos crawled from the search engine [Liang et al., 2015].
We build a search engine that indexes the textual metadata
and retrieves videos using concept words based on Lucene
[Białecki et al., 2012]. GoogleHNM We use the hard negative
mining strategy in [Varadarajan et al., 2015]. On FCVID, we
use the YouTube topic API to acquire the noisy label whereas
on YFCC100M we obtain the noisy label by the Lucene search
engine.

Evaluation Metrics On FCVID, as the manual labels are
available, the performance is evaluated in terms of the pre-
cision of the top 5 and 10 ranked videos (P@5 and P@10)
and mean Average Precision (mAP) of 239 concepts. On
YFCC100M, since there are no manual labels, for evaluation,
we apply the detectors to a third public video collection called
TRECVID MED which includes 32,000 Internet videos [Over
et al., 2014]. We apply the detectors trained on YFCC100M
to the TRECVID videos and manually annotate the top 10
detected videos of each method for 101 concepts.

Our Model We build our method on top of a pre-
trained convolutional neural network as the low-level features,
i.e. static CNN features on FCVID and VGG features on
YFCC100M. The concept detectors are trained based on a
hinge loss cost function. Algorithm 1 is used to train the con-
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Table 1: Performance comparison on FCVID.

Method P@5 P@10 mAP
BatchTrain 0.782 0.763 0.469
Adaboost 0.456 0.412 0.293
SPL 0.793 0.754 0.414
GoogleHNM 0.781 0.757 0.472
BabyLearning 0.834 0.817 0.496
WELL (binary w/o dropout) 0.857 0.843 0.521
WELL (linear) 0.893 0.877 0.566
WELL (binary) 0.893 0.878 0.567

cept models iteratively and the � stops increasing after 100
iterations. We automatically generate noisy web labels based
on the video metadata. For the videos with noisy positive
labels, we group them based on their latent topics, and derive a
partial-order curriculum in Definition 1. The hyper-parameters
of all methods including the baseline methods are tuned on
the same validation set. On FCVID, the set is a small train-
ing subset with manual labels whereas on YFCC100M it is a
proportion of noisy training set.

4.2 Experiments on FCVID
Table 1 compares the precision and mAP of different meth-
ods where the best results are highlighted. As we see, the
proposed WELL with dropout significantly outperforms all
baseline methods, with a significant difference at p-level of
0.05. For example, WELL outperforms the best baseline on
194 out of 239 concepts. The promising experimental results
substantiate our theoretical analysis in Section 3.2. With the
proposed model, the binary and linear regularizer yield a sim-
ilar accuracy on this dataset. The performance difference
between WELL with and without dropout demonstrates the
efficacy of the proposed dropout technique, and the difference
between SPL and WELL indicates the benefit of incorporating
the proposed partial-order curriculum.

Note, WELL does not use any manual labels in training,
but interestingly, its accuracy is comparable with the model
trained on 35,850 videos with ground truth labels in [Jiang et
al., 2015d]. To investigate the potential of training concepts on
webly-labeled video data, we apply WELL on the data subsets
of different sizes. Specifically, we randomly split the FCVID
training set into the subset of 200, 500, 1,000, and 2,000 hours
of videos, and train the models on each subset. The models
are then tested on the same standard test set. Table 2 lists the
results. As we see, the accuracy of WELL on webly-labeled
data increases along with the growth of the size of noisy data.
The accuracy of WELL on 2,000 hours of videos with noisy
web labels turns out to be better than the model trained on
500 hour of manually labeled data. Recall FCVID is one
of the biggest manually annotated set which contains about
2,000 hours of annotated videos. According to the results,
we hypothesize that with more webly-labeled data, which is
not hard to obtain, WELL can potentially outperform models
trained on any existing manually-labeled data.

4.3 Experiments on YFCC100M
Since there are no manual labels on YFCC100M, to evaluate
the performance, we manually annotate the top 10 videos in

Table 2: MAP comparison of models trained using web labels
and ground-truth labels on different subsets of FCVID. Noted
that WELL is trained using noisy web labels while * is trained
using ground truth labels

Dataset Size 200h 500h 1000h 2000h
WELL 0.413 0.480 0.520 0.567
BatchTrain * 0.485 0.561 0.604 0.638

Table 3: Performance comparison on YFCC100M.

Method P@3 P@5 P@10
BatchTrain 0.535 0.513 0.487
Adaboost 0.341 0.327 0.282
SPL 0.485 0.463 0.454
GoogleHNM 0.541 0.525 0.500
BabyLearning 0.548 0.519 0.466
WELL (binary w/o dropout) 0.607 0.608 0.589
WELL (linear) 0.667 0.663 0.649
WELL (binary) 0.660 0.640 0.625

the test set and report their precisions in Table 3. A similar
pattern can be observed where the comparisons substantiate
the rationality of the proposed partial-order curriculum and the
dropout technique. The promising results on the largest multi-
media set YFCC100M verify the scalability of the proposed
method.

5 Conclusions
In this paper, we proposed a novel method called WELL for
webly labeled video data learning. WELL extracts informa-
tive knowledge from noisy weakly labeled video data from
the web through a general framework with solid theoretical
justifications. It improves curriculum and self-paced learning
theory with the partial-order curriculum and dropout to build
better video detectors with noisy data. The result suggests
that with more webly-labeled data, which is not hard to ob-
tain, WELL can potentially outperform models trained on any
existing manually-labeled data.
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