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Abstract
In recent years, convolutional neural networks
(CNNs) have achieved remarkable success in var-
ious applications such as image classification, ob-
ject detection, object parsing and face alignment.
Such CNN models are extremely powerful to deal
with massive amounts of training data by using mil-
lions and billions of parameters. However, these
models are typically deficient due to the heavy cost
in model storage, which prohibits their usage on
resource-limited applications like mobile or em-
bedded devices. In this paper, we target at com-
pressing CNN models to an extreme without sig-
nificantly losing their discriminability. Our main
idea is to explicitly model the output reconstruction
error between the original and compressed CNNs,
which error is minimized to pursuit a satisfactory
rate-distortion after compression. In particular, a
global error reconstruction method termed GER is
presented, which firstly leverages an SVD-based
low-rank approximation to coarsely compress the
parameters in the fully connected layers in a layer-
wise manner. Subsequently, such layer-wise initial
compressions are jointly optimized in a global per-
spective via back-propagation. The proposed GER
method is evaluated on the ILSVRC2012 image
classification benchmark, with implementations on
two widely-adopted convolutional neural networks,
i.e., the AlexNet and VGGNet-19. Comparing
to several state-of-the-art and alternative methods
of CNN compression, the proposed scheme has
demonstrated the best rate-distortion performance
on both networks.

1 Introduction
In recent years, convolutional neural networks have
demonstrated impressive performance in various com-
puter vision applications, for example, image classification
[A. Krizhevsky and Hinton, 2012; Y. Lecun and Haffner,

⇤Corresponding author

1998; Simonyan and Zisserman, 2014; C. Szegedy and Ra-
binovich, 2015; Zeiler and Fergus, 2014; Y. Jia and Dar-
rell, 2014; K. He and Sun, 2015], object detection [R. Gir-
shick and Malik, 2014; K. He and Sun, 2014] and image re-
trieval [Y. Gong and Lazebnik, 2014]. Despite the long his-
tory of neural network research in the literature [Fukushima,
1980], the significant success of CNNs is mainly driven by
the advanced computing resources available nowadays. For
instance, to train a discriminative CNN model like AlexNet
[A. Krizhevsky and Hinton, 2012] or VGGNet [Simonyan
and Zisserman, 2014], it is typically required to set hun-
dreds of millions of parameters, which are tuned using mas-
sive labelled or unlabelled data via approximated optimiza-
tion ( e.g. stochastic gradient descent) through GPU or dis-
tributed settings [J. Deng and Li, 2009]. To that effect, vari-
ous implementations of CNNs are introduced in the literature,
e.g., AlexNet [A. Krizhevsky and Hinton, 2012], VGGNet
[Simonyan and Zisserman, 2014], GoogleNet [C. Szegedy
and Rabinovich, 2015]

etc. Despite the state-of-the-art
performances reported in challenging tasks like ImageNet
ILSVRC [J. Deng and Li, 2009], the storage cost of CNNs
is essentially huge, which typically require a large number
of parameters (⇠ 10

8) [A. Krizhevsky and Hinton, 2012;
Zeiler and Fergus, 2014; P. Sermanet and LeCun, 2013].
For instance, an 8-layer-AlexNet with 600,000 nodes costs
240MB storage, while a 19-layer-VGGNet with 1.5M nodes
costs 548MB. Under such a circumstance, the existing CNNs
cannot be directly deployed on devices that require compact
storage, such as mobile phones or embedding devices. On the
contrary, it is shown that CNNs with million-scale parameters
typically tend to be heavily over-parameterized [M. Denil and
Freitas, 2013]. Therefore, not all parameters and structures
are essentially necessary in producing a discriminative CNN
model. On the other hand, it is quantitatively shown in [Ba
and Caruana, 2014] that, neither shallow nor simplified CNNs
provide comparable performance to deep CNNs with million-
scale parameters. Therefore, a natural thought is to discover
and discard the parameter redundancy in deep CNNs without
significantly decreasing the classification accuracy.

The compression of CNNs has attracted a few research at-
tentions very recently, which can be further categorized into
three groups, i.e., parameter sharing, parameter pruning and
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Figure 1: Framework of our compression for CNN via global
error reconstruction

matrix decomposition. As for parameter sharing, Gong et

al. [Y. Gong and Bourdev, 2014] employed vector quanti-
zation over parameters to reduce the redundancy in the pa-
rameter space. Chen et al. [W. Chen and Chen, 2015]
proposed a HashedNets model which uses a low-cost hash
function to group weights between two connected layers into
hash buckets to share parameters. Cheng et al. [Y. Cheng
and Chang, 2015] proposed to replace the conventional lin-
ear projection in fully connected layers with the circulant
projection, which reduces the storage cost and enables the
use of Fast Fourier Transform to accelerate the computation.
As for parameter pruning, Srinivas and Babu [Srinivas and
Babu, 2015] explored the redundancy among neurons, and
proposed a data-free pruning to remove redundant neurons.
Han et al. [S. Han and Dally, 2015] aimed at reducing the
total amount of parameters and operations in the entire net-
work. The above pruning approaches can give significant re-
ductions in both parameter size and computation workload.
As for matrix decomposition, Denil et al.

[M. Denil and Fre-
itas, 2013] adopted low-rank decomposition to compress the
weights in the fully connected layers in a layer-by-layer man-
ner. Novikov et al. [A. Novikov and Vetrov, 2015] converted
the dense weight matrices of the fully connected layers to the
Tensor Train format, such that the number of parameters is re-
duced by huge factor while preserving the expressive power
of the layer.

However, the state-of-the-art methods [M. Denil and Fre-
itas, 2013; Y. Gong and Bourdev, 2014; Srinivas and Babu,
2015] still rely on a layer-wise parameter compression, which
do not provide an explicit modeling to the overall loss of clas-
sification accuracy. In other words, such works can be re-
graded as a layer-wised, “implicit” and “local” compression
for CNNs. In terms of the “implicit” compression, the ex-
isting works only considered approximating the parameters
W between fully connected layers with ˆW by minimizing

their Euclidean distance
���W � ˆW

���
2

F
. This setting is in-

deed problematic, which does not directly recover the output

of CNNs (a.k.a., the learned deep features) used for classi-
fication. In terms of “local” compression, a more optimal
solution is indeed to preserve the classification accuracy in
a global manner, i.e., compressing all parameters across the
entire fully connected layers1. Meanwhile, the global corre-
lations among weights of inter-layers are simply ignored in
[M. Denil and Freitas, 2013; Y. Gong and Bourdev, 2014;
Srinivas and Babu, 2015]. In particular, due to the nonlin-
ear activation functions (e.g. sigmoid, tahn [Y. LeCun and
Müller, 2012], or rectifier linear unit (ReLU) [Nair and Hin-
ton, 2010]), small quantization error between W and ˆW in
each layer might magnified and propagated in the network,
leading to large generalization error as shown in our experi-
ments.

In this paper, we present a novel framework towards an
“explicit” and “global” compression of CNNs, whose struc-
ture is shown in Fig. 1. Our key innovation lies in introducing
a Global Error Reconstruction algorithm, which explicitly
models the reconstruction error between the outputs of both
the original and the compressed CNNs in a global way. In
such a manner, both inter-layer and intra-layer relationships
of weight parameters are jointly compressed. Meanwhile,
instead of minimizing the reconstruction error between the
original and approximated parameters layer-by-layer, GER
directly establishes an objective function to recover the out-
puts of the compressed CNNs, which includes the influences
of nonlinear activation functions within and across the fully
connected layers.

In practice, we conduct an initial compression of the
weights in the fully connected layers by an SVD-based low-
rank decomposition, which can relax the constrained term of
the optimization function to being trackable. Subsequently,
such layer-wise, coarse compressions are further jointly op-
timized among layers via back propagation to minimize the
global error, which is done by a novel optimization method
that using the stochastic gradient descent to well solve the
non-convex optimization problem.

The proposed method is evaluated on the ILSVRC2012
image classification benchmark, with testing on two widely-
adopted CNNs, i.e., AlexNet [A. Krizhevsky and Hinton,
2012] and VGGNet-19 [Simonyan and Zisserman, 2014].
We have demonstrated that the proposed GER compression
scheme can lead to the state-of-the-art rate-distortion2 perfor-
mance by comparing with several state-of-the-art and alter-
native schemes in CNN compression [M. Denil and Freitas,
2013; Y. Gong and Bourdev, 2014; X. Zhang and Sun, 2015].
The main contribution of this paper is three-fold:

• We introduce an explicit objective function to directly
minimize the reconstruction error of outputs before and
after network compression, which differs from the ex-

1In this paper, we focus on the compression of the fully con-
nected layer, as it occupies the largest proportion in the entire CNN
model. For instance, above 80% storage is cost in the fully con-
nected layers comparing to 20% in the convolutional layers of the
AlexNet [A. Krizhevsky and Hinton, 2012].

2Rate-distortion is an evaluation protocol of model compression
in which the rate and distortion represent the compression rate of
model and classification precision, respectively.
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isting works that indirectly minimize the difference be-
tween the original and compressed parameters.

• We globally model the inter-layer correlation during the
network compression, which can address the issue of
layer-wise accumulated compression error.

• We introduce an effective optimization method to solve
the corresponding non-convex optimization, which
firstly uses an SVD-based low-rank decomposition to re-
lax the constrained term, and then adopts a stochastic
gradient descent to learn optimal parameters.

2 Initial Compression of CNN Based on
Low-rank Decomposition

2.1 Preliminaries
We define a feature matrix X = [x1, x2, · · · , xn] 2 <d⇥n as
the input to compress a fully-connected CNN, where d is the
dimension of feature vectors, and n is the number of feature
vectors which are the outputs of the last convolutional layer
in the original CNN-like AlexNet [A. Krizhevsky and Hin-
ton, 2012]. The forward propagation of the l-th layer in a
compressed fully-connected CNN can be written as:

al+1
i = f(zl+1

i ), where zl+1
i =

nlX

j=0

W l
ija

l
j , (1)

where W l
ij is the element of weight matrix Wl. The vectors

z, a 2 <nl

denote the activation units before and after trans-
formation f(·). Typically, f(·) is a non-linear transition, for
instance, the rectifier linear unit (ReLU), sigmoid or tanh etc.

2.2 Layer-wise Low-rank Approximation of
Linear Response

We first consider the low-rank approximation ˆW
l

of the orig-
inal weights Wl between the l-th and l + 1-th layers. To find
an approximated low-rank subspace, we minimize the recon-
struction error of the neuron responses as below:

min

Ŵl
kWlX � ˆW

l
Xk2F

s.t. rank( ˆW
l
)  k,

(2)

where Wl, ˆW
l
2 <dl+1⇥dl

. With respect to the error of two
linear transforms on the same input signal X, Eq. 2 can be
rewritten as:

min

Ŵl
kWl � ˆW

l
k2F

s.t. rank( ˆW
l
)  k.

(3)

We solve Eq. 3 by Singular Vector Decomposition (SVD)
[Golub and Loan, 2012], a.k.a., ˆW

l
=

ˆU
l

k
ˆS
l

k
ˆV
l>

k , where
ˆU
l

k 2 <dl+1⇥k and ˆV
l

k 2 <dl⇥k are two submatrices that
correspond to the top k singular vectors in Ul and Vl. The
diagonal elements in ˆS

l

k 2 <k⇥k correspond to the k largest

Algorithm 1 Alternating optimization layer-by-layer
Input: Training data points X; the output Zl between the l-th and

l + 1-th layers before non-linear transformation; the input Cl

between the l-th and l + 1-th layers; the restricted rank k, the
maximum iterations T .

Output: The approximated low-rank matrix Ŵl.
1: Initialize C0 by X, the auxiliary variables Yl by Zl, and t = 1.
2: repeat
3: Step I: Fix Yl+1 and update Ŵl via GSVD
4: Step II: Fix Ŵl and update Yl+1 by analyzing each element

y

l+1
ij , and solve 1-dimensional optimization Eq. 9 via Eq. 10

and Eq. 11.
5: t := t+ 1;
6: until convergence or reach maximum iterations T

singular values in Sl, which is a diagonal matrix by running
SVD over Wl. Then we obtain the decomposition of ˆW

l
as

ˆP
l
ˆQ
l>

, where ˆP
l
=

ˆU
l

k
ˆS
l
1
2

k and ˆQ
l
=

ˆV
l

k
ˆS
l
1
2

k .

2.3 Extending to Non-Linear Responses
For non-linear transition that commonly occurs in CNNs, the
result of approximated matrix is not equivalent to that of the
original one. Therefore, the effect of non-linear transition
should be taken into account when designing low-rank ap-
proximation of parameter matrix W. Taking the widely used
ReLU transition for instance, ReLU is defined as f(·) =

max(·, 0). To minimize the reconstruction error of ReLU-
like response, we have:

min

Ŵl

nX

i

kf(Wlali)� f( ˆW
l
ˆali)k22

s.t. rank( ˆW
l
)  k,

(4)

where the first term ali is the non-approximated input of the l-
th layer (i.e. output of the l�1-th layer), and the second term
ˆali approximates the input of the l-th layer. The optimization
problem in Eq. 4 can be solved by a layer-wise optimization
with an alternating solver. More specifically, we consider this
optimization layer-to-layer in a bottom up manner: Taking
Eq. 4 for example, we fix ˆali as a constant which denotes
cli, and use zl+1

i instead of Wlali in optimization. Then the
optimization of each layer in Eq. 4 can be rewritten as

min

Ŵl

nX

i

kf(zl+1
i )� f( ˆW

l
cli)k22

s.t. rank( ˆW
l
)  k.

(5)

Unfortunately, Eq. 5 is hard to be solved due to the coex-
istence of the non-linearity and the low-rank constraint. To
obtain a feasible solution, we relax Eq. 5 to:

min
Ŵl,{yl+1

i }

nX

i

kf(zl+1
i )� f(yl+1

i )k22 + �kyl+1
i � Ŵ

l
clik22

s.t. rank(Ŵ
l
)  k,

(6)
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Figure 2: GER scheme for optimizing a global objective func-
tion across all CNN layers

where � is a penalty parameter and yl+1
i is a set of auxiliary

variables of the same size as zl+1
i . If � ! 1, the solution

to Eq. 6 will converge to the solution to Eq. 5. To solve Eq.
6, we further employ an alternating solver that alternatively
fixes {yl+1

i } and solves ˆW
l
, and vice versa. We detail this

alternative optimization as below:
Alternating Step I: Fix {yl+1

i } and update ˆW
l
, i.e.,

min

Ŵl

nX

i

kyl+1
i � ˆW

l
clik22

s.t. rank( ˆW
l
)  k.

(7)

We rewrite Eq. 7 as a Reduced Rank Regression problem:
[Gower and Dijksterhuis, 2004; Takane and Hwang, 2007],

min

Ŵl
kYl+1 � ˆW

l
Clk2F

s.t. rank( ˆW
l
)  k.

(8)

Herek · kF is the Frobenius norm. let ¯Wl
=

Yl+1ClT
(ClClT

)

�1, Eq. 8 can be solved by the Generalized
Singular Vector Decomposition (GSVD) [Takane and Jung,
2006]. i.e.,

1. GSVD decomposes ¯Wl as eW
l
= UlSlVl.

2. The solution ˆW
l

to Eq. 8 is given by ˆW
l
= Ul

kSl
kVlT

k ,
where Ul

k and Vl
k are the first k columns of Ul and Vl,

and Sl
k are the k largest singular value in Sl.

3. We obtain the decomposition of ˆW
l
= PlQl> , where

Pl
= Ul

kSl
1
2

k and Ql
= Vl

kSl
1
2

k .

Alternating Step II: Fix ˆW
l

and update {yl+1
i }. Each ele-

ment yl+1
ij of each vector yl+1

i is independent to any other. We
then rewrite Eq. 6 as a 1-dimensional optimization process:

min

yl+1
ij

�
f(zl+1

ij )� f(yl+1
ij )

�2
+ �(yl+1

ij � z̄l+1
ij ), (9)

Algorithm 2 Global error Reconstruction for compressing
CNN
Input: Training data points X; the corresponding output A af-

ter softmax function; the original weights Wl in each fully-
connected layers; the restricted rank k; the maximum number
of epoch T ; the number of fully connected layers m.

Output: The low-rank matrices P̂
l

and Q̂
l
.

1: Initialize P̂
l
, Q̂

l
by low-rank decomposition of Wl

, l =
0, 1, · · · ,m� 1, t = 1.

2: repeat
3: Compute rP̂lJ by (17);
4: Compute r

Q̂l>J by (18);

5: Update P̂
l

and Q̂
l

by SGD;
6: t := t+ 1.
7: until convergence or t > T .

where z̄l+1
ij is the j-th entry of ˆW

l
cli. We separately take

z̄l+1
ij � 0 and z̄l+1

ij  0 into account due to the restriction
of ReLU. Then we derive the solution of Eq. 9:

ȳl+1
ij = min(0, z̄l+1

ij ) (10)

eyl+1
ij = max(0,

�z̄l+1
ij + f(zl+1

ij )

�+ 1

). (11)

Note that yl+1
ij = ȳl+1

ij if ȳl+1
ij have a smaller value in Eq.

9 than eyl+1
ij and otherwise yl+1

ij = eyl+1
ij . We use the gradi-

ent descent to solve the above 1-dimensional, non-linear least
square problem.

The above alternating optimization is further shown in Al-
gorithm 1. The initialization of ˆW

l
is given by the solution

to the linear case of Eq. 3. Theoretically speaking, � should
be gradually increase to being infinity [J. Wang and Gong,
2010]. However, if � is too large, it is difficult for the itera-
tive solver to take effects. As a trade-off and to perform more
iterations, we first increase � to 1, and then we obtain the
result ˆW

l
after convergence, which is adopted as the initial

(coarse) compression among all the fully connected layers.

3 Cross-Layer Compression via Global Error
Reconstruction

The initial compression of CNN using low-rank decomposi-
tion is to coarsely approximate ˆW

l
of each layer in a bottom

up manner. As discussed above, the compression errors are
accumulated layer-by-layer, resulting to large overall error in
the output layer of CNN. To address this issue, the proposed
global error reconstruction (GER) targets at jointly optimiz-
ing among layers as shown in Fig. 2.

In particular, if the original CNN model has m fully con-
nected layers, we minimize the global reconstruction error of
ReLU-like non-linear responses as follows:

min

Ŵl
, l=0,1,··· ,m�1

nX

i

kami � f( ˆW
m�1

ˆam�1
i )k22

s.t. rank( ˆW
l
)  k, l = 0, 1, · · · ,m� 1,

(12)
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where am
i is the non-approximated output, and ˆam�1

i contains
m� 1 weights in the hidden layers, which is written as:

ˆam�1
i = f � ˆW

m�2
� · · · � f � ˆW

0

| {z }
m�1

x0i . (13)

To find a feasible solution, we use the solution of Eq. 4 to
relax the constrain term of Eq. 12, and let Am be the matrix
concatenating the vectors of ami . The objective function of
Eq. 12 can be rewritten as:

J(P̂
l
, Q̂

l>
;X,Am) =

1
2
kAm � Â

mk2F , (14)

where l = 0, 1, · · · ,m� 1, and ˆA
m

can be written as:

Â
m

= f � (P̂m�1
Q̂

m�1>
) � · · · � f � (P̂0

Q̂
0>

)
| {z }

m

X0
. (15)

In Eq. 15 ˆP
l

and ˆQ
l>

are the approximate decomposition
to W by solving Eq. 4. To learn the parameters {ˆP

l
} and

{ˆQ
l>

}, a stochastic gradient descent algorithm is employed
via back-propagation, which needs to calculate the gradient of
the objective function with respect to all weights. Therefore,
the error signals of the cost function in Eq. 14 is obtained
via:

�

Âl+1

=
@J

@Â
l+1

=

8
<

:
� (Am � Al+1), l = m� 1,

�

Ẑl+2

· P̂
l+1

Q̂
l+1>

, otherwise.

(16)

�

Ẑl+1

=
@J

@Zl+1
= �

Âl+1

· f 0(Ẑ
l+1

), (17)

where ˆZ
l+1

=

ˆP
l
ˆQ
l>

· ˆA
l
, l = m�1,m�2, · · · , 0. After ob-

taining ˆA
l+1

, we compute two gradients of objective function
with respect to the parameters as follows:

rP̂lJ(P̂
l
, Q̂

l>
;X,Am) =

@J

@P̂
l
= �

Âl+1

· Â
l>

Q̂
l

(18)

r
Q̂l>J(P̂

l
, Q̂

l>
;X,Am) =

@J

@Q̂
l>

= P̂
l>
�

Âl+1

· Â
l>
, (19)

where l = m � 1,m � 2, · · · , 0. It is worth to note that
the stochastic gradient descent can reduce the accumulative
errors. Algorithm 2 presents the detailed optimization algo-
rithm for GER.

4 Experiments
To evaluate the performance of GER scheme, we conduct
comprehensive experiments on ILSVRC2012 image classi-
fication benchmark. We deploy the proposed GER on two
widely used CNNs (a.k.a. AlexNet [A. Krizhevsky and
Hinton, 2012] and VGGNet-19 [Simonyan and Zisserman,
2014]), with comparisons to the state-of-the-art scheme pro-
posed very recently [M. Denil and Freitas, 2013; Y. Gong and
Bourdev, 2014; X. Zhang and Sun, 2015].
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(a) Comparison of different methods for compressing
AlexNet.
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(b) Comparison of different methods for compressing VG-
GNet.

Figure 3: Comparison of methods on AlexNet and VGGNet.
Values are averaged over 5 runs.

4.1 Experimental Setting
Dataset. We test the proposed GER based CNN compression
on the ILSVRC2012 image classification benchmark. The
dataset contains more than 1 million training images from
1,000 object classes. It also has a validation set of 50,000
images, where each object class contains 50 images. We ran-
domly select 100,000 images (100 from each class) from the
training set for training, and test on the validation set.
Implementation Details. We implement GER on two
CNNs i.e., AlexNet [A. Krizhevsky and Hinton, 2012]
and VGGNet-19 [Simonyan and Zisserman, 2014]. The
VGGNet-19 contains 16 convolutional layers and 3 fully con-
nected layers, and the AlexNet contains 5 convolutional lay-
ers and 3 fully connected layers. The compressed networks
are trained using Caffe [Y. Jia and Darrell, 2014] and run
on NVIDIA GTX TITAN X graphics card with 12GB. The
learning rate starts at 0.01 and is halved every 10-epochs; the
weight decay is set to 0.0005 and the momentum is set to 0.9.
Baselines. We compare the proposed GER scheme with 4
state-of-the-art approaches published very recently, includ-
ing PQ-based compression (PQ) [Y. Gong and Bourdev,
2014], Low-rank decomposition (LRD)[M. Denil and Freitas,
2013], Layer-wise optimization by alternating solver (AS)
[X. Zhang and Sun, 2015], and Binary-based compression
(BIN) [Y. Gong and Bourdev, 2014]. As for the alternative
approach, we compare GER with GER-IC, which is the SVD-
based initial compression based only on Sec.2.
Evaluation protocol. The classification error on the valida-
tion set was employed as the evaluation protocol. We used
both the top-1 classification error and the top-5 classification

error to evaluate different compression methods. Then we
measure the compression performance in terms of the rate

distortion, which reflects the balance between compression
rate and classification error.

Rate-Distortion Comparison. We use a different rank k
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Table 1: Classification error rate (in %) with compression rate 16 and 32. “⇠” represents that it is unable to obtain the number,
since BIN quantizes weights from float to binary format.

Compression rate AlexNet on ILSVRC VGGNet-19 on ILSVRC
GER LRD BIN PQ AS GER LRD BIN PQ AS

Top1 Compression rate = 16 47.51 52.63 ⇠ 48.83 49.49 28.63 30.37 ⇠ 28.66 29.59
Compression rate = 32 53.92 65.01 52.79 56.45 59.34 36.52 41.95 36.37 35.94 40.29

Top5 Compression rate = 16 20.95 25.24 ⇠ 19.33 23.01 8.74 11.25 ⇠ 8.85 9.47
Compression rate = 32 27.97 34.67 31.32 25.93 31.46 14.11 18.19 16.29 14.88 15.91
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Figure 4: Top-1 classification error for compressing only the
single layer error of AlexNet. “FC6, FC7, FC8” represent
the first, second, and third fully connected layer, respectively.
Values are averaged over 5 runs.

from 2

5 to 2

10 to achieve different compression rates. For
PQ, we fix the number of centers to 256 (8 bits) and vary the
segment dimension s = 1, 2, 4, 8. For LRD and Layer-wise
optimization by alternating solver , we use the same compres-
sion criterion with GER that varies k from 2

5 to 2

10. For BIN,
which has no parameter to tune, the compression rate is fixed
as 32.

Both the top-1 and top-5 classification errors are shown
in Fig. 3, which show a consistent trend in rate-distortion.
As for intra-layer approximation, GER-IC achieves a simi-
lar classification error to LRD. Instead, by explicitly mod-
eling the reconstruction error in a global way, GER greatly
improves rate-distortion by comparing to GER-IC. GER also
performs much better than LRD and AS for compressing
the fully connected layers. To explain, GER merits in its
“explicit” compression, which effectively combines the ini-
tial layer-wise compression and cross-layer global compres-
sion, while LRD and AS are “implicit” compression which
only consider the local intra-layer relationship. Note that PQ
has achieved better performance comparing to that of LRD
and AS. However, it is shown in Fig. 3 that PQ is hard to

achieve high compression rate, which might be due to the
limited codebook size. In contrast, GER achieves the best
rate-distortion by comparing to other baselines. Finally, as
discovered by Gong et al.

[Y. Gong and Bourdev, 2014], the
simplest BIN works well when we fixed the compression rate
to 32. Therefore, The base binary quantization is also a good
choice when the goal is to compress data very aggressively.
However, it is hard to be adaptive when we want to control
the compression rate, which in turn is one of the key advan-
tages for our scheme. We further show that the classification
error with a fixed compression rate in Tab.1 which also shows
GER can achieve the best performance by comparing to other
baselines especially, when implementing on VGGNet-19.

On the Single Layer Error. we further analyze the clas-
sification error by compressing each single layer while fixing
the rest layers as the original uncompressed version. The re-
sults are reported in Fig. 4. We found using all the baselines
to compress the first two fully connected layers (i.e. “FC6”
and “FC7”) does not lead to the decreasing of accuracy. In
contrast, compressing the last fully connected layer leads to
large classification error for all the baselines, except for the
proposed GER. We explain this advantage by the fact that
GER can automatically adjust the inter-layer error by tuning
and refining across all layers.

5 Conclusion
In this paper, we propose to compress the convolutional neu-
ral networks to reduce the model storage by a novel Global
Error Reconstruction scheme, which can facilitate emerging
applications in mobile or embedding devices with limited
storage. GER firstly uses an SVD-based low-rank approxi-
mations to coarsely compress the parameters in the fully con-
nected layers. Such layer-wise initial compressions are fur-
ther jointly optimized among layers in a global way via back-
propagation. Unlike previous approaches that only consid-
ered recovering the internal weight parameters, GER also ex-
plicitly models the reconstruction error between the outputs
of both the original and compressed CNNs, which we signif-
icantly reduces the accumulated reconstruction error caused
by the nonlinear activation. We have demonstrated that
the proposed GER scheme can lead to state-of-the-art rate-
distortion performance by comparing to several very recent
schemes in CNN compression [M. Denil and Freitas, 2013;
Y. Gong and Bourdev, 2014; X. Zhang and Sun, 2015]. In our
future work, we would extend and evaluate our compression
scheme from the fully connected layer to the convolutional
layer, and at the same time, further accelerate computation of
convolutional layers.
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