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Abstract
Learning compact hash codes has been a vibrant re-
search topic for large-scale similarity search owing
to the low storage cost and expedited search oper-
ation. A recent research thrust aims to learn com-
pact codes jointly from multiple sources, referred
to as cross-view (or cross-modal) hashing in the
literature. The main theme of this paper is to de-
velop a novel formulation and optimization scheme
for cross-view hashing. As a key differentiator, our
proposed method directly conducts optimization on
discrete binary hash codes, rather than relaxed con-
tinuous variables as in existing cross-view hashing
methods. This way relaxation-induced search ac-
curacy loss can be avoided. We attack the cross-
view hashing problem by simultaneously captur-
ing semantic neighboring relations and maximiz-
ing the generative probability of the learned hash
codes in each view. Specifically, to enable effective
optimization on discrete hash codes, the optimiza-
tion proceeds in a block coordinate descent fash-
ion. Each iteration sequentially updates a single
bit with others clamped. We transform the resul-
tant sub-problem into an equivalent, more tractable
quadratic form and devise an active set based solver
on the discrete codes. Rigorous theoretical analy-
sis is provided for the convergence and local op-
timality condition. Comprehensive evaluations are
conducted on three image benchmarks. The clearly
superior experimental results faithfully prove the
merits of the proposed method.

1 Introduction
Large-scale similarity search (or known as nearest neigh-
bor search) is a critical task in computer science. Com-
pact hashing techniques have gained much empirical suc-
cess for fast similarity search in various fields. including
computer vision [Torralba et al., 2008; Strecha et al., 2012;
Liu et al., 2012; Lin et al., 2014], information retrieval [Chum
et al., 2008], data mining [Eshghi and Rajaram, 2008], ma-
chine learning [Weiss et al., 2008; Salakhutdinov and Hin-
ton, 2009; Norouzi and Fleet, 2011] and theoretic com-
puter science [Indyk and Motwani, 1998; Charikar, 2002;

Datar et al., 2004]. As revealed by Johnson-Lindenstrauss
lemma, under mild conditions, any n data points can be em-
bedded into O(1/✏

2

) log(n)-dimensional space with pairwise
affinity distorted at most 1± ✏, which sheds light on develop-
ing compact coding scheme for similarity search. The hash-
ing methods transform original data vectors into binary Ham-
ming space, such that the Hamming distance between two
data points approximates the original pairwise dissimilarity.
With the hashing techniques, each data object can be repre-
sented using only a few binary bits. The storage cost can be
thereby significantly reduced, and the nearest neighbor search
can be also expedited using either Hamming ranking or the
data structure of hash tables.

Conventional hashing schemes mostly take single-source
data as the input. Nonetheless, in the era of big data, con-
currently learning compact hash codes from heterogeneous
data sources is of increasing importance. For example, each
YouTube video is associated with rich information in multi-
ple heterogenous views, including a variety of visual, spatio-
temporal, or audio features extracted from the video con-
tent, the descriptive text from the caption and community-
contributed comments, and various video metadata (genre,
time stamp, geo-tags, author etc.). One of the prominent ben-
efits by concurrently learning hash codes from multi-view
data is enabling cross-view retrieval. Specifically, one can
search in some view by looking into relevant views (e.g.,
searching image database with textual queries, or vice versa).
To this end, a plurality of cross-view hashing methods have
been devised. Examples can be found in [Zhen and Yeung,
2012a; 2012b; Lin et al., 2015].

This paper focuses on image data and aims to elevate the
performancce of hash code based cross-view image retrieval.
Note that there exist two different paradigms in utilizing
multi-source data for the hashing purpose: multi-view hash-
ing and cross-view hashing. The former assumes all views
are available for both the training and querying data. The
latter adopts a more feasible setting, assuming only partial
views are seen for the querying data. We exclude the for-
mer from the scope of this work. Our novel contribution lies
in a novel cross-view hashing formulation and a correspond-
ing optimization procedure which is characterized by the di-
rect manipulation of discrete hash codes. Before diving into
technical details we would emphasize two crucial traits of the
proposed method.
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First, most existing hashing methods from multi-view data
still suffer from inadequate search accuracy, which can be
partly imputed to the popular “relaxation + rounding” opti-
mization strategy. To achieve high compactness, hash codes
are mostly represented by binary bits. The discrete nature
of hash codes makes learning the hash functions a compli-
cated combinatorial optimization problem. Computationally,
the relaxation + rounding tactic for attacking this issue is to
first relax the binary variables to be continuous and after-
wards round the continuous solutions. This tactic is vividly
exemplified in a majority of existing cross-view hashing
works such as [Kumar and Udupa, 2011; Song et al., 2013;
Zhang and Li, 2014; Ding et al., 2014].

According to some recent empirical evaluations in [Liu et
al., 2014; Shen et al., 2015], above relaxation + rounding
schemes tend to significantly deteriorate the search accura-
cies, particularly when the code length becomes long. Only
a few existing methods can directly conduct optimization in
the hash code space. For example, ITQ [Gong and Lazebnik,
2011] learns a rotation matrix for the already-learned hash
codes in order to reduce the rounding residuals. SePH [Lin et
al., 2015] first learns a set of “ideal” hash code purely based
on the semantic supervisory information and afterwards re-
gresses the feature vectors to these hash codes. The work
in [Liu et al., 2014] addresses the task of unsupervised hash-
ing. It proposes a majorization-minimization scheme, such
that each sub-problem with discrete variables can be solved
in closed form and converges to some fixed point. [Shen et
al., 2015] is its extension in a supervised setting. Clearly, a
cross-view hashing method which directly optimizes the dis-
crete code is still missing in the literature. This paper pro-
poses a novel method of this kind.

Second, rendering reciprocal hash bits is crucial to obtain
good performance. A large body of the early development
of hashing methods, such as PCA-Hash and [Wang et al.,
2010], require different hashing parameter vectors orthogo-
nal to one another. This notably simplifies the numerical op-
timization, yet seldom entails good inter-bit complementarity
with increasing code length. The works in [Xu et al., 2011;
Zhen and Yeung, 2012a] sequentially learn the hash bits. At
a new iteration, it assigns weights to samples in an AdaBoost
fashion. More emphasis is laid on the samples that most
severely violate supervisory constraints using previous hash
bits. Another group of works, exemplified by [Liu et al.,
2013], first generate a pool of over-complete hash bits, and
then intelligently select most complementary subset.

Motivated by the empirical success in [Liu et al., 2012],
we propose an efficient block-coordinate descent optimiza-
tion scheme, optimizing each hash bit conditioned on others.
At each iteration, a single hash bit is chosen and others are
clamped. The selected hashing function and the correspond-
ing hash codes are greedily updated for maximally comple-
menting others. As the prominent benefit of this scheme, each
sub-problem is proved to be equivalent to some quadratic
form. The resultant discrete optimization problem can be ef-
ficiently solved using active set method. A rigorous conver-
gence proof will be also provided.

2 Discrete Cross-View Hashing
2.1 Notations
Throughout this paper we use boldface type for vectors, ma-
trices or their collections. Assume we have a training set X
that comprises of n data objects. Each data object is de-
scribed by V distinct views. Let x

i

= (x

(1)

i

, . . . ,x

(V )

i

) 2
Rd1 ⇥ · · · ⇥ RdV be the feature collection for data object i,
where x

(v)

i

denotes the feature extracted from the v-th view.
Following the majority of supervised hashing algorithms, let
us assume that the supervision information is provided in a
pairwise style. In particular, let S , D collect all similar /
dissimilar pairs respectively. For notational convenience, we
further introduce a supervision matrix Y 2 {�1, 0, 1}n⇥n as

Y

i,j

=

(
1, (x

i

,x

j

) 2 S
�1, (x

i

,x

j

) 2 D
0, otherwise.

(1)

Let K be the desired number of hash bits and h

k

: Rd1 ⇥
· · · ⇥ RdV 7! {�1, 1}, k = 1, . . . ,K be the corresponding
hashing functions. For notational conciseness, let us stack
the hash bits for all data objects, obtaining a code matrix B 2
{�1, 1}n⇥K as below:

B =

2

64
b

1

(x

1
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2
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1

), . . . , b
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1

)

...
...

. . .
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(x

n

), . . . , b

K

(x

n

)
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75 .

For brevity, denote the k-th column as B

k

and the other
k�1 columns as B\k. For data object x, we use the nota-
tion b(x) to encapsulate the hash bits b

1

(x), . . . , b

K

(x), and
b\k(x) for all of its hash bits except for the k-th one.

2.2 Objective Design
The proposed objective combines two considerations:
Criterion-I: semantic preservation. In the context of su-
pervised hashing, it shall be critically ensured that similar
samples have alike hash codes. We first adopt the notion of
code product, which admits a one-to-one correspondence to
Hamming distance and relatively easier for manipulation. A
normalized version of code product ranging over [�1, 1] is
described as

b(x

i

) � b(x
j

) =

1

K

P
K

k=1

b

k

(x

i

)b

k

(x

j

). (2)

For each data pair (x
i

,x

j

), we would define a merit func-
tion `(x

i

,x

j

). Intuitively, the merit function should faith-
fully reflect the semantic consistency between the code prod-
uct and corresponding indicator Y

i,j

. Our proposed formu-
lation supports a large spectrum of merit functions. `(x

i

,x

j

)

is assumed to be linear with respect to b(x

i

) �b(x
j

) in order
to ensure algorithmic convergence. Below are two examples
of valid merit functions:

(exponential) : `(x

i

,x

j

) = e

Yi,j ·b(xi)�b(xj)
.

(linear) : `(x

i

,x

j

) = Y

i,j

· b(x
i

) � b(x
j

).

Criterion-II: logistic generative probability. We also pro-
pose to leverage a generative model that estimates the prob-
ability of mapping a view-specific feature vector to some
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hash bit value. The purposes are two-folds: first, optimiz-
ing `(x

i

,x

j

) by ignoring the feature vectors may bring some
hash code matrix B which perfectly satisfies all semantic su-
pervisory constraints. We here argue that it is also important
to ascertain such perfect hash codes are practically feasible
based on view-specific feature vectors. And secondly, when
tackling unseen querying data objects, the generative model
returns their most likely hash bits.

For simplicity, we adopt linear logistic regression as the
probabilistic building block, namely

�

(v)

k

(b,x

(v)

i

) = 1/(1 + e

�b·w>
k,vx

(v)
i

), (3)

where the superscript and subscript of �(·, ·) collectively em-
phasize that the probability is for the k-th hash bit from v-th
data view. w

k,v

denotes the parameter vector whose length
can be inferred from the context. Clearly, larger values of �
are always favored since they imply that the learned bit b has
better chance to be alternatively inferred from the features.

By compiling all training data, we obtain the overall maxi-
mization problem below:

max

B,{wk,v}

1

n

2

nX

i,j=1

`(xi,xj) +
�

n

nX

i=1

KX

k=1

VX

v=1

�

(v)
k (bk(xi),x

(v)
i ),

where � > 0 is a free parameter.

3 Alternating Maximization
The proposed cross-view hashing formulation is essentially
a mixed-integer optimization problem with respect to both
the discrete hash code B and continuous variables {w

k,v

}.
The coupling of B and {w

k,v

} in Eqn. (3) significantly com-
plicates the pursuit of the optimal solutions. In fact, setting
� = 0 and adopting the linear metric function, the objective
boils down to the Max-Cut problem and no polynomial-time
algorithm is known to exist for achieving the global maxi-
mum. We thus adopt an alternating maximization strategy for
the consideration of numerical tractability. Namely, we iter-
ate between updating B with {w

k,v

} frozen (B-Subproblem)
or vice verse (W-Subproblem), which are detailed in subse-
quent sections respectively.

3.1 B-Subproblem
Without loss of generality, here we instantiate the merit func-
tion using the non-linear exponential form. The algorithmic
description and analysis in this section also apply for other
merit functions if they are linear w.r.t. the code product.
Knowing {w

k,v

}, the B-subproblem is derived as

max

B

1

n2

X

i,j

eYi,j ·b(xi)�b(xj)
+

�
n

X

i,k,v

�(v)
k (bk(xi),x

(v)
i ). (4)

We tackle the above subproblem by sequentially updating
the hash bits in K steps. Step k conducts a block coordinate
ascent update on the k-th column of code matrix B, namely
B

k

. Hereafter we illustratively describe the procedure for
updating bit k.
Coordinate discrete quadratic program: Importantly, we
can derive an equivalent quadratic form for each sub-problem

Algorithm 1 Coordinate Discrete Optimization Procedure
1: Input: multi-view data X , indicator matrix Y, parameter �.
2: Output: B, {wk,v}.

Main Loop
3: Initialize {wk,v} using Gaussian random numbers and initialize

B according to bk(xi) = sign(

PV
v=1 w

>
k,vx

(v)
i );

4: while not converged do
5: Solve B-subproblem for updating the code matrix B;
6: Solve W-subproblem for updating parameter {wk,v};
7: end while

B-subproblem
8: for k = 1 to K do
9: Calculate matrices A and Z from other K�1 bits B\k, ac-

cording to Eqns. (6)(7) respectively.
10: Calculate b

Bk by Eqn. (11) and obtain active set I;
11: Conduct active set reduction with Algorithm 2;
12: Update Bk according to Eqn. (13);
13: end for

W-subproblem
14: for (k, v) 2 {1 . . .K}⇥ {1 . . . V } do
15: Use stochastic gradient ascent to solve Problem (14) and up-

date wk,v accordingly;
16: end for

defined on a single hash bit, which admits an efficient dis-
crete solution. Let us first define the leave-one-out partial
code product as b\k(xi

) � b\k(xj

) = b(x

i

) � b(x

j

) �
1

K

b

k

(x

i

)b

k

(x

j

). For the exponential merit function, it is eas-
ily verified

e

Yi,j(b(xi)�b(xj))

= e

Yi,j(b\k(xi)�b\k(xj)) · e 1
K Yi,j ·bk(xi)bk(xj)

,

= e

Yi,j(b\k(xi)�b\k(xj)) · ⇥c
i,j

+ c

0
i,j

· b
k

(x

i

)b

k

(x

j

)

⇤
,

where c

i,j

=

1

2

(e

1
K Yi,j

+ e

� 1
K Yi,j

) and c

0
i,j

=

1

2

(e

1
K Yi,j �

e

� 1
K Yi,j

) are sample-specific constants. The last equality is
obtained based on a simple observation: although `(x

i

,x

j

)

is discrete and non-linear, b
k

(x

i

)b

k

(x

j

) can only take val-
ues ±1. Therefore, we can bi-linearize e

� 1
K Yi,j ·bk(xi)bk(xj)

through exhaustively enumerating all possible values.
Using the same idea, we can also linearize �

(v)

k

(b,x

(v)

i

)

with respect to b

k

(x

i

), obtaining

�

(v)

k

(b,x

(v)

i

) = d

i,k,v

+ d

0
i,k,v

· b
k

(x

i

), (5)

where d

i,k,v

= 1/2 and d

0
i,k,v

= 1/(1 + e

�w

>
k,vx

(v)
i

)� 1/2.
For simplifying the notations, let us introduce two matrices

A,B 2 Rn⇥n, whose (i, j)-th elements are

A

i,j

= e

Yi,j(b\k(xi)�b\k(xj)) · c0
i,j

, (6)

Z

i,j

=

P
V

v=1

d

0
i,k,v

. (7)

Updating bit k can be accomplished by solving the fol-
lowing quadratic polynomial involving binary discrete vector
B

k

, whose equivalence to Problem (4) naturally holds due to
above linearization transforms:

max

Bk2{±1}n
J (B

k

) , 1

n

2

B

>
k

AB

k

+

1

n

�ZB

k

+ const, (8)
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Algorithm 2 Active Set Reduction
1: Input: active set I, matrices A,Z, hash vector Bk.
2: Output: a reduced active set Ir ✓ I.
3: Set indicator s 2 {0, 1}n as 1 for all entries in I, otherwise 0;
4: Calculate M = A� (BkB

>
k )� (ss

>
);

5: Initialize Ir = {i}, where i 2 I is randomly chosen;
6: vgain  M(i, :), where M(i, :) denotes row i of M;
7: while true do
8: Find the largest one from the set I \ Ir:

i = argi2I\Ir
maxvgain(i). (9)

q = maxi2I\Ir vgain(i). (10)

9: if q < 0 do, break; end if
10: Expand the target index set Ir  Ir [ {i};
11: Update the indicator vector vgain  vgain + M(i, :), re-

flecting the (scaled) gain of adding the next element into Ir;
12: end while

Active set construction and reduction: Optimizing Prob-
lem (8) can be intuitively understood as flipping some hash
bits so as to elevate the objective value. Noting that most sam-
ples are prone to their original hash bit values, we construct
an “active set” with few samples which have the maximal po-
tentials of being flipped. This can be efficiently completed by
a signed-gradient scheme:

b
B

k

 sign

✓
1

n

2

2AB

k

+

1

n

�Z

◆
, (11)

and the active set is set as I = {i | bB
k

(i) 6= B

k

(i)}.
However, simultaneously flipping all in the active set does

not ensure increasing the objective. Let B0
k

be the final new
binary solution. We later prove that a sufficient condition for
a better solution is the non-negativity of the quantity below:

(B

0
k

�B

k

)

>
A (B

0
k

�B

k

) � 0. (12)

To this end, we propose an efficient active set screening
procedure as described in Algorithm 2, which returns a subset
of I that rigorously satisfies Condition (12). The idea of this
procedure is initializing b

B

k

= B

k

and greedily flipping one
more bit from the original active set I at each step. The vector
v

gain

therein denotes the increase of (B0
k

� B

k

)

>
A(B

0
k

�
B

k

) by flipping corresponding bit. The process terminates
until the quantity in Eqn. (12) stops increasing (i.e., q < 0 in
Algorithm 2). The new binary solution is then calculated as

B

0
k

(i) =

⇢
B

k

(i), i /2 I
r

�B
k

(i), i 2 I
r

(13)

Regarding the convergence analysis, we have the major
theoretic observations below:
Theorem 1. J (B

0
k

) � J (B

k

).

Proof. Let us define an auxiliary function g(X) =�
2AB

k

/n

2

+ �Z/n

�>
(X�B

k

), where X 2 {±1}n. Note
that g(B

k

) = 0 and in Eqn. (11), bB
k

is indeed a unique max-
imizer of the problem b

B

k

= arg

X2{±1}n max g(X). There-
fore g(

b
B

k

) � g(B

k

) = 0. Recall that b
B

k

induces an active

set I. Since g(X) is separable w.r.t. each binary variable in
X, a solution induced by any subset of I will also increase
the value of g(·) compared with g(B

k

). Hence the solution
B

0
k

calculated according to Eqn. (13) represents some better
solution compared to B

k

, namely g(B

0
k

) � g(B

k

) = 0. It is
verified that

J (B0
k)� J (Bk) = g(B0

k) +
�
B0

k �Bk

�>
A

�
B0

k �Bk

�
.

By the constructions in (12) and (13), both terms on the
right hand side are non-negative, which proves the claim.

B

0
k

will eventually converge to some fixed point, as de-
scribed below.
Theorem 2. B

k

converges to a fixed point that satisfies
sign

�
2AB

k

/n

2

+ �Z/n

�
= B

k

, in the sense that flipping
one more bit of B

k

will not further increase the objective
value of Problem (8).

Proof. The claim can be established through proof of contra-
diction. Flipping any bit of B

k

incurs some change of the
objective value of Problem (8). Note that A is a symmet-
ric matrix and its diagonal elements are all zeros. It can be
verified that the change by flipping a bit is exactly the corre-
sponding quantity in

�
2AB

k

/n

2

+ �Z/n

� � (�B
k

), where
� denotes point-wise multiplication. Once all entries of�
2AB

k

/n

2

+ �Z/n

��(�B
k

) become non-positive (namely
sign

�
2AB

k

/n

2

+ �Z/n

�
= B

k

), J (B

k

) can not be further
improved by flipping another bit. Otherwise, we can flip any
bit with positive correspondence in

�
2AB

k

/n

2

+ �Z/n

� �
(�B

k

) to further increase J (B

0
k

).

Remark on complexity: The complexity of B-subproblem
mainly comes from matrices A, Z, vector b

B

k

, and active set
reduction. It is easily verified that the complexities of com-
puting A,Z,

b
B

k

are O(n

2

),O(V n

2

),O(n

2

) respectively. In
Algorithm 2, iteratively updating v

gain

can be in an O(n

2

)

complexity in the worst case (i.e., a majority of samples are
included in the initial active set and most are chosen into I

r

by Algorithm 2). In practice, the size of active set quickly
shrinks when the optimization proceeds. In addition, we also
adopt a data chunk based trick for addressing large n, as de-
tailed in the experimental section.

3.2 W-Subproblem
For each bit-view pair (k, v) 2 {1 . . .K} ⇥ {1 . . . V }, there
exists an associated parameter w

k,v

. When the code matrix
B is fixed, they can be updated by separately solving K ⇥ V

sub-problems. Each is defined as below:

w

k,v

 arg

wk,v
max

�

n

nX

i=1

�

(v)

k

(b

k

(x

i

),x

(v)

i

). (14)

Recall that we adopt a logistic form for all �(v)

k

(·, ·), which
is amenable for stochastic gradient ascend (SGA). Specifi-
cally, the stochastic gradient for data object x

i

is computed
by

@�(v)
k (bk(xi),x

(v)
i )/@wk,v

=

h
�(v)
k (bk(xi),x

(v)
i )(1� �(v)

k (bk(xi),x
(v)
i ))bk(xi)

i
· x(v)

i .
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Method Wiki NUS-WIDE MIRFlickr
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Image Query

CVH 0.1257 0.1212 0.1215 0.3687 0.4182 0.4602 0.6067 0.6177 0.6157
IMH 0.1573 0.1575 0.1568 0.4187 0.3975 0.3778 0.6016 0.6120 0.6070

CMSSH 0.1877 0.1771 0.1646 0.4063 0.3927 0.3939 0.5728 0.5743 0.5706
CHMIS 0.2107 0.2089 0.2026 0.4670 0.4696 0.4635 0.6027 0.6002 0.5947
LSSH 0.2141 0.2216 0.2218 0.3900 0.3924 0.3962 0.5784 0.5804 0.5797
SCM 0.2210 0.2337 0.2442 0.4842 0.4941 0.4947 0.6237 0.6343 0.6448

CMFH 0.2132 0.2259 0.2362 0.4267 0.4229 0.4207 0.5861 0.5835 0.5844
SePH-RBF 0.2762 0.2965 0.3049 0.5394 0.5454 0.5499 0.6720 0.6761 0.6749
SePH-lin 0.1842 0.2016 0.2132 0.5306 0.5382 0.5439 0.6620 0.6654 0.6697

Our CDH-0 0.3116 0.3493 0.3611 0.5846 0.5898 0.5995 0.6819 0.7170 0.7204
Our CDH 0.3289 0.3608 0.3615 0.5768 0.5898 0.6050 0.7032 0.7170 0.7324

Text Query

CVH 0.1185 0.1034 0.1024 0.3646 0.4024 0.4339 0.6026 0.6041 0.6017
IMH 0.1463 0.1311 0.1290 0.4053 0.3892 0.3758 0.5895 0.6031 0.6010

CMSSH 0.1630 0.1617 0.1539 0.3874 0.3849 0.3704 0.5715 0.5732 0.5699
CHMIS 0.1807 0.1789 0.1726 0.4470 0.4496 0.4435 0.5827 0.5802 0.5747
LSSH 0.5031 0.5224 0.5293 0.4286 0.4248 0.4208 0.5898 0.5927 0.5932
SCM 0.2134 0.2366 0.2479 0.4536 0.4620 0.4630 0.6133 0.6209 0.6295

CMFH 0.4884 0.5132 0.5269 0.4627 0.4556 0.4518 0.5937 0.5919 0.5931
SePH-RBF 0.6312 0.6581 0.6637 0.6230 0.6331 0.6407 0.7178 0.7243 0.7287
SePH-lin 0.5428 0.5665 0.5724 0.6220 0.6342 0.6459 0.7086 0.7163 0.7232

Our CDH-0 0.7121 0.7219 0.7239 0.6757 0.7011 0.7061 0.7702 0.7980 0.7903
Our CDH 0.7400 0.7309 0.7380 0.6866 0.7011 0.7171 0.7596 0.7980 0.7941

Table 1: Cross-view image retrieval performance with varying code lengths in terms of mAP scores. SePH-RBF and SePH-
lin correspond to the variants of SePH using RBF-kernelized or line hash functions respectively. CDH denotes our proposed
algorithm. CDH-0 is the variant by setting the parameter � to 0. The best performers are highlighted in boldface.

With the gradient calculation formula, the use of SGA in
Problem (14) is quite standard. We thus omit more details.

3.3 Generative Model for Out-of-Sample Data
We have introduced a generative model for each view, whose
posterior is defined in Eqn. (3). These generative models can
faithfully infer the most possible hash code for an unseen data
object, either with all views or partial views available. Let
us first consider the all-view case. Given a data object x,
we estimate its k-th bit by maximizing the joint probability
b

k

= arg

b2{±1} max P

k

(x

(1)

, . . . ,x

(V )

, b).
Assume different views are independent to each other con-

ditioned on b. Applying Bayes’ rules gets

Pk(x
(1), . . . ,x(V ), b) = Pk(b)

QV
v=1 Pk(x

(v)|b)

= Pk(b)
VY

v=1

Pk(b|x(v)
)Pk(x

(v)
)

Pk(b)

/ (Pk(b))
1�V QV

v=1 �
(v)
k (b,x(v)

),

where P

k

(b) represents the prior of value b and can be em-
pirically set as its percentage in the learned codes B

k

on the
training data.

The joint probability for partial views can be derived in
a similar spirit. In cross-view hashing, typically only one
view (e.g., textual or visual view for image data) is seen
for a querying data object. In this extreme case, we have
P

k

(x

(v)

,±1) = P

k

(±1)�

(v)

k

(±1,x

(v)

) when only view v is
observed. Its hash bit can be inferred by simply comparing
P

k

(x

(v)

, 1) and P

k

(x

(v)

,�1).

4 Experiment
This section reports the evaluation results of the proposed
cross-view hashing method and state-of-the-art competi-
tors. Hereafter we denote the proposed method as CDH
(Coordinate Discrete Hashing).

Datasets: We adopt three datasets, including Wiki [Rasi-
wasia et al., 2010], NUS-WIDE [seng Chua et al., 2009] and
MIRFlickr [Huiskes and Lew, 2008]. For all three, our data
preparation is essentially identical to other relevant works.

The Wiki dataset is crawled from Wikipedia’s featured
documents. It consists of 2,866 image-text pairs, which are
annotated with semantic labels of 10 classes. We represent
image with 128-dimensional SIFT visual feature and 10-
dimensional LDA topical feature. 75% of the data are used
for learning the hash functions and other 25% are queries.

The NUS-WIDE dataset contains 269,648 user-generated
images from Flickr.com. The experiment chooses 10 most
common tags and 186,577 images associated by at least one
of these tags. Each image is represented by 500-D SIFT fea-
tures and 1,000-D binary indicator vector for 1,000 most fre-
quent tags appearing in NUS-WIDE. 99% and 1% of the data
are for training and querying respectively.

The MIRFlickr dataset consists of 25,000 image-text pairs
from 24 unique categories. For each image object, 150-D
edge histogram and 500-D textual feature are extracted. The
ratios of data for train/query are 95% and 5% respectively.

Baselines and Evaluation Protocol: Our method is con-
trasted with a large spectrum of representative cross-view
hashing methods, including CVH [Kumar and Udupa, 2011],
IMH [Song et al., 2013], CMSSH [Bronstein et al., 2010],
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Figure 1: Left column: active set sizes beore/after the reduction in Algorithm 2. Middle column: image search mAP scores
during the training and querying (testing) stages. Right column: sensitivity study w.r.t. parameter �/n. The two rows are results
for Wiki and MIRFlickr obtained with 32 hash bits respectively. �/n = 1 for obtaining the results in left two columns.

CHMIS [Zhang et al., 2011], LSSH [Zhou et al., 2014],
SCM [Zhang and Li, 2014], CMFH [Ding et al., 2014],
SePH [Lin et al., 2015]. We thank all authors sharing the core
source codes of the algorithms. The parameters are adopted
either as the defaulted ones in the software package or the
suggested values in the original papers. Following the eval-
uation protocol of most prior works, we adopt a Hamming
ranking framework for evaluating the cross-view hashing per-
formance. The querying data objects are assumed to have
partial views (visual or textual view) seen. The hash code for
the queries are calculated by the probabilistic inference model
as described in Section 3.3. All database samples are ranked
based on the Hamming distances to the query, and a mean
average precision (mAP) score is calculated from the ranked
lists as the primary indicator of the search performance.

The parameter � in our proposed CDH plays a role of bal-
ancing the learned hash code quality and the generalization
ability to unseen data. We use a grid search scheme to find
the optimal � on all datasets. Particularly, multiple trials are
conducted with different �/n values from the candidate set
[0, 10

�2

, 10

�1

, 1, 5, 10, 20, 50]. The value with the highest
objective value on the training data is found and the cor-
responding accuracies are reported. We initialize the hash-
ing parameters w

k,v

using random numbers drawn from 1-D
Gaussian distribution, and afterwards initialize the hash bit by
b

k

(x) = sign[
P

V

v=1

(�

(v)

k

(1,x

(v)

)�0.5)]. The largest dataset
NUSWIDE contains more than 180,000 images. Since the
complexity of Algorithm 2 is quadratic w.r.t. sample count,
directly manipulating the entire dataset requires tremendous
memory. We thus randomly split the data into several chunks,
each of which contains 10,000 images. The active set scheme
is separately conducted on each data chunk.

Investigation of Experimental Results: The mAP scores
for all methods are reported in Table 1. It is obvious that our
proposed CDH significantly outperforms all baseline meth-
ods by 5-20% absolute accuracy gain on all benchmarks with

different hash code lengths. We attribute this empirical su-
periority to the discrete optimization scheme. Moreover, to
emphasize the generative probability term in the objective,
we include a variant CDH-0, which sets � = 0 to rule out
the generative models. The comparisons reveal that on most
tasks a positive � brings notable improvement.

Figure 1 presents another three sets of results obtained on
Wiki and MIRFlickr. The leftmost column displays the per-
centage of flipped bits (proportional to the sizes of active sets
I and I

r

in Algorithm 2) at different optimization iterations.
Clearly, both sets quickly shrink as the optimization proceeds.
The middle column shows the evolution of the search accu-
racy of cross-view querying. Since the object values during
training are not intuitively understood, we estimate another
search accuracy at the training stage by randomly choosing
1,000 training samples as the queries. We find the optimiza-
tion converges very fast. In practice, after scanning all K bits
two passes, both the objective values and cross-view retrieval
accuracy become stable. Therefore all experiments are set to
terminate after updating the hash bits at most two passes. The
rightmost column investigates the mAP scores under different
choices of the parameter �. It is observed that, although each
dataset favors specific � to achieve its peak performance, the
accuracies are stable with a large range of � values.

5 Concluding Remarks
We have presented a novel formulation for hash code based
cross-view image retrieval. The defining traits include an op-
timization scheme which directly manipulate the discrete bi-
nary variables, and a coordinate ascend method which brings
a simplified sub-problem in quadratic form. We provide rig-
orous theoretic analysis about the convergence and local op-
timality condition. Moreover, our quantitative evaluations on
three benchmarks also strongly validate its superiority.
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