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Abstract
We consider the application of Bayesian spike-and-
slab models in high-dimensional feature selection
problems. To do so, we propose a simple yet ef-
fective fast approximate Bayesian inference algo-
rithm based on Laplace’s method. We exploit two
efficient optimization methods, GIST [Gong et al.,
2013] and L-BFGS [Nocedal, 1980], to obtain the
mode of the posterior distribution. Then we pro-
pose an ensemble Nyström based approach to cal-
culate the diagonal of the inverse Hessian over the
mode to obtain the approximate posterior marginals
in O(knp) time, k ⌧ p. Furthermore, we pro-
vide the theoretical analysis about the estimation
consistency and approximation error bounds. With
the posterior marginals of the model weights, we
use quadrature integration to estimate the marginal
posteriors of selection probabilities and indicator
variables for all features, which quantify the se-
lection uncertainty. Our method not only main-
tains the benefits of the Bayesian treatment (e.g.,
uncertainty quantification) but also possesses the
computational efficiency, and oracle properties of
the frequentist methods. Simulation shows that
our method estimates better or comparable selec-
tion probabilities and indicator variables than al-
ternative approximate inference methods such as
VB and EP, but with less running time. Exten-
sive experiments on large real datasets demonstrate
that our method often improves prediction accuracy
over Bayesian automatic relevance determination,
EP, and frequentist L

1

type methods.

1 Introduction
As an intersection of machine learning, statistics, and sig-
nal processing, sparse modeling has numerous applications.
For developing various sparse models, L

1

regularization
has played a central role. L

1

-type methods not only en-
joy provable properties relating to the estimation optimal-
ity and oracle properties [Zou and Hastie, 2005; Tibshi-
rani, 1996], but also have the convenience of using well-
developed computational tools from convex optimization to
obtain sparse solutions. As a result, they have been widely

used in many applications including feature selection, com-
press sensing[Candès, 2006], multi task learning [Titsias
and Lázaro-Gredilla, 2011], and time-varying network recon-
struction [Ahmed and Xing, 2009].

Recently there has been a shift from convex to noncon-
vex regularization approaches in the machine learning com-
munity. Specifically, within the Bayesian context, the spike-
and-slab prior has been the focus of attention due to its se-
lective shrinkage property. In this paper, we examine the
performance of the Bayesian spike-and-slab models for very
high dimensional problems in the supervised learning setting.
For very high dimensional problems, existing Monte Carlo
methods [Mitchell and Beauchamp, 1988] converge slowly
with tens of thousands of features in data; and the variational
Bayes (VB) and expectation propagation (EP) approaches
[Hernández-Lobato et al., 2010a; Hernández-Lobato, 2010;
Hernández-Lobato et al., 2010b] either need a fully factor-
ized approximation to obtain a linear cost, but at the price of a
reduced approximation quality, or have a quadratic cost, mak-
ing them impractical for large data. By contrast, the frequen-
tist L

1

-type methods have fast solvers developed over years,
making them a practical tool. To address the computational
issue associated with the spike-and-slab model, we develop
the Fast Laplace Approximation for Spike-and-slab (FLAS)
algorithm. Our approach not only maintains the benefits of
the Bayesian treatment (e.g., uncertainty quantification) but
also possesses the computational efficiency, and oracle prop-
erties of the frequentist methods.

Specifically, in Section 3, we apply the Laplace approxi-
mation to the marginal posterior distribution of each weight
parameter. For the Laplace approximation we need to obtain
the mode of the posterior distribution. To this end, we ex-
ploit two efficient optimization methods, the popular limited-
memory BFGS (L-BFGS) [Nocedal, 1980] and the recently
developed GIST method [Gong et al., 2013]. Specifically, we
use L-BFGS to obtain the MAP estimation for the marginal-
ized model, and we use an alternating optimization strategy
based on GIST [Gong et al., 2013] for the joint model, with
convergence guarantees for both regression and classification,
and possessing oracle properties for the regression case. Then
we propose an ensemble Nyström based approach to calcu-
late the diagonal of the inverse Hessian over the mode to
obtain the approximate posterior marginals in O(knp) time,
where n and p are the numbers of samples and features re-
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spectively, and k ⌧ p. The theoretical analysis of the ensem-
ble method is also provided. With the posterior marginals
of model weights, we use quadrature integration to estimate
the marginal posteriors of selection probabilities and indi-
cator variables for all features, which quantify the selection
uncertainty. While a factorized joint posterior assumption is
usually not true, VB and EP often adopt it for computational
efficiency. By contrast, our method is free of this assumption
but still enjoys a cost linear in p. Detailed discussion on the
related work is given in Section 4.

On simulated data, our methods perform feature selec-
tion better than or comparable to the alternative approximate
methods, with less running time, and provide higher predic-
tion accuracy than various sparse methods (Section 5). On
large real benchmark datasets, our methods often achieve im-
proved prediction accuracy with a comparable speed.

2 Spike-and-Slab Models
We first present sparse linear models with spike-and-slab pri-
ors. Suppose we have n independent and identically dis-
tributed samples D = {(x

1

, t
1

), . . . , (x
n

, t
n

)}, where x
i

is
the p dimensional feature vector of the i-th sample, and t

i

is its response. We aim at predicting the response vector
t = [t

1

, . . . , t
n

]

> based on the feature set X = [x
1

, . . . ,x
n

]

>

and selecting a small number of features relevant to the pre-
diction. For real-world applications, we often have n ⌧ p.

For regression, the Gaussian data likelihood is used:
p(t|X,w, ⌧) =

Q
n

i=1

N (t
i

|x>
i

w, ⌧�1

) where w are regres-
sion weights, and ⌧ is the precision parameter; for clas-
sification, the logistic likelihood is used: p(t|X,w) =Q

n

i=1

�(x>
i

w)

ti
[1 � �(x>

i

w)]

1�ti where t
i

2 {0, 1}, w are
classifier weights, and �(a) = 1/(1 + exp(�a)).

A set of latent binary variables {z
j

} are introduced to in-
dicate the feature selection: z

j

= 1 means the j-th feature
is selected; otherwise, it is not. Then a spike-and-slab prior
[Ishwaran and Rao, 2005] over w is assigned:

p(w|z) =
Y

p

j=1

N (w
j

|0, r
0

)

(1�zj)N (w
j

|0, r
1

)

zj , (1)

p(z
j

= 1|s
j

) = s
j

(1  j  p) (2)

where r
0

and r
1

are the variances of the two Gaussian compo-
nents and s

j

2 [0, 1] represents the selection probability for
the j-feature. We set r

1

� r
0

so that if the j-th feature is se-
lected, the prior over w

j

has a large variance r
1

(as a regular
L
2

penalty in the frequentist framework) and, if not, the zero-
mean prior has a very small variance r

0

, leading to aggressive
shrinkage of the irrelevant feature. We further assign a Beta
prior over s

j

: p(s
j

) = Beta(a
0

, b
0

). In the experiments, we
set a

0

= b
0

= 1 such that this prior is an uninformative uni-
form prior.

3 Algorithm
Given high dimensional data, current inference methods such
as Gibbs sampling or VB can suffer from high computa-
tional cost. To overcome the computational bottleneck, we
use Laplace’s method to approximate the posteriors of each
{w

j

} and apply the quadrature integration [Minka, 2000] to
estimate the selection probability s

j

and indicator variable z
j

.

3.1 Laplace approximation
To obtain the Laplace approximation, we need to compute
the mode and the second-order derivative of the log poste-
rior distribution at the mode. We describe two approaches for
computing MAP estimation: marginalized MAP estimation
,and joint MAP estimation. Details of the two approaches are
described below.

L-BFGS optimization of the marginalized model
For the first approach, denoted by FLAS, we marginalize out
both z and s. The negative log probability of the marginalized
model is then given by

F(w) = L(w)�
pX

j=1

log

⇣
1

2

N (wj |0, r1) +
1

2

N (wj |0, r0)
⌘
,

where L(w) is the negative log likelihood for regression or
classification. To minimize the negative log probability, we
use the L-BFGS method [Nocedal, 1980] because of its low
computational and memory cost, and due to the nonconvex-
ity of the spike-and-slab model. As a quasi-Newton method,
the L-BFGS method uses last M function/gradient pairs to
approximate the inverse Hessian matrix of the parameters w.
Because M is set to be much smaller than p, often as small as
3-10, the computational cost per iteration is linear in p.

To use L-BFGS, we need to compute the gradient over w:
h
dF
dw

i

j

=

h
dL(w)

dw

i

j

+

r
0

+ r
1

g(w
j

)

r
0

r
1

(1 + g(w
j

))

w
j

(3)

where g(w
j

) =

q
r1
r0

exp(

1

2

(

1

r1
� 1

r0
)w2

j

), and
dL(w)

dw

= ⌧X>
(Xw � t), for regression and

dL(w)

dw

=

P
N

n=1

�
tn

1+exp(x

>
n w)

� 1�tn

1+exp(�x

>
n w)

�
x
n

, for
classification.

Using the gradient in the L-BFGS method, we can compute
the mode of w

j

efficiently. Then we can approximate the
posteriors of s

j

and z
j

as explained in Section 3.3.

Optimization of the joint model
For the second approach, denoted by FLAS*, we only
marginalize out z and jointly optimize over the weights w
and the selection probability s. From a Bayesian perspective,
we prefer the first approach because by marginalizing out s,
it essentially takes all possible values of s into account. But
the second approach can provide a more pronounced selective
shrinkage effect than the first approach. We use an alternating
optimization (AO) approach for both regression and classifi-
cation, and employ GIST [Gong et al., 2013] for finding the
minimizer of w during the AO iterations.

In the joint optimization, we minimize the negative log
joint probability:

min

w,s

F(w, s) = min

w

L(w)�min

s

R(w, s) (4)

where R(w, s) =

P
p

j=1

R
j

(w
j

, s
j

) and R
j

(w
j

, s
j

) =

log

�
s
j

N (w
j

|0, r
1

) + (1� s
j

)N (w
j

|0, r
0

)

�
.

We perform alternating optimization by keeping one vari-
able fixed, and optimize over the other. We start the optimiza-
tion procedure by randomly initializing w. Given w as fixed,
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F(w, s) is a monotone function of each s
j

, hence it attains
a minimum at s

j

= 1 if |w
j

| � a, and s
j

= 0 otherwise,

a =

r⇣
2r0r1
r1�r0

⌘
log

q
r1
r0

. Given s, the optimization of w has

a closed form solution for regression that is a special case of
generalized ridge regression [Hoerl and Kennard, 1970]:

w
opt

= (⌧X>X+ diag(d))

�1⌧X>t (5)

where d is such that d
j

= (

1

r1
)

sj
(

1

r0
)

1�sj .
The update of w has a time complexity of O(p3). This

is prohibitively expensive at higher dimensions. Therefore,
we employ GIST to minimize w. Since the problem is
strictly convex, GIST is guaranteed to converge to the unique
minimum (closed form solution), but with cost per iteration
O(np)[Gong et al., 2013]. In case of classification, we do
not have have a closed form update for w, but with the lo-
gistic loss function the optimization problem is still strictly
convex, hence GIST again converges to the unique minimum.
Our AO scheme also satisfies the Existence and Uniqueness
(EU) assumption, and hence converges to a joint local mini-
mum [Bezdek and Hathaway, 2003].

Estimation, Selection and Sign consistency for regression
Using the approach given in [Yen, 2011] and [Zou and Zhang,
2009], we will prove asymptotic consistency properties for
the AO estimator. Let us assume that w⇤ is the true coefficient
vector of the regression model. Define S⇤

= {j : w⇤
j

6= 0},
and S

opt

= {j : w
optj

6= 0}. Let S denote the space in which
S⇤ lies. Selection consistency implies that S⇤

= S
opt

, and
sign consistency requires sign(w⇤

) = sign(w
opt

), where
sign(a) = 1, 0,�1 for a > 0, a = 0, a < 0 respectively,
sign operator is applied component wise. We will use the
following assumptions for our analysis:

Assumption 1 [Yen, 2011]. Let C
SS

= n�1

(X>
S

X
S

) for
any S 2 S . Let �

i

be the i
th

eigenvalue of C
SS

, then the
following condition holds:

0  c
1

< �
min

(C
SS

)  �
max

(C
SS

)  c
2

< 1 (6)

Assumption 2. For parameters r
1

, r
0

and ⌧ , assume that
they are fixed, and 0 < r

1

, r
0

, ⌧ < 1;
Assumption 3 [Yen, 2011]. Assume a finite constant c

3

>
0 such that (w⇤

j

)

2 < c
3

for all j = 1, , · · · p.
Assumption 4. Let x

1

,x
2

, ...,x
n

be a sample from p di-
mensional Gaussian distribution N (0, I

p

) with mean 0 and
unit covariance matrix. Then, for sufficiently large n with p
fixed, X>X ! nI

p

. Let ⇣ = X>✏ then there exist a finite
positive constant ⇣

0

such that |⇣
i

| < ⇣
0

for all i = 1, ..., p.
Assumption 5. Assume that their exist a positive finite

constant M such that |w⇤
i

| � M , i 2 S⇤. Also assume a
small positive constant � such that 0 < � < M

Assumption 1 enforces positive definiteness of the sample
covariance matrix. This assumption is reasonable for large
sample sizes as the sample covariance matrix is of full rank.
Assumption 2 simply indicates that we know the true value
of the hyper parameters. However, our results are also valid
for bounded support. Therefore, assuming the parameters as
fixed and known is not necessary. Assumption 3 is needed to
make sure that the true weight vector does not grow without

bound. This is required because in theorem 1 the true weight
vector changes with sample size. Assumption 4 can find its
applications in situations where the user has control over the
design of matrix X, for example compressed sensing. As-
sumption 5 enforces absolute shrinkage, and hence selection
and sign consistency.

Theorem 1. Given that 1, 2, and 3 are satisfied and
p / n↵ with ↵ > 0, then P (||w

opt

� w⇤||2 > ⇠
n

) 
c
0

exp{� log(n1�↵⇠
n

)} for some positive finite constants c
0

and ⇠
n

. Assume that ⇠
n

/ n�↵

⇤
for some ↵⇤ > 0. Then

if 0 < ↵⇤ < ↵ < 1/2, P (||w
opt

� w⇤||2 > ⇠
n

) ! 0 as
n ! 1, and hence w

opt

has estimation consistency.
Theorem 2. Under assumptions 2, 4, and 5 w

opt

! w⇤ as
n ! 1 with p fixed. Let wc

opt

= e �w
opt

, where e
i

= 1 if
|w

opti

| � M � �, and 0 otherwise. Then, wc

opt

will be sign
and selection consistent as n ! 1 with p fixed.
(All proofs are omitted due to space limitations)

3.2 Marginal Posterior of Weights
Standard Laplace approximation requires to invert the Hes-
sian matrix of the negative log probability at the mode, via
which we can obtain a joint approximate posterior. For pre-
diction and feature selection, however, we only need marginal
posterior of each weight w

j

, which only requires the diagonal
entry of the inverse Hessian. Nevertheless, we still have to in-
vert the Hessian matrix, which has time complexity of O(p3)
and is unacceptable for large problems. To resolve this issue,
we resort to Nyström method. Specifically, let us denote the
mode of the model weights by ˜w and consider the Hessian
matrix in regression case first,

H = ⌧X>X+ diag(v)

where v
j

= �d

2
log(p(wj))

dw

2
j

���
wj=w̃j

. Then the Nyström ap-

proach is used to approximate X>X: A subset of columns
of X are sampled to form a low-rank n ⇥ k matrix X

k

=

[f
i1 , . . . , fik ], where f

it is the i
t

-th column of X; and X>X ⇡
X>X

k

(X>
k

X
k

)

†X>
k

X where (·)† is the generalized inverse
operation. The inverse of Hessian is then approximated by

H�1 ⇡ ˜H�1, ˜H = ⌧X>X
k

(X>
k

X
k

)

†X>
k

X+ diag(v).

Applying Woodbury matrix identity [Woodbury, 1950], we
can readily reduce the complexity to O(nkp):

˜H�1

= diag(v)�1 � diag(v)�1X>X
k

(⌧�1X>
k

X
k

+X>
k

Xdiag(v)�1X>X
k

)

�1X>
k

Xdiag(v)�1.

Since we can choose k ⌧ p, the inversion cost will still be
linear in p. We can then read off the diagonal of ˜H�1 to
calculate the marginal posterior approximation of each w

j

:
a Gaussian with mean m

j

being the posterior mode w̃
j

and
variance �2

j

equal to the j-th entry of the diagonal of ˜H�1.
For classification, the Hessian matrix has a slight differ-

ent form: H = X>
diag(b)X + diag(v), where b

i

=

�(x>
i

˜w)(1��(x>
i

˜w)). We can first multiply diag(

p
b) into

X, i.e., ˜X = Xdiag(

p
b) and obtain H =

˜X>
˜X+ diag(v).

Then we follow the same way in regression case to calculate
the Laplace approximation for each w

j

.
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Using Nyström approach to estimate the diagonal of in-
verse Hession will inevitably bring some approximation er-
ror. To improve accuracy, a simple ensemble approach is pro-
posed. Specifically, we first sample d disjoint sets of columns
of X, each set is of the same size k. For each set r, we can cal-
culate an approximate inverse Hessian ˜H�1

r

. The estimation
of the j-th diagonal entry of inverse Hession is then obtained
by

H�1

(j, j) ⇡ 1

d

dX

r=1

˜H�1

r

(j, j). (7)

Using Taylor expansion and error bounds of Nyström
approximations[Kumar et al., 2009], we can prove that the
proposed ensemble approach can have a smaller estimation
error. This is expressed in the following theorems.

Theorem 3. Define ⌦ = {A 2 Rp⇥p|A � 0,�
min

(A) �
c,�

max

(A) < 1}. Assume Hessian H and rank-q Nystrom
approximation of H based on k samples, ˜H, both belong to
⌦. Consider a function f(A) = e>

j

A�1e
j

,A 2 ⌦. Then,
krf(A)k

F

 L, (1� ⌘)H+ ⌘ ˜H 2 ⌦ 8 ⌘ 2 [0, 1], and with
high probability,

|H�1

(j, j)� ˜H�1

(j, j)|  L ·D
0

(8)

where c is a small positive constant, and L = p/c2. e
j

is a
standard basis vector with 1 in j-th coordinate and 0’s else-
where, and D

0

is the Nyström error bound based on Frobe-
nius norm [Kumar et al., 2009].

Theorem 4. Define set S to be a collection of dk columns
of Hessian H sampled uniformly at random without replace-
ment, and partitioned into d subsets of size k, S

1

, · · · , S
d

.
Assume Hessian H and d rank-q Nystrom approximations of
H, { ˜H

1

, . . . , ˜H
d

} where ˜H
r

denotes the rank-q Nystrom ap-
proximation of Hessian H based on the subset S

r

, all belong
to ⌦, then with high probability,

|H�1

(j, j)� 1

d

dX

r=1

˜H�1

r

(j, j)|  L ·D
1

(9)

where D
1

is the error bound for ensemble Nyström based on
Frobenius norm [Kumar et al., 2009]. Because D

1

< D
0

(see
[Kumar et al., 2009]), the ensemble approach for the diagonal
entry estimation of H�1 has a smaller error bound.

Proposition 1. Assume that �
max

(X>X) < 1, and 8j
c  v

j

< 1. Then both Hessian H and any approximate
Hessian ˜H based on Nyström method belong to ⌦, and hence
satisfy theorems 3 and 4. (All proofs are omitted due to space
limitations)

3.3 Posteriors moments of sj and zj
Given the approximate marginal posterior of w

j

, we can es-
timate marginal posterior moments of s

j

—the probability of
selecting the j-th feature. Specifically, we first invert the con-
ditional relationship between s

j

and w
j

based on Bayes rule,

p(s
j

|w
j

) =

s
j

N (w
j

|0, r
1

) + (1� s
j

)N (w
j

|0, r
0

)

1

2

N (w
j

|0, r
1

) +

1

2

N (w
j

|0, r
0

)

. (10)

Then the marginal posterior of s
j

can be computed by

p(s
j

|t,X) =

Z
p(s

j

|w
j

)N (w
j

|m
j

,�2

j

)dw
j

(11)

where N (w
j

|m
j

,�2

j

) is the estimated posterior marginal of
w

j

. Then, the posterior mean and variance of s
j

are calcu-
lated by

E[s
j

] =

Z
2N

1

(w
j

) +N
0

(w
j

)

3(N
1

(w
j

) +N
0

(w
j

))

q(w
j

)dw
j

Var[s
j

] =

Z
3N

1

(w
j

) +N
0

(w
j

)

6(N
1

(w
j

) +N
0

(w
j

))

q(w
j

)dw
j

� E2

[s
j

]

where N
g

(w
j

) (for g = 0, 1) and q(w
j

) are the shorthand for
N (w

j

|0, r
g

) and N (w
j

|m
j

,�2

j

) respectively.
A similar procedure can be used to calculate the posterior

moments of z
j

—the selection indicator of j-th feature; the
poster mean and variance of z

j

are given by

E[z
j

] =

Z N
1

(w
j

)

N
1

(w
j

) +N
0

(w
j

)

q(w
j

)dw
j

Var[z
j

] =

Z N
1

(w
j

)

N
1

(w
j

) +N
0

(w
j

)

q(w
j

)dw
j

� E2

[z
j

].

We apply Gauss-Hermite quadrature method [Minka, 2000]
to calculate the above one dimensional integrals with high
accuracy. (e.g., the numerical difference from the true inte-
gration is often on the order of 10�4). The over all cost for
computing the posterior mean and variance of w, s, and z is
O(dknp), d, k ⌧ p. The linear cost makes our algorithm
scalable for high dimensional data.

4 Related Work
A very closely related approach to our method proposes a
MAP estimation of spike and slab models with delta spikes
[Yen, 2011]. The method approximates the delta spike by a
continuous bound via an elegant majorization and minimiza-
tion (MM) algorithm. Consistency results for the MAP es-
timate are also provided. We, on the other hand, assume
continuous spikes to make use of efficient continuous opti-
mization strategies. Secondly, while the MM algorithm only
focuses on the MAP estimate, we provide a full Bayesian in-
ference strategy, and also show oracle properties for our MAP
estimate. Another related method is the integrated nested
Laplace approximation (INLA) [Rue et al., 2009]. INLA is
designed for the latent Gaussian models and is shown to be
very efficient and accurate. However, Spike-and-slab priors
are mixture priors and do not belong to the latent Gaussian
family. Simply applying INLA to the spike-and-slab models
will be computationally expensive (O(p3)) due to the dense
precision matrix and high dimensional feature space.

EP and VB approximations have also been developed to
conduct Bayesian inference on the spike-and-slab model.
In the context of multi-task learning, EP achieved a per
task complexity of O(n2p) for n < p (or O(np2) when
n > p) [Hernández-Lobato, 2010]. Further, a fully fac-
torized approximate posterior of w was imposed to achieve
a cost of O(np) with n < p in the classification context
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for EP [Hernández-Lobato et al., 2010b]. Similarly, a cost
of O(np2) was spent for the VB approximation with fully
factorized posterior assumption [Titsias and Lázaro-Gredilla,
2011; Carbonetto et al., 2012].

Our work differs from the above methods in that we do
not impose any factorization assumption on the joint poste-
rior. Instead, with minimal structural constraints, our method
not only enjoys a linear cost in p, but also avoids the strong
mean-field like assumption, which could hurt the inference
quality [Carbonetto et al., 2012].

5 Experiments
5.1 Simulation
First we examine our method in a simulation study.

Data Generation. The feature dimension p is set to 1000.
We assume 20 out of the 1000 features are relevant to the re-
sponse. The irrelevant features are generated independently
from the standard Gaussian distribution. The relevant fea-
tures are generated from a multi-variate Gaussian distribution
with a block diagonal covariance matrix. The covariance ma-
trix consists of two 10 by 10 sub-covariance matrices on the
main diagonal. In each sub-covariance matrix, the diagonal
elements are set to 1 and the off-diagonal elements are set
to 0.81. Therefore, the 20 features are generated from two
different groups. The weights w are set as

w = [0, . . . , 0| {z }
980

,v,v/
p
10,�v,�v/

p
10]

where v = [5, 5, 5, 5, 5]. Given the sampled X, for regres-
sion the response vector t is generated by t = Xw + ✏,
where each ✏

i

is sampled independently from the standard
Gaussian. For classification, we generate each response by
t
i

= �1 · �(x>
i

w < 0) + 1 · �(x>
i

w > 0), where �(x) = 1

if x = 1 and 0 otherwise. We fix the number of test sam-
ples to 200 and vary the number of training samples n from
{60, 80, 100, 120}. For each n, we randomly generate 50
datasets and report the average results. We also evaluate the
accuracy of posterior inference by using Gibbs sampling re-
sults as a reference, and following the same simulation pro-
cedure as before, but with feature dimension p set to 100.
Competing methods. We compare our approach with alter-
native approximate inference algorithms for the spike-and-
slab model, including VB, EP, and MM [Yen, 2011] that only
provides MAP estimation. We implement two versions of
EP algorithms, where for regression, one is based on con-
tinuous spikes [Hernández-Lobato, 2010](EP) and the other
is based on delta spikes (EP⇤); for classification, we use a
method similar to [Hernández-Lobato, 2010], and thus we
also denote it by EP [Hernández-Lobato et al., 2010a]; the
other has a linear time complexity [Hernández-Lobato et al.,
2010b], and we denote it by EP-L. Both EP and EP⇤ have
the cost O(np2), while EP-L uses fully factorized posterior
assumption for model weights to obtain a linear cost O(np).
For VB, we use two versions: first is denoted by (VB) [Zhe
et al., 2013], the complexity is O(p3) but without a factor-
ized posterior assumption over model weights; and the other
is denoted by (VB⇤) [Titsias and Lázaro-Gredilla, 2011], it
uses a fully factorized posterior assumption with reduced cost

O(np2). For all these methods, including Gibbs sampling,
we apply the same model as in section 2 where the selection
probabilities {s

j

} are not integrated out. Because the above
VB and EP methods only provide point estimates of the se-
lection probabilities {s

j

}, we modify their Bayesian model
by applying a prior on {s

j

}, and infer their posteriors [Qi et
al., 2005]. We also test other popular sparse learning meth-
ods, including ARD, lasso, elastic net, and capped L

1

. We
use the Glmnet1 software package for lasso and elastic net
(the package performs the tuning of hyper parameters through
cross validation), and the Gist2 software package for capped
L
1

. For these software packages, we use the default settings
(e.g., initial value settings and maximum iteration number).
For our methods, we use the solution of L

2

regularization
as the initialization point. The variances for spike and slab
components, i.e., r

0

and r
1

are chosen from cross valida-
tion. The grids used are r

0

= [10

�6, 10�5, 10�4, 10�3

] and
r
1

= [1 : 1 : 5]. We use the same cross validation grid for
competing methods. In the step of using Nyström approach
to calculate Laplace approximation, we sample 5 columns for
each Nyström approximation and repeat 5 times for ensemble
estimation of the inverse Hessian diagonal.

Results. Figures 1 a and e show the predictive performance
of all the methods for regression and classification. FLAS*
and FLAS show better performance than alternative methods,
or at least comparable to them. Figures 1 b and f report the
feature selection accuracy based on the F1 score, i.e., the har-
monic average of the sensitivity and the specificity of the se-
lected feature set. To compute the F1 score, we select features
when the posterior mean of the selection indicators, E(z

j

), is
over 0.5 for Bayesian spike-and-slab models, or when model
weights |w

j

| > 0.001 for other methods. As we can see,
FLAS* and FLAS achieve higher F1 scores for classification
and comparable F1 score than the best alternatives in regres-
sion.

For selection uncertainty, we compare the posterior mean
of s

j

and z
j

with the results of Gibbs sampling based on
100, 000 samples. We calculate the root mean square error to
evaluate the difference from the ground truth and report the
results in Figure 1 c, d, g, and h. It is clear that FLAS* and
FLAS consistently obtain better or comparable uncertainty
estimation to competing methods. This confirms the infer-
ence quality of our algorithm.

5.2 Large Real Benchmark Data sets
We then examine all the algorithms on 14 published large real
datasets, including 8 classification datasets3 and 6 regression
datasets: Diffuse large B cell lymphoma (DLBCL) [Rosen-
wald et al., 2002], GSE5680 [Scheetz et al., 2006], Yearpre-
diction4(Year), House-census5(House), 10K corpus [Kogan
et al., 2009] and TIED6. Among the 14 datasets, the feature
numbers are often at tens of thousands, while the sample sizes

1www-stat.stanford.edu/⇠tibs/glmnet-matlab
2www.public.asu.edu/⇠jye02/Software/GIST/
3www.shi-zhong.com/software/docdata.zip
4archive.ics.uci.edu/ml/datasets.html
5www.cs.toronto.edu/⇠delve/data/census-house/desc.html
6www.causality.inf.ethz.ch/repository.php
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Figure 1: Simulation results, including the prediction accuracy, the F1 score of feature selection, and the root mean squared
error for the posterior mean estimation of {s

j

} and {z
j

}. Results are averaged over 50 runs.

Table 1: Root mean square error on regression datasets (the first 6 rows) and classification error rates (%) on large binary
classification datasets (the last 8 rows). The results are averaged over 10 runs.

dataset lasso elast net capped L1 ARD EP-L FLAS* FLAS
gse5680 0.107 ± 0.003 0.107 ± 0.003 0.107± 0.003 0.136 ± 0.005 0.72 ± 0.001 0.111 ± 0.002 0.089± 0.002

10k corpus 0.382 ± 0.002 0.382 ± 0.002 0.382 ± 0.002 0.382 ± 0.384 0.385 ± 0.003 0.383 ± 0.003 0.372 ± 0.003
tied 0.656 ± 0.013 0.627 ± 0.014 0.656 ± 0.013 0.532 ± 0.017 1.11 ± 0.2 0.632 ± 0.017 0.656 ± 0.013

House 1.576 ± 0.011 1.578 ± 0.017 1.587 ± 0.012 0.435 ±0.0006 0.430 ± 0.0002 0.441 ± 9.5e-4 0.425 ±0.002
Year 0.296 ± 0.009 0.293 ± 0.007 0.307 ± 0.004 0.306 ± 0.006 0.32 ± 0.002 0.232± 5.04e-4 0.234 ± 0.0001
dlbcl 1.76 ± 0.026 1.75 ± 0.027 1.75 ± 0.028 2.38 ± 0.063 1.61 ± 0.050 1.56 ± 0.043 1.60± 0.047

classic 6.69 ± 0.002 5.94 ± 0.002 4.14 ± 0.002 18.2 ± 0.002 8.94 ± 0.002 4.2 ± 0.002 4.20 ± 0.001
hitech 23.2 ± 0.005 21.4 ± 0.004 21.3 ± 0.003 28.5 ± 0.019 25.2 ± 0.001 19.9 ± 0.002 19.9 ± 0.003
k1b 5.44 ± 0.005 4.91 ± 0.004 4.42 ± 0.004 23.0 ± 0.013 7.94 ± 0.004 4.73 ± 0.005 4.74 ± 0.005

reviews 7.68 ± 0.003 6.47 ± 0.002 6.09 ± 0.001 35.4 ± 0.05 8.28 ± 0.002 5.55 ± 0.001 5.54 ± 0.001
sports 3.72 ± 0.001 3.15 ± 0.0008 3.25 ± 0.0009 24.1 ± 0.032 10.9 ± 0.008 2.77 ±0.0006 2.77 ±0.007

ng3sim 19.3 ± 0.005 16.2 ± 0.003 15.4 ± 0.003 21.3 ± 0.006 14.5 ± 0.002 13.7 ± 0.002 13.6 ± 0.002
ohscal 13.8 ± 0.001 13.7 ± 0.001 13.8 ± 0.001 37.3 ± 0.02 13.7 ±0.002 13.05 ± 0.001 13.1 ± 0.001
la12 13.6 ± 0.002 12.5 ± 0.002 12.2 ± 0.002 30.1 ± 0.025 13.2 ± 0.002 11.04 ± 0.001 11.1 ± 0.001

are often at hundreds or thousands.
We compare our algorithms, FLAS* and FLAS, with lasso,

elastic net, capped L
1

, ARD and EP-L. Note that we imple-
ment lasso and elastic net based on GIST, because the Glmnet
software used in simulation is no longer feasible. We ran-
domly split each dataset into two parts—10% samples for
training and the rest for test—for 10 times and run all the
methods on each partition. In each run, we use 10-fold cross
validation on the training data to tune the free parameters.
Table 1 lists the average prediction accuracy and standard er-
rors on the original datasets. As we can see, in all datasets,
except for Tied in regression, and classic and k1b in clas-
sification, our algorithms, FLAS* or FLAS, obtain smaller
root mean square errors or classification error rates. We also
examine the average training time of all the methods and it
turns out that our approach spends less or comparable time
than the others. For example, the running time in seconds on
gse5680 and reviews are {lasso:2.03, elastic net:2.26, capped
L
1

:15.3, ARD:3.52, EP-L: 6.52, FLAS*:0.15, FLAS:0.3},
and {lasso:0.32, elastic net:0.29, capped L

1

:2.3, ARD:26.7,

EP-L:1.02, FLAS*:0.25, FLAS:0.10} respectively.

6 Conclusion

We have presented a new scalable sparse Bayesian inference
method for the spike-and-slab model. From a frequentist per-
spective, our approach is computationally efficient, and pos-
sesses oracle properties, and from a Bayesian point of view, it
quantifies selection uncertainty. Our empirical results suggest
that the spike and slab model can yield improved selection
and predictive accuracy over the classical l

1

-type methods.
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José Miguel Hernández-Lobato, and Alberto Suárez. Ex-
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