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Abstract
We propose a new subspace clustering model to
segment data which is drawn from multiple linear
or affine subspaces. Unlike the well-known sparse
subspace clustering (SSC) and low-rank represen-
tation (LRR) which transfer the subspace clustering
problem into two steps’ algorithm including build-
ing the affinity matrix and spectral clustering, our
proposed model directly learns the different sub-
spaces’ indicator so that low-rank based different
groups are obtained clearly. To better approximate
the low-rank constraint, we suggest to use Schat-
ten p-norm to relax the rank constraint instead of
using trace norm. We tactically avoid the integer
programming problem imposed by group indicator
constraint to let our algorithm more efficient and
scalable. Furthermore, we extend our discussion to
the general case in which subspaces don’t pass the
original point. The new algorithm’s convergence is
given, and both synthetic and real world datasets
demonstrate our proposed model’s effectiveness.

1 Introduction
Subspace clustering is an important problem in machine
learning, computer vision, such as motion segmentation
[Costeira et al., 1997], image compression [Hong et al., 2005]
and human face image clustering [Ho et al., 2003]. Subspace
clustering assumes that the data points are drawn from mul-
tiple low dimensional subspaces. And the goal of subspace
clustering is to find such multiple low dimensional subspaces
such that all data points are segmented correctly and each
group of data points fits into one of the low-dimensional sub-
spaces. Due to the assumption that all data points lie in the
multiple subspaces, traditional clustering methods such as K-
means, spectral clustering are often difficult to cluster the data
points with relatively high accuracy. The subspace clustering
is suggested to solve such problem and has gained promising
result in the previous research.

There has been a lot of work presenting many different sub-
space clustering methods. Generally speaking, these methods
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can be grouped into the following categories: factorization
based method such as [Gruber and Weiss, 2004], algebraic
based method such as [Vidal et al., 2005], statistic based
method such as [Ho et al., 2003], spectral clustering based
method such as [Elhamifar and Vidal, 2013]. Recently, sparse
learning based methods such as Sparse Subspace Clustering
(SSC) [Elhamifar and Vidal, 2013], Subspace Segmentation
via Quadratic Programming (SSQP) [Wang et al., 2011] and
low-rank based methods such as Robust Subspace Segmenta-
tion by Low-Rank Representation (Robust LRR) [Liu et al.,
2013], Latent Low-Rank Representation for Subspace Seg-
mentation and Feature Extraction [Liu and Yan, 2011] are
all proved to get good performance. For the sparse coding
model, it aims to represent one data point with a sparse linear
or affine combination of other data points to achieve the sub-
spaces efficiently and naturally. The low-rank based methods
utilize low-rank representation opposed to sparse representa-
tion to recover the low-dimensional subspaces. The optimal
subspace clustering assumptions include different data groups
are assigned to different subspaces, there exist enough data
points to shape each subspace, and no further subspaces can
be derived from the current subspaces. In the other work [Yu
and Schuurmans, 2011], the fast closed-form solutions were
proposed to solve subspace clustering problem.

We propose a novel low-rank segmentation model to solve
the above assumption based subspace clustering problem. In-
stead of learning the affinity matrix done by previous sub-
space clustering methods including SSC [Elhamifar and Vi-
dal, 2013] and LRR [Liu et al., 2013], we propose to learn
the group indicator directly such that the low-rank structure
for each subspace is clear. We utilize the Schatten p-norm
instead of trace norm to relax the rank constraint to better ap-
proximate the low-rank constraint, tactically avoid the integer
programming problem imposed by the group indicator con-
straint, and extend our new model to discuss the general case
in which the subspaces don’t pass the original point. An ef-
ficient method is suggested with convergence prove to solve
the proposed subspace segmentation model. Both synthetic
and real world data sets demonstrate our proposed new sub-
space clustering model’s effectiveness.

2 New Subspace Clustering Model
To begin with, we denote the groups for which data points in
X 2 Rd⇥n are clustered as {X1, X2, ..., Xk}. Here we first
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discuss the condition when each subspace passes through the
origin. We will talk about the case when each subspace might
not pass through the origin later.

In order to get the optimal subspace clustering result, we
need seek the low-rank subspaces to accommodate different
groups of data points. To achieve the optimal low-rank so-
lutions, we can minimize the rank of all subspace simultane-
ously as:

min
kX

i=1

rank(Xi) . (1)

However, the above objective often has trivial solution. If
all data points are allocated into a single subspace, the objec-
tive value in Eq. (1) is min(d, n). If the ground-truth are k

groups, denote ri = rank(Xi), the objective value
Pk

i=1 ri
is often larger than min(d, n). For example, there are 5 sub-
spaces of dimension 3 in R10, and 20 points per subspace are
sampled. As a result, each data matrix Xi is 10 by 20 and of
rank 3. The objective value is 15 (sum of ground-truth ranks).
But, if all data points are allocated into a single subspace, the
objective value is 10, which is even smaller than that of the
ground-truth. Thus, the objective function in Eq. (1) is not
suitable for the subspace clustering task.

Because in subspace clustering, ri << min(d, n), the
value of

Pk
i=1 r

2
i is smaller than (min(d, n))2 in general

cases. For example, in the above example, the sum of the
square ranks

Pk
i=1 r

2
i = 45. If all data points are in a sin-

gle subspace, (min(d, n))2 = 102 = 100 > 45. Thus, we
can avoid the trivial solution. Based on this consideration, we
propose to solve the following objective function:

min
kX

i=1

(rank(Xi))
2 . (2)

We denote a cluster indicator matrix by Idx 2 Rk⇥n,
Idx(i, j) = 1 if the j-th data point is grouped into the i-
th cluster or subspace, and Idx(i, j) = 0 otherwise. The k
diagonal matrices G1, G2, ..., Gk are defined, where the di-
agonal elements of Gi(1  i  k) are formed by the i-th
row of matrix Idx. Identity matrix is denoted by I . Note that
rank(Xi) = rank(XGi), the problem (2) is equivalent to
the following problem:

min
Gi|ki=1

kP
i=1

(rank(XGi))2

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(3)

where the summation constraint ensures each data point is
assigned to one and only one group.

The objective function is non-convex, so does the discrete
constraint. It is well known that trace norm (denote as k·k⇤)
is the convex envelope of the rank function, and is thought to
be the best convex approximation [Recht et al., 2010]. The
discrete constraint for the group indication matrix Gi|ki=1 ✓
{0, 1}n⇥n can be relaxed to be Gi|ki=1 ✓ [0, 1]n⇥n which
is explained as probabilities for each data point belonging to
certain group. As a result, based on the convex relaxation of

both objective function and constraint, the problem (3) now
becomes:

min
Gi|ki=1

kP
i=1

kXGik2⇤

s.t. Gi|ki=1 ✓ [0, 1]n⇥n,
kP

i=1
Gi = I

(4)

But such convex relaxation format may not be the best ap-
proximation to the original non-convex problem (3), because
it includes two relaxation including trace norm and continu-
ous constraint. So we want to use other relaxation which can
approximate the original problem (3) better. The Schatten p-
norm is a better relaxation for the rank objective function than
the trace norm when p < 1 based on the definition [Nie et al.,
2012; 2015]. As a result, in this paper we relax the rank based
objective function to the following one with binary constraint
for each Gi|ki=1:

min
Gi|ki=1

P
i
(kXGikpSp

)2

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(5)

where kFkpSp
= Tr((FFT )

p
2 ) is power p of the Schatten

p-norm of matrix F .
In the next section, an iteration based re-weighted method

[Nie et al., 2010; 2012; 2014] will be applied to solve it with
convergence analysis.

3 Optimization Algorithm
According to the definition of Lagrange function, the La-
grangian function of problem (5) is

L(Gi|ki=1 ,⇤) =
X

i

(kXGikpSp
)2 + g(⇤, Gi|ki=1)

where g(⇤, Gi|ki=1) encodes the constraints in problem (5).
Taking derivative w.r.t. Gi|ki=1 and setting to zero, it be-

comes
X

i

2XTDiXGi +
@g(⇤, Gi|ki=1)

@ Gi|ki=1

= 0 (6)

where
Di = p kXGikpSp

(XG2
iX

T )
p�2
2 (7)

Note that Di depends on Gi, we use an iteration based algo-
rithm to get the solution that satisfies Eq. (6). First, according
to Eq. (7), Di|ki=1 can be calculated based on the current so-
lution Gi|ki=1. If Di|ki=1 is given, the optimal solution Gi|ki=1
to the following problem will satisfy Eq. (6):

min
Gi|ki=1

P
i
Tr(GT

i X
TDiXGi)

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(8)

Then update the current solution Gi|ki=1 by the optimal so-
lution to the problem (8). It can be proved that this iterative
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procedure converges to a local optimum of the problem (5).
Here is the intuition on the changes from Eq. (6) to Eq. (8).
Eq. (6) which has the Lagrange multipliers is one of the KKT
conditions w.r.t. the derivative of primal variables Gi, and af-
ter that we set Di fixed. The same KKT condition w.r.t. the
derivative of primal variables Gi is used to Eq. (8). The ob-
jective derivative w.r.t. Gi in Eq. (8) is the same as the first
part of Eq. (6). Because our constraint does not change, it has
the same form as the second part for multipliers in Eq. (6).
The reason why we introduce the multipliers in Eq. (6) is to
show the connection between Eq. (6) and Eq. (8). Because
the constraints are not changed and we want to use iteration
based re-weighted method to solve this optimization problem
instead of KKT condition involved method, the multipliers
disappear.

Problem (8) can be rewritten as

min
Gi|ki=1

P
i
Tr(AiG

2
i )

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(9)

where Ai = XTDiX . the problem (9) can be further
changed to the following problem because of the discrete con-
straint Gi|ki=1 ✓ {0, 1}n⇥n:

min
Gi|ki=1

P
i
Tr(AiGi)

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(10)

Note that Gi|ki=1 are n by n diagonal matrices, the problem
(9) can be rewritten as the following problem:

min
gci2{0,1},

Pk
i=1 gci=1

kX

i=1

nX

i=c

acigci (11)

where gci is the c-th diagonal element of matrix Gi and aci is
the c-th diagonal element of matrix Ai.

The optimal solution to the problem (11) can be easily ob-
tained as follows

gci =

⇢
1, i = argmin

l
acl

0, otherwise
(12)

The algorithm to solve problem (5) is summarized in Al-
gorithm 1. As can be seen, the algorithm is very simple and
concise.

Algorithm 1 Algorithm to solve problem (5).

Initialize Gi|ki=1 such that the constraints in the problem
(5) are satisfied
while not converge do

1. Calculate Di|ki=1 = p kXGikpSp
(XG2

iX
T )

p�2
2

2. Calculate Ai|ki=1 = XTDiX

3. Update Gi|ki=1, where the c-th diagonal element gci
of Gi is updated by Eq. (12)

end while

3.1 Convergence Analysis
We have the following theorem on the convergence of the pro-
posed algorithm.

Theorem 1 The Algorithm 1 will finally converge to a local

optimal solution of the problem (5) when p = 1.

Proof: Assume the updated Gi in step 3 of Alg. 1 is G̃i,
Since G̃i is the optimal solution to the problem (8), we have

X

i

Tr(G̃T
i X

TDiXG̃i) 
X

i

Tr(GT
i X

TDiXGi)

which can be written as
X

i

Tr(DiXG̃2
iX

T ) 
X

i

Tr(DiXG2
iX

T ) (13)

According to step 1 in Alg. 1, Eq. (13) can be written as
P
i
kXGikpSp

Tr((XG2
iX

T )
p�2
2 XG̃2

iX
T )


P
i
(kXGikpSp

)2
(14)

According to the Cauchy-Schwarz inequality, it can be proved
that, when p = 1 we have
P
i
(
���XG̃i

���
p

Sp

)2 
P
i
Tr((XG2

iX
T )

p
2 )Tr((XG2

iX
T )

p�2
2 XG̃2

iX
T )

(15)

Therefore, based on Eqs. (14-15), we have
X

i

(
���XG̃i

���
p

Sp

)2 
X

i

(kXGikpSp
)2 (16)

Eq. (16) indicates that the objective function in the problem
(5) will monotonically decrease during the iteration until the
algorithm converges. Since the objective in problem (5) has
clearly lower bound 0, the algorithm will converge. When it
converges, we can see that Eq. (6) will always be satisfied, so
the algorithm will converge to a local optimum solution to the
problem (5) when p = 1.

⇤
In practice, we observed the algorithm is also converged

for 0 < p < 1. If the objective in problem (5) is changed toP
i (kXGikpSp

)m(m > 2) (the Di in step 1 is changed to
mp
2 (kXGikpSp

)m�1(XG2
iX

T )
p�2
2 accordingly), and/or the

constraint is changed to the one as in Eq.(4) (the Eqs. (11-12)
are changed accordingly), the convergence is also observed1.

3.2 Complexity Analysis
We suppose d < n in the following analysis. In step 1, we
need to compute Di|ki=1. Computing kXGikpSp

need SVD
of XGi, which takes O(nd2). Suppose the SVD of XGi is
XGi = U⌃V T , then (XG2

iX
T )

p�2
2 = U⌃p�2UT , which

1 Gi|ki=1 = 1
n is a trivial optimal solution to problem (4) because

of the following facts: problem (4) is convex, Alg. 1 will converge
to a local minimum, and the solution will be unchanged with this
trivial solution as initialization in Alg. 1.
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takes O(d3). So computing Di takes O(d2n) and computing
Di|ki=1 takes O(d2nk). Step 2 only needs to compute the di-
agonal elements of Ai, so step 2 takes O(d2nk). Computing
Gi|ki=1 in step 3 takes O(nk). In summary, the computa-
tional complexity of Algorithm 1 is O(d2nkt), where t is the
iteration number. In the experiments we found the algorithm
converges very fast, and always converges in 5-10 iterations.
According to the above analysis, the time consumption of Al-
gorithm 1 is linear w.r.t. the number of data. Therefore, the
algorithm can easily handle large scale data if the dimension-
ality of data is not too high.

4 Subspace Clustering without Passing
through Original Point

In the previous section, we assume that each subspace passes
through the origin. If a subspace does not pass through the
origin, the rank of the group will reduce one as long as the
subspace is shifted to pass through the origin, as can be seen
in Fig. 1. Therefore, the shifts can also be learned such that
the ranks of the groups are minimized. In this case, instead
of minimizing Eq. (2), we minimize the following objective
function:

kX

i=1

(rank(Xi � ui1
T ))2 (17)

where 1 denotes a column vector with all ones. Similar to the
previous section, minimizing Eq. (17) is equivalent to solving
the following problem:

min
ui,Gi|ki=1

kP
i=1

(rank((X � ui1T )Gi))2

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(18)

Similarly, the following problem for the subspace clustering
problem in this case is proposed to solve:

min
ui,Gi|ki=1

P
i
(
��(X � ui1T )Gi

��p
Sp
)2

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(19)

This problem can also be efficiently solved by iteration based
re-weighted algorithm. We define Xui = X � ui1T . Simi-
larly to Eq. (8), we need to solve the following problem:

min
ui,Gi|ki=1

P
i
Tr(GT

i X
T
ui
DiXuiGi)

s.t. Gi|ki=1 ✓ {0, 1}n⇥n,
kP

i=1
Gi = I

(20)

where
Di = p kXuiGikpSp

(XuiG
2
iX

T
ui
)

p�2
2 (21)

When fix ui|ki=1, the Gi|ki=1 can be solved as in Eqs. (11-12)
with Ai = XT

ui
DiXui .

When fix Gi|ki=1, the problem (20) becomes

min
ui

Tr(GT
i (X � ui1

T )TDi(X � ui1
T )Gi) (22)

The optimal solution to the problem (22) can be easily derived
as

ui =
1

1TG2
i1

XG2
i1

The algorithm to solve problem (19) is summarized in Algo-
rithm 2.

Algorithm 2 Algorithm to solve problem (19).

Initialize Gi|ki=1 such that the constraints in the problem
(19) are satisfied. Initialize ui|ki=1 = 0.
while not converge do

1. Calculate Xui |
k
i=1 = X � ui1T

2. Calculate Di|k1 = p kXuiGikpSp
(XuiG

2
iX

T
ui
)

p�2
2

3. Calculate Ai|ki=1 = XT
ui
DiXui

4. Update Gi|ki=1, where the c-th diagonal element gci
of Gi is updated by Eq. (12)
5. Update ui|ki=1 = 1

1TG2
i1
XG2

i1

end while

5 Experiments
5.1 Experimental Results on Synthetic Data
First, we test our algorithm on three challenge Synthetic
datasets, each of which comprises several groups distributed
on different lower dimensional subspaces but with 5% level
noises to deviate from the subspaces. These subspace inter-
sect each other, so it is a very difficult subspace clustering
problem.

We run our algorithm with ten different initializations and
select the results with the best objective values. The results
are shown in Fig. 2, which we can see that our algorithm
can correctly find the low-dimensional structure and find the
correct groups on these challenge datasets. The results indi-
cate that the proposed method can effectively solve the sub-
space clustering problem and has the power to find the low-
dimensional structure information hidden in data, which is
also the goal in Generalized Principal Component Analysis
(GPCA) [Vidal et al., 2005].

We also test our algorithm on a synthetic high-dimensional
dataset. In this dataset, we randomly generate 250 data
points with 50 dimensions lying in 5 different subspaces.
Each subspace has 50 data points, and the dimensions of the
5subspaces are 5, 10, 15, 20, 25, respectively. In the data, we
also add 5% level noises to deviate from the subspaces. The
nearest neighbor graph of the data based on Euclidean dis-
tance is shown in Fig. 3(a), and the result Idx0Idx of the
proposed method is shown in Fig. 3(a), where Idx is defined
in Section 2. This result also verify that the proposed method
is an effective subspace clustering method.

5.2 Experiments on Real World Data
Here we just evaluate Algorithm 2, and leave out the Algo-
rithm 1, because Algorithm 2 is the subspace clustering in
the case which has more wide application. We evaluate the
algorithm 2’s performance in handling two real-world prob-
lems: motion segmentation and human images’ clustering.
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rank(X)=2

(a)

rank(X)=1

(b)

Figure 1: When the six data points are shifted such that the subspace pass through the origin, then the rank of the data matrix
with these data points is reduced from 2 to 1.
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Figure 2: Results of the proposed subspace clustering method on three synthetic subspace segmentation problems.

Motion Segmentation in Hopkins 155 Dataset
We first test our model on the Hopkins 155 motion dataset.
This dataset consists of 155 sequences, which have about 39-
550 points tracked from 2 or 3 motions, separately. And in
these 155 datasets, there are 120 datasets having two motions
and 35 datasets having three motions. Our goal is to cluster
these points into groups according to their motions in each se-
quence. Each sequence is a dataset, so there are 155 datasets
with different properties on subspace’s number, data samples’
number. There are about 10 sequences that are grossly cor-
rupted, having high error levels, although most of the outliers
in the datasets have been removed manually.

We combine PCA and K-means methods to initialize our
Gi(1  i  k). We use the PCA to project the coordi-
nates in each sequence into the dimensions ranging from 5
to 20. Then we use K-means method to get our initialized
Gi(1  i  k). We compare the performance of our algo-
rithm with the best state-of-the-art motion segmentation al-
gorithms: Sparse Subspace Clustering (SSC) [Elhamifar and
Vidal, 2013], Subspace Segmentation via Quadratic Program-
ming (SSQP) [Wang et al., 2011], Robust Low-Rank Repre-
sentation (Robust LRR) [Liu et al., 2013], Groupwise Con-
strained Reconstruction (GCR) [Li et al., 2012], Groupwise
Constrained Reconstruction with Dirichlet Process (GCR-
DP) [Li et al., 2012]. The final result with the known best

Category Checkerboard Traffic Others All
No. of Seq. 78 31 11 120

Points 291 241 155 266
Frames 28 30 40 30

No. of Seq. 26 7 2 35
Points 437 332 122 398
Frames 28 31 31 29

Table 1: Hopkins 155 dataset description

results for each algorithm are reported in Table 2.
From the Table 2 we can observe that: Our proposed

method outperforms other state-of-art methods in all accuracy
and error’s measurement including mean accuracy, minimum
accuracy and standard deviation of error. The main reason
is that our method takes the Schatten p- norm into account,
which is the relaxation that better approximates the original
problem (3) than the trace norm approximation when p < 1.
Also, our method has considered the condition when the sub-
space does not pass through the origin to learn the shifts such
that the ranks of the groups are minimized.

Subspace Clustering on Real-World Image Datasets
In order to check our method’s suitability in the real human
images’ clustering condition, face datasets including JAFFE
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Figure 3: Left: The nearest neighbor graph of a synthetic high-dimensional dataset. Right: the result Idx0Idx of the proposed
method.

METHOD Mean Median Min Std.
SSC [Elhamifar and Vidal, 2013] 97.29 100 57.66 -

SSQP [Wang et al., 2011] 95.36 100 54.50 -
GCR-DP [Li et al., 2012] 97.67 100 55.32 -

GCR [Li et al., 2012] 96.08 99.70 58.33 -
Robust LRR [Liu et al., 2013] 98.29 - - 4.85

Our method 98.59 100 58.63 4.76

Table 2: Subspace clustering accuracy(%) and standard error(%) on the Hopkins 155 Dataset

METHOD JAFFE XM2VTS MSRA PALM
Robust LRR 95.31 58.56 71.84 80.75
Convex LRR 95.31 56.80 70.65 85.10

SSC 95.31 57.32 73.95 81.24
PCA 93.24 56.19 62.42 75.65
SSQP 96.71 61.27 54.20 78.20

Our method 96.71 61.27 93.11 85.75

Table 3: Subspace clustering accuracy(%) comparisons

[Lyons et al., 1998], MSRA [Liu et al., 2007], XM2VTS
[XM2, ] and another human palm image dataset called PALM
[Yan et al., 2007] are used.

We include Robust LRR [Liu et al., 2013], Convex LRR
[Liu et al., 2013], its very similar model SSQP [Wang et al.,
2011], SSC [Elhamifar and Vidal, 2013], and the classic Prin-
ciple Component Analysis (PCA) to be our comparatives in
the human images’ clustering.

Similar to the motion segmentation method, we also com-
bine PCA and K-means methods to initialize our Gi(1 
i  k) . We use the PCA to project the coordinates in each
dataset into the dimensions ranging from 10 to 50. Because
the dataset for MSRA, XM2VTS, and PALM are relatively
large, we first use PCA to project the original data samples to
a low dimension based on the PCA ratio equaling to 0.98 to
facilitate the whole progress. The best results for each meth-
ods can been seen on Table 3.

From Table 3 we can find that: our proposed method
performs better than other methods in four datasets, which
proves that our method is more suitable for the subspace clus-

tering problem than other proposed subspace clustering meth-
ods. Note that in the MSRA dataset, our method’s clustering
accuracy is 93.11 %, which is the best result so far to the
best of our knowledge. It is because the MSRA face samples
are more satisfied to our proposed subspace clustering model
than other 3 human image samples.

6 Conclusions
In this paper, a new subspace clustering model based on the
Schatten p-norm is proposed, and it is a better approxima-
tion to the rank minimization problem than the trace norm
approximation and others. According to the subspace model
we propose, an iteration based re-weighted method with both
effectiveness and efficiency is suggested to solve this model.
The convergence of our proposed algorithm is proved. What’s
more, we consider the condition when the subspace does not
pass through the origin to learn the shifts such that the ranks
of the groups are minimized. Both the Synthetic datasets and
Real world datasets demonstrate our method’s effectiveness
in dealing with subspace clustering problems.
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