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Abstract
Among learning-based hashing methods, super-
vised hashing tries to find hash codes which pre-
serve semantic similarities of original data. Re-
cent years have witnessed much efforts devoted to
design objective functions and optimization meth-
ods for supervised hashing learning, in order to im-
prove search accuracy and reduce training cost. In
this paper, we propose a very straightforward su-
pervised hashing algorithm and demonstrate its su-
periority over several state-of-the-art methods. The
key idea of our approach is to treat label vectors as
binary codes and to learn target codes which have
similar structure to label vectors. To circumvent di-
rect optimization on large n ⇥ n Gram matrices,
we identify an inner-product-preserving transfor-
mation and use it to bring close label vectors and
hash codes without changing the structure. The op-
timization process is very efficient and scales well.
In our experiment, training 16-bit and 96-bit code
on NUS-WIDE cost respectively only 3 and 6 min-
utes.

1 Introduction
Hashing has recently attracted considerable research efforts
from machine learning, computer vision, information re-
trieval and related areas. Given a dataset, hashing meth-
ods generate binary codes that intend to preserve metric dis-
tances or semantic similarities of the original data. Due to the
efficient computation of Hamming distance between binary
codes, hashing is very suitable for large-scale ANN (approxi-
mate nearest neighbor) search. Compact hash codes can pro-
duce significant gains in both memory usage and search effi-
ciency, maintaining reasonable accuracies at the same time.

Locality-Sensitive Hashing (LSH) [Gionis et al., 1999] is
a well-known data-independent hashing method, which uses
random projections to construct hash functions. It has con-
tinued to be a research interest in the past decade and efforts
have been devoted to expand LSH to more distance metrics
including lp distance [Datar et al., 2004] and kernel distance
[Kulis and Grauman, 2009]. Due to theoretical guarantees

⇤corresponding author

that the original similarity is asymptotically preserved, LSH
is a rather popular method in ANN search and usually long
codes are used to obtain a good search precision. However,
long codes would result in low recall. So in practical settings,
LSH also requires multiple hash tables to achieve reasonable
recall rate. Both long codes and multiple tables will increase
memory usage and reduce search efficiency.

Unlike data-independent hashing which uses random pr-
jections, data-dependent methods try to learn hash functions
from training data. Data-dependent hashing can produce
more compact binary codes and can usually achieve better
accuracy even with much shorter codes. Due to this property,
researchers have been putting a lot of efforts on designing
good hash codes. Data-dependent hashing can be roughly
divided into three categories: unsupervised, semi-supervised
and supervised hashing.

Unsupervised hashing uses unlabeled data to train a set of
hash functions, aiming at preserving the metric neighborhood
(usually, l2 metric) of the original data. The representative of
unsupervised hashing algorithms includes Spectral Hashing
(SH) [Weiss et al., 2009], Iterative Quantization (ITQ) [Gong
and Lazebnik, 2011], Isotropic Hashing (IsoH) [Kong and Li,
2012], Harmonious Hashing (HamH) [Xu et al., 2013] e.t.c.
Among these methods, ITQ uses PCA projections as initial-
ization, and then tries to find an orthogonal matrix which
minimizes the quantization loss between binary codes and ro-
tated points. Due to the structure-preserving property of rota-
tion and minimization of quantization loss, ITQ has achieved
state-of-the-art performance in unsupervised hashing meth-
ods. Recently, the idea of ITQ is also used in producing very
long codes for high-dimensional features [Gong et al., 2013;
Xia et al., 2015] and has shown promising results.

However, metric neighbors are not necessarily semantic
neighbors. While unsupervised hashing achieves promising
performance in preserving metric distances, in some applica-
tions we want ANN search to return semantic neighbors for
a given query. This leads to (semi-)supervised hashing meth-
ods. In this paper, we focus on formulation and optimization
of supervised hashing.

In contrast to unsupervised hashing whose training data
is unlabeled, (semi-)supervised methods use labeled training
data to learn semantic-similarity-preserving codes. The dif-
ference between semi-supervised and supervised hashing is
that supervised methods use pure labeled data, while semi-
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supervised hashing deals with the situation where only part
of training data is labeled. The representatives of (semi-
)supervised hashing include Semi-Supervised Hashing (SSH)
[Wang et al., 2012], Sequential Projection Learning Hashing
(SPLH) [Wang et al., 2010], Binary Reconstructive Embed-
ding (BRE) [Kulis and Darrell, 2009], Minimal Loss Hash-
ing (MLH) [Norouzi and Blei, 2011], CCA-ITQ [Gong and
Lazebnik, 2011], Kernel-based Supervised Hashing (KSH)
[Liu et al., 2012], Ranking-based Supervised Hashing (RSH)
[Wang et al., 2013], Graph Cut Coding (GCC) [Ge et al.,
2014], Fast Hashing (FastH) [Lin et al., 2014], Supervised
Discrete Hashing (SDH) [Shen et al., 2015] e.t.c. Research
efforts have been devoted to several aspects in the literature,
which we briefly discuss in the following text.

The first thing to consider is to define some criteria which
express desired properties of target codes and guide the de-
sign of objective functions. Different algorithms are essen-
tially different from each other on the criterion they are built
upon. For example, BRE [Kulis and Darrell, 2009] utilizes
pairwise similarity and intends to find binary codes which
generate small Hamming distance for similar pairs and large
distance for dissimilar ones. The idea of pairwise similarity
is subsequently used by other methods (SSH, SPLH, KSH,
GCC, FastH) and is now the most popular supervision form
in the literature. Different from these approaches, CCA-ITQ
and SDH utilize semantic labels of individual samples instead
of pairwise similarity. To emphasize the difference, we call
them pointwise in this paper. CCA-ITQ consists of two steps.
It first uses CCA to find a common space for original features
and labels such that in this space embeddings of features and
labels have maximum correlation. Then a ITQ process is ap-
plied on the embedding of original feature and a rotation ma-
trix is learned to minimize quantization loss just like the un-
supervised case. CCA-ITQ relies on the CCA step to exploit
supervised information and the correlation maximization is
the key criterion. In contrast, the recently proposed SDH is
more direct, which requires learnt binary codes to be good
features for linear classification with given labels. And due
to direct focus on binary codes and carefully designed opti-
mization process, SDH has been reported to achieve state-of-
the-art results [Shen et al., 2015]. In this paper, we propose
a new pointwise method which attempts to generate binary
codes with close structure to label vectors. We show that our
approach is even more direct than SDH and demonstrate its
superiority on several datasets.

More complex hash functions are also an interest in the
field. The most common hash function is linear projection
followed by thresholding, which has been used by many
methods. Afterwards, to deal with the situation where sam-
ples are not linearly separable, hash functions with kernels
are proposed [Kulis and Darrell, 2009; Liu et al., 2012]. Ker-
nelization has been proved able to boost the performance
of supervised hashing methods, especially when we are us-
ing weak features. Recently, hashing methods based on
deep neural networks are quite popular [Xia et al., 2014;
Erin Liong et al., 2015]. These approaches have shown great
improvement in performance since deep networks can learn
much more complex nonlinear functions than a single kernel.
In this paper, we choose linear projection and the kernelized

version as hash functions. We do not use deep networks be-
cause we want to focus on the criterion of hash codes, i.e.
design of loss functions. We think that our method can easily
accommodate deep networks by changing hash functions to
neural networks and modifying the update of projection ma-
trix to update of network weights with back propagation.

In this paper, we investigate label vectors as binary codes
for semantic similarity search. Inspired by its good perfor-
mance, we try to learn hash codes with similar structure to
label vectors. Because it is natural to use label vectors to
encode semantic information, we dub the proposed approach
Natural Supervised Hashing. Our contributions are as fol-
lows:

1. We formulate a novel objective function to learn hash
codes which produce close inner products to label vec-
tors. And to avoid direct optimization on big n⇥n Gram
matrices, we identify an structure-preserving transfor-
mation to fill the dimensionality gap between target
codes and label vectors. With this transformation, we
could implicitly bring close inner products of hash codes
and that of label vectors without explicit computation of
Gram matrices.

2. We propose an alternating optimization method for our
final objective, with each step having an analytical solu-
tion. The training process is very fast and scales well.
On NUS-WIDE, training 16-bit and 96-bit code cost re-
spectively only 3 and 6 minutes.

The remainder of the paper is organized as follows: section
2 presents the proposed approach and section 3 demonstrates
the performance of our method compared with several state-
of-the-art algorithms; we conclude the paper in section 4.

2 Natural Supervised Hashing
In this section, we present the objective function and learning
algorithm.

2.1 Label vectors as binary codes
For dataset with l labels, the ideal way to encode xi for se-
mantic search is using its label vector yi 2 {0, 1}l as binary
code. The j-th element in yi equals to 1 if sample i has label
j, and is 0 otherwise. For single-label datasets, only one el-
ement in yi is 1 while there can be multiple 1s in multi-label
cases. This simple code makes sense because the Hamming
distance between each pair is just the number of different la-
bels, which we call semantic distance.

However, we find that although labels are ideal to mea-
sure difference of semantic information between samples, it
is not necessarily optimal in NN search1. This problem stems
from inconsistencies between semantic distance and evalua-
tion criteria. In evaluation we decide whether a pair is sim-
ilar by counting the number of labels they share, i.e. inner
product between labels. Due to this criterion, two samples
with large semantic distance may be considered similar in ex-
periments. For example, if we have yi = [1, 1, 1, 0]

T and
yj = [0, 1, 1, 1]

T , we tend to determine sample i and sam-
ple j as similar because they share 2 labels when there are

1It is indeed optimal for certain cases, like single-label datasets.
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only 4. However the Hamming distance between i and j is
Dh(yi, yj) = 2, which is not small in 4-bit code.

We believe the suboptimality is a problem with the evalu-
ation criteria commonly adopted, not the label vectors, con-
sidering they are ground-truth semantic annotations. In fact,
despite this problem, labels still give very good retrieval ac-
curacy. On NUS-WIDE, label vectors achieve a 0.772 mAP
within top-5K retrieved samples, much higher than results ob-
tained by state-of-the-art supervised hashing methods.

Inspired by its good performance, we intend to formulate
an objective function and learn hash code from binary labels.
Note that while label vector is of fixed length, our desired
hash code may have varying number of bits.

2.2 Preserving inner product
We want our code to generate close Hamming distance to la-
bels. Inspired by KSH [Liu et al., 2012], we do not directly
work on Hamming distance and try to manipulate code’s in-
ner product instead. Unlike KSH which uses �1/1 bit value
during training, we use 0/1 bit for simplicity.

Intuitively, to make inner product of labels and of target
code as close as possible, we can write the objective as fol-
lows:

L(P ) = ||Y Y

T � �(XP )�(XP )

T ||2F (1)
where X 2 Rn⇥d is training data, Y 2 {0, 1}n⇥l is label
matrix, and P 2 Rd⇥b contains project directions to learn.
�(·) is an elementwise function with �(x) = 1 for x > 0

and �(x) = 0 otherwise. This objective seeks directions that
bring close two codes’ inner product. However, we find it
very hard to optimize due to the presence of �(XP )�(XP )

T .
Besides, the two large n⇥n matrices would take a lot of mem-
ory (for n = 50000, Y Y

T needs about 9.3 GB memory with
single type). So for some large datasets, e.g. NUS-WIDE,
which contains 269, 648 samples in total, we cannot utilize
full training data in learning process.

To resolve these difficulties, we try to find a inner-product-
preserving transformation, with which we can achieve the
goal without explicit computation of Gram matrices. We ob-
serve that if a matrix R 2 Rl⇥m has orthonormal rows, i.e.
RR

T
= Il, then we can get

Y R(Y R)

T
= Y RR

T
Y

T
= Y Y

T 2 Rn⇥n (2)
i.e. Y R generates the same Gram matrix as Y . The trans-
formation R preserves Y ’s structure. So besides minimizing
the distance between �(XP )�(XP )

T and Y Y

T explicitly,
we could minimize the distance between �(XP ) and Y R in-
stead, which brings close two Gram matrices implicitly.

The condition RR

T
= Il forces a dimensionality con-

straint: there should be less rows than columns in R. Due to
this constraint, our final optimization problem has two cases:

• For b 6 l,
min

P,R
||Y � �(XP )R||2F

s.t. R 2 Rb⇥l
, RR

T
= Ib

(3)

• For l < b,
min

P,R
||Y R� �(XP )||2F

s.t. R 2 Rl⇥b
, RR

T
= Il

(4)

We use R to fill the dimensionality gap between label vectors
and target codes, preserving inner product at the same time.

2.3 Optimization
Our goal is to learn project directions P . We optimize the
objective function in an alternating way, i.e. fixing P , opti-
mize R and fixing R, update P . For different cases, we have
different iteration steps.

For b 6 l

The objective function can be expanded as follows:

||Y � �(XP )R||2F
= ||Y ||2F � 2tr(Y

T
�(XP )R) + tr(R

T
�(XP )

T
�(XP )R)

= �2tr(Y

T
�(XP )R) + tr(�(XP )

T
�(XP ))

+ const (5)

where const indicates a constant term that does not depend
on either P or R.

• R step: Fixing P , the optimization problem of R is

max

R
tr(Y

T
�(XP )R)

s.t. R 2 Rb⇥l
, RR

T
= Ib

(6)

This problem turns out to be a Procrustes problem with
analytic solutions [Xia et al., 2015]. First we perform
SVD Y

T
�(XP ) = U⌃V

T , where U is an l ⇥ l orthog-
onal matrix, ⌃ is an l ⇥ b matrix and V is an b ⇥ b or-
thogonal matrix. Then the solution is R = V

ˆ

U

T , where
ˆ

U contains first b columns of U .

• P step: The problem of P is hard to optimize since the
� function is nonsmooth. Following the idea of SSH
[Wang et al., 2012], we relax � for easy optimization.
The problem is now

min

P
� 2tr(RY

T
XP ) + tr(P

T
X

T
XP ) (7)

After setting the gradient to zero, we get a closed-form
solution

P = (X

T
X)

�1
X

T
Y R

T (8)

To prevent singularity, we can add a regularization term
to the solution and obtain:

P = (X

T
X + �Id)

�1
X

T
Y R

T (9)

For l < b

The second case is quite similar. The objective function can
be written as

||Y R� �(XP )||2F
= � 2tr(�(XP )

T
Y R) + tr(�(XP )

T
�(XP ))

+ const (10)

The difference to the b 6 l case is minor.
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Figure 1: mAP@5K of NSH with 64 bits on three datasets.
Our result improves along training and converges quickly. In
fact, performance changes little after the first iteration.

• R step: For fixed P , the problem with respect to R

reduces to

max

R
tr(�(XP )

T
Y R)

s.t. R 2 Rl⇥b
, RR

T
= Il

(11)

which is also a Procrustes problem. We do SVD
�(XP )

T
Y = U⌃V

T . U is an b ⇥ b orthogonal ma-
trix, ⌃ is an b ⇥ l matrix and V is an l ⇥ l orthogonal
matrix. The solution is R = V

ˆ

U

T , where ˆ

U contains
first l columns of U .

• P step: Again we relax � and the optimization problem
is:

min

P
�2tr(P

T
X

T
Y R) + tr(P

T
X

T
XP ) (12)

After adding a regularizer, we get the solution

P = (X

T
X + �Id)

�1
X

T
Y R (13)

For both cases, alternating steps have analytic solutions,
leading to fast optimization during training. Note that the
term A = (X

T
X+�Id)

�1
X

T
Y can be computed only once

before iterating, and then P is updated by P = AR

T or P =

AR.
Due to relaxation in P step, objective value may not de-

cline after one iteration. Nevertheless, we find that search
qualities do improve along iterations. Figure 1 shows mAP of
5K top-ranked samples on three datasets when we are train-
ing 64-bit code. Our result improves along iterations and con-
verges quickly, showing the efficacy of the optimization pro-
cess. The quick convergence is a result of strict constraints on
R. In our experiments, we find that the two variables change
little after first several iterations.

2.4 Kernelization
Kernlization is popular in supervised hashing literature.
Given a kernel (·, ·), we randomly sample m (m < n)
anchor points {x1, x2, ..., xm} from training data. Then
original data x 2 Rd can be transformed to k(x) =

[(x1, x),(x2, x), ...,(xm, x)]

T 2 Rm and the kernelized

Dataset database query label anchor
NUS-WIDE 268648 1000 81 1000
IAPRTC12 17665 1962 291 1000
ESPGAME 18689 2081 268 1000

MIRFLICKR25K 24000 1000 38 500

Table 1: Statistics of the four datasets used in evaluation. We
use less anchors for MIRFLICKR25K because it is not lage-
scale and contains less labels than others.

Method #training 16 32 64 96
LSH 268648 0.95 1.77 3.59 4.92

PCA-ITQ 268648 5.84 13.2 31.6 51.2
BREs 5000 2527 4610 10883 -
KSH 5000 1009 2057 4121 6334

CCA-ITQ 268648 26.1 33.8 50.7 129
SDH 268648 321 523 1234 2306
NSH 268648 182 218 284 338

Table 2: Training time on NUS-WIDE for learning different
number of bits. All numbers are given in seconds. Our NSH
scales well when bits increase.

data matrix is K 2 Rn⇥m. Then we can learn hash functions
in the new space P 2 Rm⇥b. The optimization is exactly
the same as above, only with �(XP ) replaced by �(KP ).
In the experiments, we use RBF kernel because datasets are
represented with weak features.

3 Experiments
We evaluate our method on 4 datasets: NUS-WIDE
IAPRTC122, ESPGAME 3, MIRFLICKR25K 4. For NUS-
WIDE [Chua et al., 2009], we use the 500 dimensional bag-
of-words vectors provided by the authors. For the other three,
we use the 512 dimensional GIST features provided by [Guil-
laumin et al., 2010]. Each dataset is split into a database and
a query set. Statistics of datasets are given in table 1.

We compare the proposed NSH against six state-of-the-
art hashing algorithms, including unsupervised LSH [Datar
et al., 2004], PCA-ITQ [Gong and Lazebnik, 2011], and su-
pervised BREs [Kulis and Darrell, 2009], KSH [Liu et al.,
2012], CCA-ITQ [Gong and Lazebnik, 2011] and SDH [Shen
et al., 2015]. BREs indicates the supervised version of BRE.
We kernelize the data for all supervised methods, including
CCA-ITQ for fair comparion. The kernel we choose is RBF
(x, y) = exp(||x � y||/�2

) , where � is set to an appro-
priate value. 1000 anchors are sampled from databases for
all datasets except MIRFLICKR25K, for which we use only
500 anchors considering it is not large-scale and contains less
labels.

In supervised methods, BREs and KSH construct a n ⇥ n

pairwise similarity matrix to learn hash codes. This matrix
takes much memory (9.3 GB for n = 50000) thus we cannot
use all available labeled data for training. Besides, when n is

2http://www.imageclef.org/photodata
3http://www.hunch.net/⇠jl/
4http://press.liacs.nl/mirflickr/
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Method mAP@5K precision@radius 2 recall@radius 2
16 32 64 96 16 32 64 16 32 64

LSH 0.1961 0.2038 0.2053 0.2123 0.1957 0.0621 0.0095 0.0052 0.0001 0
PCA-ITQ 0.2151 0.2298 0.2342 0.2329 0.2118 0.2148 0.0410 0.0275 0.0031 0.0013

l2 0.2181 - -
BREs 0.2138 0.2279 0.2349 - 0.2135 0.2006 0.0301 0.0127 0.0006 0
KSH 0.2631 0.2778 0.2809 0.2809 0.2597 0.2644 0.1131 0.0362 0.0072 0.0004

CCA-ITQ 0.2787 0.2882 0.2952 0.2966 0.2740 0.2677 0.1117 0.0377 0.0042 0.0004
SDH 0.2820 0.2883 0.2924 0.2989 0.2721 0.2826 0.2004 0.0698 0.0177 0.0043
NSH 0.2979 0.3109 0.3169 0.3216 0.2850 0.3014 0.2532 0.1497 0.0597 0.0180
svm 0.1080 0.1274 0.4023

Table 3: Experimental results on NUS-WIDE with varying number of bits. We perform both hamming ranking and hash lookup
evaluation. Best results are in bold.

Method mAP@5K on IAPRTC12 mAP@5K on ESPGAME
8 16 32 64 128 8 16 32 64 128

LSH 0.3253 0.3421 0.3585 0.3656 0.3815 0.2812 0.2775 0.2793 0.2897 0.2936
PCA-ITQ 0.3492 0.3652 0.3745 0.3811 0.3860 0.3017 0.2981 0.2983 0.2991 0.3000

l2 0.3941 0.2964
BREs 0.3475 0.3690 0.3903 0.4032 - 0.2954 0.3035 0.3082 0.3130 -
KSH 0.3819 0.4102 0.4280 0.4363 0.4445 0.3025 0.3218 0.3289 0.3335 0.3379

CCA-ITQ 0.3952 0.4106 0.4221 0.4280 0.4340 0.3297 0.3313 0.3335 0.3339 0.3359
SDH 0.3784 0.4038 0.4191 0.4296 0.4352 0.3171 0.3244 0.3276 0.3320 0.3350
NSH 0.4028 0.4327 0.4490 0.4562 0.4668 0.3379 0.3400 0.3426 0.3462 0.3500
svm 0.2135 0.1563

Table 4: Experimental results on IAPRTC12 and ESPGAME with varying number of bits. Best results are in bold.

large, training time needed for BREs and KSH is prohibitive.
Therefore, we randomly sample 5000 points from databases
as training sets for BREs and KSH. In contrast, CCA-ITQ,
SDH and our NSH have better scalability and are trained with
the whole database. In experiments, we give NSH 50 training
iterations and set � = 10

�4 for all cases.
We also evaluate two baselines. One is direct linear search

with original features, denoted as l2. The other is training a
linear SVM on kernelized data for each label. And when re-
ceived a query, a binary code is first generated with trained
SVMs, and then it is used to search through databases of la-
bels. We choose Pegasos [Shalev-Shwartz et al., 2011] as our
SVM for its fast training speed and small memory consump-
tion.

We follow two search procedures: hamming ranking and
hash lookup. Hamming ranking measures search quality
through ranking database points according to their Ham-
ming distance to queries and calculating precision, recall and
mean Average Precision (mAP) in top-ranked samples. Hash
lookup finds database points within a given Hamming radius
of queries and calculates precision and recall in retrieved sam-
ples. Note that we treat failing to find any samples for a query
as zero precision. All our results are obtained on a laptop with
Intel Core i5-3210M 2.50 GHz and 12 GB RAM.

3.1 Results on NUS-WIDE
NUS-WIDE is sparsely labeled, with each sample associated
with 1.87 labels on average. We choose NUS-WIDE for its

large scale and determine a pair as ground-truth similar if they
share at least one label. Training time of evaluated methods
is given in table 2, from which we see that NSH costs much
less time than BREs, KSH and it scales well when bits in-
crease, while the training cost of SDH seems to be linear with
bits. Evaluation results are presented in table 3. We see that
NSH consistently attains best mAP and precision within ra-
dius 2 under different number of bits, and the margin between
NSH and the second best SDH is not small. Considering re-
call within radius 2, NSH again outperforms other hashing
methods. The baseline svm attains high recall@2 because
SVMs are trained with much less positive samples than nega-
tive samples and tend to predict all zero binary codes, which
has a small Hamming distance from sparse labels. This can
be inferred from the low precision@2.

3.2 Results on IAPRTC12 and ESPGAME
IAPRTC12 and ESPGAME are also sparsely labeled, with
each sample associated with respective 5.72 and 4.69 labels
on average. We choose the two datasets because they contain
much more labels than NUS-WIDE, 291 for IAPRTC12 and
268 for ESPGAME, leading to a more difficult problem. In
evaluation, a pair is determined as similar if they share at least
one label. Experimental results are given in table 4. We see
that NSH consistently achieves best performance from 8 bits
to 128 bits on both datasets, with improvements over other
methods ranging from 2% to 5%. The baseline svm consid-
ers each label separately and does not take the whole structure
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Method mAP@5K precision@radius 2 recall@radius 2
8 16 32 64 8 16 32 8 16 32

LSH 0.1786 0.1794 0.1895 0.1898 0.1723 0.1867 0.0926 0.1387 0.0107 0.0003
PCA-ITQ 0.1912 0.1925 0.1962 0.1987 0.1826 0.1910 0.0167 0.1638 0.0026 0.0001

l2 0.1935 - -
BREs 0.1940 0.2012 0.2101 0.2199 0.1856 0.2094 0.0132 0.1478 0.0011 0
KSH 0.2250 0.2332 0.2494 0.2567 0.2110 0.2299 0.0506 0.1861 0.0045 0.0001

CCA-ITQ 0.2337 0.2391 0.2448 0.2485 0.2157 0.2543 0.1245 0.2060 0.0136 0.0019
SDH 0.2227 0.2385 0.2375 0.2443 0.2042 0.2344 0.0954 0.2449 0.0319 0.0003
NSH 0.2447 0.2530 0.2599 0.2634 0.2161 0.2555 0.2140 0.2720 0.0510 0.0160
svm 0.0749 0.0769 0.0245

Table 5: Experimental results on MIRFLICKR25K with varying number of bits. We perform both hamming ranking and hash
lookup evaluation. Best results are in bold.
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Figure 2: Hamming ranking precision of top-ranked samples on MIRFLICKR25K with varying number of bits.

into account, resulting in even worse performance than unsu-
pervised hashing methods.

3.3 Results on MIRFLICKR25K
We further evaluate NSH and competitive methods on MIR-
FLICKR25K, which contains less samples and labels (only
38) than NUS-WIDE. We adopt MIRFLICKR25K because it
is more densely labeled, with each sample having 4.72 labels
on average, and so we can use more strict similarities. In our
experiments, we determine a pair as similar if they contain at
least three common labels, making the task challenging in an-
other aspect. Overall results are presented in table 5. Again,
NSH attains the best performance with varying number of
bits, demonstrating the effectiveness of the proposed method.
More detailed results are given in figure 2, where we plot
Hamming ranking precision of top-ranked samples under 16,
32 and 64 bits. KSH, CCA-ITQ, and SDH attain close results
while NSH surpasses them by a notable margin.

4 Conclusion and future work
In this paper we propose a novel supervised hashing method
Natural Supervised Hashing and show its superior perfor-
mance on 4 image datasets. We attribute the success of NSH
to the inner-product-preserving objective. We find that al-
though labels are not optimal binary codes under commonly
adopted evaluation criteria, it still gives impressive results on
preserving semantic neighborhoods. Inspired by its good per-
formance, we intend to formulate an objective function so that

our learnt code can generate close inner product to label vec-
tors. To enable more easy optimization and circumvent large
n ⇥ n matrices, we manage to find a transformation which
preserves inner products of each pair and so we can use it to
bring close labels and our code without explicit computation
on inner products. In the end, our objective takes two cases
and both can be optimized in an alternating way. We optimize
the objective with Procrustes solution and relaxation, leading
to efficient learning process. In experiments, NSH consis-
tently surpasses compared methods and attains best results in
all 4 benchmark datasets, indicating the efficacy of the ob-
jective and learning method. In the end, we think that our
method can still be improved, e.g. by utilizing more complex
hash functions like neural networks. We intend to look in this
direction in our future work.
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