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Abstract

Stochastic gradient descent (SGD) is a widely used
optimization algorithm in machine learning. In or-
der to accelerate the convergence of SGD, a few
advanced techniques have been developed in re-
cent years, including variance reduction, stochas-
tic coordinate sampling, and Nesterov’s accelera-
tion method. Furthermore, in order to improve the
training speed and/or leverage larger-scale train-
ing data, asynchronous parallelization of SGD has
also been studied. Then, a natural question is
whether these techniques can be seamlessly inte-
grated with each other, and whether the integration
has desirable theoretical guarantee on its conver-
gence. In this paper, we provide our formal an-
swer to this question. In particular, we consider the
asynchronous parallelization of SGD, accelerated
by leveraging variance reduction, coordinate sam-
pling, and Nesterov’s method. We call the new al-
gorithm asynchronous accelerated SGD (AASGD).
Theoretically, we proved a convergence rate of
AASGD, which indicates that (i) the three accel-
eration methods are complementary to each other
and can make their own contributions to the im-
provement of convergence rate; (ii) asynchronous
parallelization does not hurt the convergence rate,
and can achieve considerable speedup under ap-
propriate parameter setting. Empirically, we tested
AASGD on a few benchmark datasets. The exper-
imental results verified our theoretical findings and
indicated that AASGD could be a highly effective
and efficient algorithm for practical use.

1 Introduction

Stochastic gradient descent (SGD) is a widely used optimiza-
tion technology in many applications, due to its simplicity
and good empirical performances [Bousquet and Bottou, 2008;
Rakhlin et al., 2012; Nemirovski et al., 2009]. In this paper,
we focus on the adoption of SGD to solve the following
empirical risk minimization problem, whose objective is the

⇤This work was done when the author was visiting Microsoft
Research Asia.

sum of smooth and convex loss functions, i.e.

min

x2R

d

F (x) =
1

n

nX

i=1

f
i

(x). (1)

Please note that the loss function f

i

(x) may take differ-
ent forms in different applications. For example, suppose
we have a set of training data (a1, b1), · · · , (an, bn), where
a

i

2 Rd is an input feature vector and b

i

2 R is its out-
put. Then loss function f

i

is usually defined as a least square
function f

i

(x) =

1
2 (a

T

i

x� b

i

)

2 for regression, and a logistic
function f

i

(x) = log(1 + exp(�b

i

a

T

i

x)) for classification.
SGD exploits the additive nature of the empirical risk func-

tion F (x), and randomly samples an instance at each iteration
to calculate the gradient and updates the model towards the
direction of negative gradient. Theoretical study on SGD has
revealed that it has a sublinear convergence rate, meaning that
the total number of component gradient evaluations required
by SGD method to find an ✏-accurate solution is O(1/✏). In
recent years, people have been working on accelerating the
convergence of SGD, by proposing new methods or leverag-
ing existing methods in the literature of optimization. Repre-
sentative acceleration methods include:

(1) Variance Reduction (VR) [Johnson and Zhang, 2013;
Defazio et al., 2014]: Besides computing the gradient of one
randomly sampled instance in each iteration, the VR tech-
nique computes the full gradient in a periodical manner and
uses this full gradient for multiple iterations in order to reduce
the sampling variance. It can be proven that the convergence
rate of SGD can become linear by using the VR technique,
under the condition of strong convexity.

(2) Stochastic Coordinate Sampling (SC) [Nesterov, 2012;
Richtárik and Takáč, 2014]: In addition to randomly sample
training instances, the SC technique also performs random
sampling over the feature dimensions. In particular, it ran-
domly samples a block of coordinates, computes the partial
gradients with respect to the features in the sampled block,
and updates the solution only over this block. It clear that,
since the computation of partial gradients are much faster, by
using SC, SGD can become more efficient, especially when
the number of coordinate blocks is relatively large.

(3) Nesterov’s Acceleration (NA) [Nesterov, 2004]: The
NA technique introduces one or multiple auxiliary variables,
and updates the parameter according to the gradient at the
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auxiliary variable. Usually, the auxiliary variable is a slide
of the current parameter leaning a little towards its own mo-
mentum. It can be proven that the convergence rate of SGD
is improved by using the NA technique [Hu et al., 2009].

In addition to the above efforts on accelerating the con-
vergence of SGD, there is another line of research, which
speeds up the SGD algorithm by performing asynchronous
parallelization. This is mainly motivated by the availabil-
ity of very big training data, which makes sequential SGD
very inefficient. In asynchronous parallel SGD [Recht et al.,
2011; Agarwal and Duchi, 2012], multiple workers compute
stochastic gradients in parallel, and update the centralized
model without a synchronization with each other.

Given the above literature, a natural question to ask is
whether these techniques can be seamlessly integrated with
each other, and whether the integration has desirable conver-
gence property. In this paper, we will provide our formal
answer to this question. In particular, we study the asyn-
chronous parallelization of SGD, accelerated by the VR, SC,
and NA techniques. We call the corresponding algorithm
asynchronous accelerated SGD (or AASGD for short), and
perform both theoretical and empirical investigations on it.

First, we prove that: 1) the three acceleration techniques
are complementary to each other and can make their own con-
tributions to the convergence rate of AASGD; 2) the asyn-
chronous parallelization does not hurt the convergence, and
one can achieve square root speed up in certain situations.

Second, we tested AASGD on a few benchmark datasets.
Our experimental results show: 1) the combination of VR,
SC, and NA with SGD really leads to faster convergence
rate as compared to conventional SGD; 2) Thanks to the
asynchronous parallelization, AASGD can achieve promis-
ing speedup when running on multiple workers. These results
verified our theoretical findings and indicated that AASGD
could be a effective and efficient algorithm for practical use.

The remaining paper is organized as follows. In Section
2, we introduce SGD, its acceleration methods, and other re-
lated works. In Section 3, we propose the AASGD algorithm,
and present our convergence analysis. Our empirical study is
given in Section 4. We conclude the paper in the last section.

2 Backgrounds

2.1 SGD and its Acceleration Methods

SGD is a widely used algorithm to solve the empirical risk
minimization problem (1), whose update rule is as follows:

x
k

= x
k�1 � ⌘

k

rf
i

k

(x
k�1), (2)

where f

i

k

is a randomly sampled component of F . It has
been proven that, SGD has sublinear convergence rate when
a decreasing learning rate is used [Rakhlin et al., 2012].

In recent years, variance reduction, stochastic coordinate
sampling, and Nesterov’s acceleration method have been used
to accelerate the convergence of SGD. In the following para-
graphs, we will give them a brief introduction.

Variance Reduction (VR): It is well known that the
variance introduce by stochastic sampling prevents us from
adopting a constant learning rate in SGD (which makes SGD
have a slower convergence rate than full gradient descent). To
remedy this problem, a few variance reduction methods have

been proposed to improve SGD [Johnson and Zhang, 2013;
Roux et al., 2012; Shalev-Shwartz and Zhang, 2013]. In this
paper, we focus on the method proposed in [Johnson and
Zhang, 2013], which follows a multi-stage scheme and com-
putes the full gradient periodically to regularize the stochastic
gradients. Specifically, at the beginning of stage s, we com-
pute the full gradient rF (x̃

s

), and then run an inner loop
(k = 1, · · · ,K) according to the following update formula:

v
k

= rf
i

k

(x
k�1)�rf

i

k

(x̃
s

) +rF (x̃
s

),

x
k

= x
k�1 � ⌘v

k

.

The regularized gradient v
k

becomes an unbiased estimate of
rF (x

k�1), and its variance is much smaller than f

i

k

(x

k�1)

which is used in SGD.
Stochastic Coordinate Sampling (SC): When the data is

high-dimensional, even for one sampled instance, the com-
putation of the gradient over all the dimensions is still time-
consuming. To solve this problem, people have leveraged
the stochastic coordinate sampling method used in stochas-
tic coordinate descent (SCD) [Nesterov, 2012; Richtárik and
Takáč, 2014; Shalev-Shwartz and Tewari, 2011]. That is, in-
stead of computing the gradient over all the dimensions, with
SC, we only compute the partial gradients over a sampled co-
ordinate block, as shown below:

x
k,l

= x
k�1,l � ⌘

k

r
l

F (x
k�1), if l 2 C

k

,

x
k,l

= x
k�1,l, if l /2 C

k

,

where l is the coordinate index, C
k

(k 2 {1, ...,m}) is the
coordinate block randomly sampled in iteration k and r

l

F is
the partial gradient of F for coordinate l.

Nesterov’s Acceleration (NA): Nesterov proposed an ac-
celeration method for gradient methods in [Nesterov, 2004].
The basic idea is to consider the momentum when updating
the parameters. In particular, Nesterov introduced one or sev-
eral auxiliary parameters to record the current parameter plus
its latest momentum. Then, the parameter is updated by the
gradient at the value of the auxiliary variable. To be specific,
with NA, the update rule becomes:

x
k+1 = y

k

� ⌘
k

rf
i

k

(y
k

),

y
k+1 = x

k+1 + ↵(x
k+1 � x

k

).

2.2 Existing Convergence Analysis

First, it has been shown that the three acceleration methods
introduced above can make SGD converge faster. For exam-
ple, [Johnson and Zhang, 2013], considered the integration
of VR with SGD, and [Lee et al., 2015] integrated both VR
and NA with SGD. However, to our best knowledge, it is un-
known what will happen if we simultaneously combine all
the three acceleration methods with SGD. Please note that, it
is non-trivial to combine SC and NA with the involvement of
VR, and the update rule of the combined method makes the
theoretical analysis very difficult.

Second, as mentioned in the introduction, asynchronous
parallelization of SGD and its convergence rate has been stud-
ied in recent years. For example, in [Recht et al., 2011;
Lian et al., 2015; Agarwal and Duchi, 2012; Langford et al.,
2009; Zhang et al., 2013; Avron et al., 2014], the conver-
gence rate of asynchronous SGD was studied in different set-
tings. In [Reddi et al., 2015] the asynchronous parallelization
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of SVRG was investigated. However, as far as we know, the
asynchronous parallelization of SGD accelerated by VR, SC,
and NA has not been studied yet. This is exactly what we are
going to do in this paper.

3 Asynchronous Accelerated SGD

In this section, we propose a novel algorithm, which inte-
grates all the techniques mentioned in the introduction to im-
prove SGD. That is, it is an asynchronous parallel SGD algo-
rithm, and accelerated by VR, SC, and NA at the same time.
For ease of reference, we call this algorithm AASGD, whose
details can be found in Algorithm 1.

Assume there are P workers and one master in the com-
putational cluster. The workers are making updates to the
master in an asynchronous manner. Each worker has full ac-
cess to the data, and stores a non-overlapping partition S

p

(p = 1, ..., P ) of the data index. In addition, the features are
also partitioned into m non-overlapping blocks, denoted as
{C1, C2, ..., Cm

}. .
The AASGD algorithm works in a multi-stage manner. At

the beginning of stage s, each worker calculates the gradient
over all its local data, i.e.,

P
i2S

p

rf

i

(x̃

s

), and then sends it
to the master. The master averages these updates and sends
the full gradient back to the workers. After that, the workers
and the master update the global vector for K rounds (k =

1, · · · ,K) according to the following rules:
Worker: Read parameter x

k

from the master, randomly
sample a mini-batch of data I

k

of size b without replacement
and a block of coordinates C

k

, compute the VR-regularized
gradient u

k

based on l

k

over C

k

, and then send u

k

to the
master.

Master: Update parameter x
k

and auxiliary parameters y
k

and z

k

according to steps (5)-(7) in Algorithm 1.
The following steps in Algorithm 1 are related to the accel-

eration technique: (i) the full gradient calculation in step (1)
is used by VR; (ii) the master’s actions in steps (5)-(7) and
the mini-batch sampling in step (2) are used by NA1; (iii) the
coordinate sampling in step (3) is used by SC.

Please note that the workers run the above procedures in
parallel, without synchronization with each other. As a con-
sequence, the master will receive delayed gradients. Specifi-
cally, in Algorithm 1, the regularized gradient u

k

in Step (4)
is calculated with respect to a delayed parameter x

k�⌧

k

. In
practical, ⌧

k

is a random variable, dependent of the compu-
tational cluster (e.g., the heterogeneity of the computational
nodes and their inter-connections). It is clear that, the delay
is linearly increasing with the number of workers.

4 Convergence Analysis

In this section, we analyze the convergence rate of SASGD
and AASGD. To this end, we make the following assump-
tions, which are commonly used in previous works [Agarwal
and Duchi, 2012; Zhao et al., 2014; Recht et al., 2011].

Assumption 1 (Smoothness): The components {f
i

(x); i 2
[n]} of F (x) are differentiable and have Lipschitz continuous

1It has been proved in [Nitanda, 2014], the mini-batch strategy is
necessary for the faster convergence of SGD with NA.

Algorithm 1 Asynchronous Accelerated SGD (AASGD)
Require: initial vector [x̃0, ⌘,�, b,K, S]

Ensure: x̃

S

for s = 1, 2, ..., S do

x̃ = x̃

s�1; x0 = y0 = z0 = x̃

For local worker p: calculate rF
p

(x0) =
P

i2S

p

rf
i

(x0)

and send it to the center.
(1) For master: calculate rF (x0) =

1
P

P
P

p=1 rF

p

(x0)

for k = 1, ...,K do

For local worker p: read x

k

and calculate u
k

as below:
(2) Randomly select a mini-batch of data I

k

with size
b,
(3) Randomly select a coordinate block C

j

k

,
(4) Calculate u

k+1,l = r
l

f

I

k

(x

k�⌧

k

)�r
l

f

I

k

(x0)+

r
l

F (x0) if l 2 C

j

k

; u
k+1,l = 0 if l /2 C

j

k

and send
it to the master.
For master: update the parameters as below:
(5) y

k,l

= x

k,l

� ⌘u

k,l

if l 2 C

j

k

; y
k,l

= y

k�1,l if
l /2 C

j

k

.
(6) z

k

= z

k�1 � ↵u

k

(7) x
k+1 = (1� �)y

k

+ �z

k

end for

x̃

s

=

1
K

P
K

k=1 x
s

k

end for

partial gradients. That is to say, there exists a positive con-
stant L

max

, such that 8i 2 [n], j 2 [d], for 8x, y 2 Rd with
x

j

6= y

j

, we have
kr

j

f
i

(x)�r
j

f
i

(y)k  L
max

kx
j

� y
j

k.2
Therefore, the components f

i

(x) have Lipschitz continu-
ous gradients, as shown below:

krf
i

(x)�rf
i

(y)k  L
res

kx� yk, 8i.
Assumption 2 (Convexity): F (x) is strongly convex with

convexity parameter µ, i.e.,
F (y) � F (x) +rF (x)

T

(y � x) +

µ

2 ky � xk2, 8x, y 2 Rd.
Assumption 3 (Sparseness): The sparseness in mini-batch

setting is defined as follows3:

� = max

j2[d]

P
C

b

n

v=1 I[9i2I

v

,s.t.x

i,j

6=0]

C

b

n

,

where I denotes the indicator function and I

v

denotes the
mini-batch with index v which is a subset of [n]. Intuitively,
the sparseness measures the maximal frequency for arbitrary
coordinate appears in the mini-batch inputs. It is commonly
assumed that the sparseness is upper bounded.

Assumption 4 (Bounded Delay): The delays ⌧1, ⌧2, ... are
independent random variables, and ⌧

k

 ⌧ for all k.
Based on above assumptions, we proved two theorems.

The first one is for the sequential version of SGD acceler-
ated by VR, SC, and NA (which we call SASGD sequential
accelerated SGD), and the second one is regarding its asyn-
chronous parallelization. In order to distinguish the parame-
ters for SASGD and AASGD, we use subscript 0 to denote

2In this paper, if there is no specification, k · k is the L2-norm.
3In this paper, for simplicity and without confusion, we omit the

mini-batch size b in sparseness.
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parameters for SASGD (and parameters without subscript for
AASGD).
Theorem 4.1 Under Assumptions 1-3, if we set step size
⌘0  1

L

max

, �0 =

⌘0

⌘0+m↵

, and K sufficiently large so that

⇢0 =

1

1� ↵0A

✓
m↵0

⌘0K
+

m

µ↵0K
+ ↵0A

◆
< 1,

where 0 < ↵0 <

1
A

and A =

4L
res

(n�b)
b(n�1) , then SASGD

algorithm has geometric convergence in expectation:

EF (x̃

s

)� F (x

⇤
)  ⇢

s

0[F (x̃0)� F (x

⇤
)].

Proof: First, we take expectation of the VR-regularized
gradients v

k+1 with respect to I

k

, j

k

as below,

E
I

k

,j

k

v
k+1 =

1

m
E

I

k

v̄
k+1 =

1

m
rF (x

k+1).

Then, for the auxiliary parameter z, we have:
E
I

k

,j

k

kz
k+1 � x⇤k2

= kz
k

� x⇤k2 � 2↵0EI

k

,j

k

vT
k+1(zk � x⇤

) + ↵2
0EI

k

,j

k

kv
k+1k2

= kz
k

� x⇤k2 � 2

m
↵0rF (x

k+1)
T

(z
k

� x⇤
)

+ ↵2
0EI

k

,j

k

kv
k+1k2.

Therefore,

rF (x
k+1)

T

(z
k

� x⇤
) =

m↵0

2

E
I

k

,j

k

kv
k+1k2

+

m

2↵0
kz

k

� x⇤k2 � m

2↵0
E
I

k

,j

k

kz
k+1 � x⇤k2. (3)

According to the smoothness of partial gradients, we have
the following:

E
I

k

,j

k

F (y
k+1)

 F (x
k+1)� ⌘0EI

k

,j

k

rF (x
k+1)

T v
k+1 (4)

+

L
max

⌘2
0

2

E
I

k

,j

k

kv
k+1k2

= F (x
k+1)� ⌘0

m
krF (x

k+1)k2 + L
max

⌘2
0

2

E
I

k

,j

k

kv
k+1k2.

Thus, we have the following inequality:

0  m↵0

⌘0
(F (x

k+1)� E
I

k

,j

k

F (y
k+1))

� ↵0krF (x
k+1)k2 + L

max

m⌘0↵0

2

E
I

k

,j

k

kv
k+1k2.

After that, by following the proof of Theorem 3 in [Lee et
al., 2015], we proved this theorem. ⇤

Based on Theorem 4.1, we have the following corollary
for the complexity of SASGD, which is defined as how many
partial gradients we need to calculate so as to guarantee the
optimization error less than ✏.
Corollary 4.2 Under Assumptions 1-3, and the parameter
setups in Theorem 4.1, if we set ↵0 = min{ 1

3A ,

1p
L

max

µ

},

and the mini-batch size b =

12n
p
1

(n�1)+12
p
1

, then the SASGD
can achieve its optimal overall complexity,which is

O((nm+

nm
p
2

p
1

n+

p
1

) log

1

✏
),

where 1 =

L

2
res

L

max

µ

and 2 =

L

max

µ

.

Proof: For SASGD, by setting ↵0 = min{ 1
3A , 1p

L

max

µ

},

⌘0 =

1
L

max

, we can get ⇢0 < 1
2/3

⇣
m

p
2

K

+

m

µ↵0K
+

1
3

⌘
.

Choosing mini-batch size b =

12n
p
1

(n�1)+12
p
1

, then we can
get 1

3A =

1p
L

max

µ

. Putting ↵0 =

1p
L

max

µ

in ⇢0, then

⇢0 =

1
2/3

⇣
2m

p
2

K

+

1
3

⌘
. Then we can choose K = O(m

p
2).

Then the overall complexity (number of partial gradients
evaluation) is O(nm + bm

p
2). Putting b =

12n
p
1

(n�1)+12
p
1

in
O(nm+ bm

p
2) can get the result. ⇤

Remarks: (1) The convergence rate of SASGD in The-
orem 4.1 is linear, much faster than the sublinear conver-
gence rate of SGD. This clearly demonstrates the advantages
of adopting the acceleration techniques.

(2) From the complexity of SASGD in Theorem 4.1
and Corollary 4.2, we can observe the complementary
contributions of three acceleration methods. As we know, the
complexity of SGD with a decreasing step size ⌘

k

= 1/µk is
O(1/✏µ)[Rakhlin et al., 2012]. Comparing the complexity
of SASGD to that of SGD, i) VR method improves the
complexity from O(1/✏µ) to O �

(nm+mL
res

/µ) log 1
✏

�
;

ii) NA method improves the coefficient in the complex-

ity from (nm+mL
res

/µ) to
✓
nm+

nmL

res

/µ

n+
p

L

res

/µ

◆
; iii)

SCD method improve the coefficient from nmL

res

/µ

n+
p

L

res

/µ

to
nmL

res

/µ

n+
p

L

res

/µ

p
L

res

/L

max

, which is faster since L
res

� L
max

.

Next, the following Theorem states the convergence rate
after introducing asynchronous parallelization to SASGD.
Theorem 4.3 Under Assumptions 1-4, and � satisfiesp
� < min{µ, 1

4}, if we set the step size ⌘  1
2L

max

⌧

,
� =

⌘

m↵+⌘

, and K is sufficiently large so that

⇢ =

1

1� ↵AD

✓
m↵

⌘L
max

K
+

m

µ↵K
+ ↵AD

◆
< 1,

where 0 < ↵ <

1
AD

, A =

4L
res

(n�b)
b(n�1) , D = 2(1�

p
�
2 ), then

AASGD algorithm has geometric convergence in expectation:

EF (x̃

s

)� F (x

⇤
)  ⇢

s

[F (x̃0)� F (x

⇤
)].

Proof: At stage s, let v
k+1 and u

k+1 be two vectors whose
l-th dimension defined as follows:
v
k+1,l = r

l

f
I

k

(x
k+1)�r

l

f
I

k

(x̃
s�1) +r

l

F (x̃
s�1) if l 2 C

j

k

;
otherwise, v

k+1,l = 0.
u
k+1,l = r

l

f
I

k

(x
k+1�⌧

k

) � r
l

f
I

k

(x̃
s�1) + r

l

F (x̃
s�1) if l 2

C
j

k

;otherwise,u
k+1,l = 0.

Let v̄
k+1 = rf

I

k

(x
k+1)�rf

I

k

(x̃
s�1) +rF (x̃

s�1)

and ū
k+1 = rf

I

k

(x
k+1�⌧

k

)�rf
I

k

(x̃
s�1) +rF (x̃

s�1).
According to Inequality (6) and Inequality (7) in paper [Lee
et al., 2015], we have:

F (x
k+1)� F (x⇤

)

 1� �

�
(F (y

k

)� F (x
k+1))� 1� �

�

µ

2

ky
k

� x
k+1k2

+rF (x
k+1)

T

(z
k

� x⇤
)� µ

2

kx
k+1 � x⇤k2.
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Let E
I

k

,j

k

be the conditional expectations conditioned on
{x

s

, y

s

, z

s

}
s=0,1,...,k in stage s. Since z

k+1�z

k

= �↵u

k+1,
and E

I

k

,j

k

u

k+1 =

1
m

rF (x

k+1�⌧

k

), we can get:
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According to the smoothness of F , we have:

E
I

k

,j

k

F (y
k+1)

 F (x
k+1)� ⌘

m
krF (x
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m
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I
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rF (x
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(v̄
k+1 � ū

k+1). (6)

The difference between AASGD and SASGD mainly lies in
the communication delay ⌧ . To characterize its influence on
the convergence rate, we take the following three steps.

Step 1: Due to the delay, Equation (5) has an extra term
E
I

k

(v̄

k+1� ū

k+1)
T

(z

k

�x

⇤
) as compared with Equation (3).

According to the fact that z
k

= x

k+1 � 1��

�

(y

k

� x

k+1) and
the Cauthy-Schwarz inequality, we have

mE
I
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� x⇤
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,

where kxk
I

k

denote the norm of x with respect to the
union of non-zero coordinates of a

i

2 I

k

, i.e., kxk
I

k

=

(

P
d

l=1 |xl

|2I[9a
i

2I

k

s.t.a

il

6=0])
1
2 . Using the AM-GM inequality,

the sparseness condition and x

k+1 is independent of I
k

, we
can obtain:
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k+1k2
2

+

E
I

k

kx
k+1 � x⇤k2

I

k

2

p
�


p
�E

I

k

kv̄
k+1k2 +

p
�E

I

k

kū
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Since we also have E
I

k

,j

k
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k+1k2 = E
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kū
k+1k2, and

E
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k+1k2, Equation (5) can be re-written

as
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Step 2: Due to the delay, Inequality (6) has an extra term
⌘

m

E
I

k

rF (x
k+1)

T

(v̄
k+1 � ū

k+1) as compared with Equation
(4). We bound this term using the same technique as Step 1.
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Then Inequality (6) can be re-written as
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By multiplying 2d↵
⌘

on both sides of (8) and adding in (7),
we can get:
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Step 3: Let 1��

�

=

2↵m

⌘

. We take expectation with respect to
⌧
k

. Under the assumption
p
� < µ, by summing inequality

(9) over k = 0, ...,K � 1, we can get:P
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. According to Inequality (12) in paper [Lee et

al., 2015], under the condition D � H, we can get:
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). ⇤

As for Theorem 4.2, we have the following discussions.
The introduction of asynchronous parallelization does hurt
the convergence of SASGD by a little (mainly due to the com-
munication delay). However, when we run the AASGD algo-
rithm on multiple machines, we can still achieve significant
speed up under certain conditions, as shown in the following
corollary.
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(a) comparison on rcv1 (b) comparison on real-sim (c) comparison on news20 (d) speedup

Figure 1: Figure(a), Figure(b) and Figure(c) are comparisons of SASGD and SGD on three datasets respectively; Figure(d) is
the speedups for AASGD on three datasets.

Corollary 4.4 Assume
p
� < min{µ, 1

4}. If we set the step
size ⌘ =

1
2L

max

⌧

,↵ = min{ 1
6A ,

1p
L

max

µ⌧

} and select the
block size m <

1
16L

max

�1/4 , then AASGD will achieve at
least square root speedup with respect to the number of work-
ers when ⌧ <

1
4�1/8 .

Proof: Compared with SASGD, the convergence rate in The-
orem 4.2 is slower due to the delay. In order to get speedup
for AASGD, the order of inner loop K cannot be ⌧ times
larger than SASGD. The order of K is related to two pa-
rameters ⌘ and ↵. In SASGD, ⌘0 =

1
L

max

. For AASGD,
we set ⌘ =

1
2L

max

⌧

. Here we are interested in the situ-
ation where the � ⌧ 1. Considering

p
� < min{µ, 1

4},
the condition
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> ⌧
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1
16L
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�1/4 and ⌧ <

1
4�1/8 .

For AASGD, we set ↵ = min{ 1p
L

max

µ⌧

, 1
6A} and b =

24n
p

1/⌧

(n�1)+24
p

1/⌧
, the inner loop K is in the same order of

O
✓✓

nm+

nm

p
2

p
1

n+
p

1/⌧

◆
log

1
✏

◆
. Compared with SASGD, it

is at most
p
⌧ larger but the computing time is ⌧ times smaller.

The full gradient calculation can be distributed to multiple
machine to get P times speedup. As a result, AASGD can
achieve at least

p
P times speedup since ⌧ is in proportion to

the number of local worker P . ⇤
Remark: Data sparsity serves as a condition for the

speedup. If the data is sparse, the condition is more likely
to hold, and we will get the speed-up.

5 Experiments

In this section, we report our experimental results to demon-
strate the efficiency of AASGD, and validate our theoretical
findings. We conducted binary classification tasks on three
benchmark dataset: rcv1, real-sim, news20, where rcv1 is the
densest dataset and news20 is of the highest dimension. The
detailed information about the three datasets can be found
from LibSVM website. The objective function used in our ex-
periments is the L2-regularized logistic regression loss. We
mainly compared AASGD, SASGD, and standard SGD al-
gorithms, in terms of their convergence properties. In the
AASGD algorithm, we set the number of block partitions as
m = d/100, the mini-batch size as

p
n/

p
P (P is the num-

ber of threads), and the inner loop K = 2mn. The stop-

ping criterion in our experiments is the training error smaller
than 10

�10 (i.e., F (x

k

) � F (x

⇤
) < 10

�10). For the datasets
we used, L

max

= L

res

< 0.25 since the input data is nor-
malized [Reddi et al., 2015], ⌧ ⇡ P , µ = 1/

p
n = 0.01

[Shamir et al., 2014]. In SASGD and AASGD, we set step-
sizes ⌘0 = 0.2 and ⌘ = 0.1/P , which satisfy our assumptions
in the theorems and corollaries.

First, we investigate the SASGD algorithm. We compare it
with standard SGD with different step sizes: a constant step
size (denoted as C-SGD) and a decreasing step size as 1/

p
k

where k is the iteration [Reddi et al., 2015](denoted as D-
SGD). We plot the training curves of SASGD, C-SGD, and
D-SGD in Figure 1(a),1(b),and 1(c)(for the three datasets re-
spectively). From the figure, we have the following observa-
tions: D-SGD and C-SGD are faster than SASGD when we
want to get a low-precise solution,i.e., ✏ < 10

�2. As the train-
ing process continues, SASGD converges much faster than
D-SGD and C-SGD on all the three datasets when we want to
get a high-precise solution. This is consistent with our theo-
retical results (complexity analysis).

Second, we examine the benefit of AASGD by running
on multiple workers (when there is only one local worker,
AASGD reduces to SASGD). We implement AASGD with
2,4,..,16 workers, and plot its speedups in Figure 1(d) (for the
three datasets respectively). The speedup is defined as the ra-
tio of the runtime with a single thread to the runtime with P

threads. From these figures, we have the following observa-
tions:(1) on all the three datasets, AASGD has considerable
speedup with respect to the number of workers, in an order
lower than linear but higher than square root; (2) the small-
est speedup is observed on rcv1. This is consistent with our
theoretical results, since rcv1 is the densest dataset. [Reddi et
al., 2015; Recht et al., 2011] get a similar result on rcv1.

6 Conclusions

In this paper, we focus on asynchronous SGD with acceler-
ation methods, such as variance reduction, Nesterov’s accel-
eration, and stochastic coordinate sampling. We prove the
convergence rate for AASGD, and analyze the conditions for
its speedup with respect to the number of workers. Our exper-
iments on benchmark datasets well validated our theoretical
findings. In the future, we will investigate the convergence
rate of SGD with more acceleration methods, and AASGD in
distributed network architectures.
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