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Abstract

Graph-based approaches have been successful in
unsupervised and semi-supervised learning. In
this paper, we focus on the real-world applications
where the same instance can be represented by mul-
tiple heterogeneous features. The key point of uti-
lizing the graph-based knowledge to deal with this
kind of data is to reasonably integrate the different
representations and obtain the most consistent man-
ifold with the real data distributions. In this paper,
we propose a novel framework via the reformula-
tion of the standard spectral learning model, which
can be used for multiview clustering and semi-
supervised tasks. Unlike other methods in the lit-
erature, the proposed methods can learn an optimal
weight for each graph automatically without in-
troducing an additive parameter as previous meth-
ods do. Furthermore, our objective under semi-
supervised learning is convex and the global opti-
mal result will be obtained. Extensive empirical re-
sults on different real-world data sets demonstrate
that the proposed methods achieve comparable per-
formance with the state-of-the-art approaches and
can be used more practically.

1

Graph-based learning provides an efficient approach for mod-
eling data in clustering and classification problems. Since it
works with a constructed graph, different measurements and
insights can be built up subsequently, such as the relations
between unlabeled data (clustering) or from labeled to unla-
beled data (semi-supervised classification). Practically, many
applications involve data obtained from different views, and
multiple graphs need to be built. It is often assumed that each
individual graph captures the partial information but they all
admit the same underlying clustering of the data. Thus, the
main challenge of this problem is how to effectively integrate
these graphs in specific tasks.

Among the numerous clustering methods, the use of man-
ifold information in spectral clustering method has achieved
the state-of-the-art performance. Many works have been sum-

Introduction

1881

marized in [Von Luxburg, 2007], such as ratio cut [Hagen
and Kahng, 1992], normalized cut [Shi and Malik, 2000].
Some other works clustered data in high dimension [Nie et
al., 2011] or construct the data similarity matrix by adap-
tively selecting more reliable neighbors [Nie et al., 2014].
When accessing to multi-view data, some researches based
on multiple graph learning have been developed. [Chaud-
huri et al., 2009] projected the data into a lower dimensional
subspace and clustered multiview data via canonical correla-
tion analysis. [Niu ez al., 2010] learned non-redundant sub-
spaces that provide multiple clustering solutions to the orig-
inal problem. To keep the consistency to the same cluster-
ing across all of graphs, [Kumar er al., 2011] appealed to
a co-regularization framework to acquire the final cluster-
ing hypotheses. A similar approach integrating heterogenous
image features with graphs was proposed for image cluster-
ing in [Cai et al., 2011]. This kind of methods fail to dif-
fer the reliability of different views and are prone to be ru-
ined by a weak one. Thus, some methods [Xia ef al., 2010;
Li et al., 2015] adaptively learn a weight for each graph dur-
ing the optimization.

On the other hand, the graph-based learning can be mod-
eled as a transductive semi-supervised classification method,
Given a data set which is partially labeled, the unlabeled ones
can be labeled according to learning the pairwise similarity.
Hence, it is also called label propagation. One of the typi-
cal representative works was proposed by [Zhu et al., 20031,
which explicitly compute the label vectors for unlabeled sam-
ples. By actively selecting training set, [Nie et al., 2012]
presented a initialization independent method. For multiple
graph learning in semi-supervised classifications, many appli-
cations in computer vision, such as video annotation [Wang
et al., 2009], cartoon synthesis [Yu er al., 2012] and im-
age classification [Cai et al., 2013], have achieved good pre-
dictive performance. In view of that many approaches can
only give nonzero weights to every graph, [Karasuyama and
Mamitsuka, 2013] proposed another multiple graph learning
method, where the weights can be sparse.

Although all above unsupervised clustering methods and
semi-supervised classification techniques have achieved good
performance, some of them ignore the diversity of graphs and
others learn a weight for each graph with an additional pa-



rameter. In this paper, following the assumption that all the
graphs share the same underlying clustering but each indi-
vidual contains the incomplete information to learn the real
manifold, we propose a novel Auto-weighted Multiple Graph
Learning (AMGL) framework to learn a set of weights au-
tomatically for all the graphs and this process does not need
any parameter. This new AMGL framework can be applied
both to multiview clustering and semi-supervised classifica-
tion tasks. What’s more, AMGL models a convex problem
when it is applied in semi-supervised learning. We design an
efficient algorithm to optimize the proposed problem. The
experimental results on different data sets demonstrate that
our methods have comparable results with the state-of-the-art
methods.

2 Problem Formulation

In this section, we first revisit the basic form of graph-based
spectral clustering and semi-supervised learning, and then
summarize the traditional multiple graph learning methods
into two general forms. By analyzing the deficiencies of
them, we finally propose a new framework.

2.1 Background and Motivation

Let X = [zq,...,2,]" € R™ % denote data matrix, where
n is the number of data points and d is the dimension of
feature. Given the whole data set X, the adjacent matrix
W = {w;;} € R"*" Vi, j € 1,...,n and the corresponding
degree matrix D (d;; = Z;;l w;;) can be constructed. We
define the cluster indicator matrix F' = [f7, ..., fn]T € Rm>e,

where c is the number of classes. Therefore, the classical Ra-
tio Cut clustering can be written as

in Tr(FTLF 1
nin T ( ) (1
and the Normalized Cut can be represented by
min Tr (F'LF), 2)

FTDF=I

where L = D — W is a so-called Laplacian matrix. Both
Eq. (1) and Eq. (2) can be solved by eigenvalues calculat-
ing. When only [ (I < n) samples are labeled in the raw data
(Without loss of generality, we rearrange all the samples and
let the front [ samples be labeled), it becomes a transductive
semi-supervised learning problem, which can be written as
i Tr (F'LF 3
Vs 2ed ( ) ©)
where y; is the given indicator vector for the ¢-th sample. If
1-th sample belongs to j-th class, we have y;; = 1 and other
elements in y; are all Os. We split Laplacian matrix L into four
Ly L
Lul Luu ’
Let F' = [F}; F,] and the constraint in problem (3) can be

written as F; = Y; where Y, = [y1, ...,yl]T. According to
[Zhu et al., 2003], the solution of problem (3) can be directly
given as

blocks after the [-th row and column: L = [

Fu = _LuuLuli/l- (4)
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For simplicity, we use C to denote different constraints in Eq.

(1), Eq. (2) and Eq. (3) and obtain a unified form:
inTr (FTLF). 5

winTr (FULE) ®

For multi-view data, let m be the number of views and
X@ ., X(™) pe the data matrix of each view, where X (V) €

R™<4" fory = 1,...,m and d(*) is the feature dimension of
v-th view. For each single view, a normalized Laplacian ma-
trix is constructed, so we have L), ... L™ ¢ R»*" A
simple and direct way to use these graphs is to stack up to a
new one and put it into the standard spectral analysis model.
However, this strategy neglects the importance of different
graphs and may suffer when an unreliable graph is added to.
A more reasonable approach is to linearly combine these dif-
ferent graphs with suitable weights (") (v = 1,...,m), and
keep the smooth of the weights distribution by resorting to an
extra parameter 7. We constrain the indicator matrix F' to be
a unified one across all the views and set aside the normaliza-
tion to different graphs. Thus, this thought can be modeled as
the following problem

- 8!
min (,u(”)) Tr (FTL(”)F)7
FeC,u ot

(6)

m

s.t. Zu(”) =1, >0,
v=1

which is introduced in [Xia et al., 2010; Cai et al., 2013; Li
et al., 2015]. A similar form applied in [Karasuyama and
Mamitsuka, 2013] is

m

i (o)
fain, D W

s.t. Zu(”) =1, >0,
v=1

(FTLOF) 4 |l
)

where = [p®, ..., u(™]. Tn Eq. (6), 7 is set to a value
greater than 1, while in Eq. (7), v is set to a non-negative
value. As shown in our experiments (see Section 5.2), for Eq.
(6) and Eq. (7), the choice of  is crucial to the final perfor-
mance and its optimal value changes for different data sets.
Thus, our goal is to remove such a parameter while preserv-
ing the good performance.

2.2 Auto-weighted Multiple Graph Learning

In this paper, we propose a new general framework for multi-
ple graph learning with the following form

\/Tr (FTLOF),
v=1

where no weight factors are explicitly defined. The Lagrange
function of problem (8) can be written as

min
FeC

®)

m

> \/Tr (FTLMF) +G (A F),
v=1

©))



where A is the Lagrange multiplier, G(A, F) is the formalized
term derived from the constraints. Taking the derivative of
Eq. (9) w.r.t F and setting the derivative to zero, we have

oTr (FTLWF
o) r( )+8g(A,F)

= 1
> = o5 0, (10)
where

Note that in Eq. (11), o(*) is dependent on the target variable
F and Eq. (10) can not be directly solved. But if a(*) is set
to be stationary, Eq. (10) can be considered as the solution to
the following problem

min a1y (12)
Fec v=1

(FTLOF),

which looks simpler to be solved. Supposing that F' can be
calculated from Eq. (12), this F' will be continuously used to
update (") according to Eq. (11), which inspires us to take
an alternating optimization strategy to compute F and (")
iteratively. We summarize this process in Alg. 1. Since Alg.
2 and Alg. 3 have the same initialization with Alg. 1, we will
not show it any more.

Algorithm 1 The general algorithm of AMGL

Input: Data for m views {X .. X1 and X(*) ¢
R™*dv number of classes ¢
Initialize the weight factor () = % for each view;

Compute Laplacian matrix L(*) for each view; Calculate
I = Z;"Zl a@ @)
repeat
1. Compute F' by solving Eq. (12)
2. Update o*) by Eq. (11)
until converge
Subsequent operations to indicator matrix £’
Output: The label of each unlabeled data point

So far, based on above analysis, some significant conclu-
sions can be drawn:

1. Supposing that this alternating optimization converges
(it will be proved in Section 4.1) and F denotes the con-
verged value of F', according to Eq. (10) and Eq .(11),
Fis at least a local optimal solution to Eq. (8).

Let &) be the value of o(¥) after optimization, accord-
ing to Eq. (12), it is exactly the linear combination of
different graphs using the learned weights a(*). Com-
paring with Eq. (6) and Eq. (7), Eq. (12) is the real
problem we want to solve and this is the core why we
consider solving such a problem like Eq. (8).

Unlike Eq.(5) and Eq. (6), which learn the weights de-
pending on an extra parameter, the proposed framework
has no parameter to handle and naturally learns the view
weights and the target indicator matrix simultaneously.
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4. If view v is good, then T (F7L(") F") should be small,

and thus the learned weight o(?) for view v is large ac-
cording to Eq.(11). Accordingly, a bad view will be as-
signed a small weight. That is to say, our method op-
timizes the weights meaningfully and can obtain better
result than the classical combination approach which as-
signs equal weight to all the views.

3 AMGL for Clustering and Semi-supervised

Classification

For simplicity, we take the unnormalized Laplacian matrix
in the following statement. Seeing that AMGL conducts a
two-variable alternating optimization process and the main
steps have been given in Alg. 1, we only show the essential
analyses.

3.1 AMGL for Clustering
In spectral clustering, it is known that the indicator F' must
satisfy the following constraint

FTF=1. (13)

Substituting this constraint function in Eq. (8), we obtain the
following objective for multi-view clustering:

min Z Tr (FTLOWF). (14)
=1

FTF=I
v=

Based on Alg. 1, the problem (14) can be solved by an itera-
tive algorithm as described in Alg. 2.

Algorithm 2 The algorithm of AMGL for clustering

Input: Data for m views {X®1) .. X(™} and X ¢
R™*dv number of classes ¢
repeat
1. Compute F' by using Eq. (12) with calculating the 2
to ¢ + 1 smallest eigenvalues of L = > | a L),
2. Update o(”) by Eq. (11)
until converge
Treat each row of F' as a new representation of each data
point and compute the clustering labels by using k-means
algorithm.
Output: Cluster label of each data point

3.2 AMGL for Semi-supervised Classification

For semi-supervised classification, suppose there are [(1 <
I < n) data points labeled, we rearrange them as before and
have the following constraints

fizyi,Vi:LQ,...,l. (15)

Taking this constraint into Eq. (8), we can formulate the semi-
supervised classification problem as

m}nZl Tr (FTLOF) st f; =y;,Vi=1,2,...1,
- (16)



and our goal is to obtain the f; (i = + 1, ..., n) for unlabeled
data. Following the optimization in Alg. 1, when we fix o and
update F', Eq. (16) can be written as

min Ty (FTEF) st fi =y, Yi=1,2,.,0, (17

where L = S a L) Referring to Eq. (4), we can
directly give the solution to Eq. (17) as

Fu = _Zuuzulyza (18)

where F,,, L., L,; and Y] are consistent with Eq. (4).

Different from clustering, we resort to the following equa-
tion to get the label vector y; for the unlabeled data point (we
assign 1 to the j-th element and O to others):

argmax Fy;,Vi=1+1,...,nVj=1,..,c (19)
J

The complete algorithm can be summarized in Alg. 3.

Algorithm 3 The algorithm of AMGL for semi-supervised
classification
Input: Data for m views {X .. X1 and X(®) ¢
R™*dv_the labels for the [ labeled data Y;
repeat
1. Calculate F,, by using Eq. (18)
2. Let F = [Y;; F,,] and update o(*) by Eq. (11)
until converge
Assign the single class label to unlabeled data by Eq. (19)
Output: The predicted labels for the unlabeled data

4 Theoretical Analysis

In this section, we first prove the convergence of the Alg. 1,
which naturally engages for the convergence Alg. 2 and Alg.
3. Furthermore, we present in semi-supervised classification,
the problem (16) is convex and the global optimal solution
will be obtained.

4.1 Convergence Analysis

To prove the convergence of the Alg. 1, we need the following
lemma introduced in [Nie e al., 2010]:

Lemma 1 For any positive number a and b, the following
inequality holds:

b— —. (20)

Theorem 1 Each updated F in Alg. 1 will monotonically de-
cease the objective of the problem (8) in each iteration, which
makes the solution converge to a local optimum of the prob-
lem (8). B

Proof: We use F' to denote the updated F’ in each iteration.
According to the optimization to F' in Alg. 1, we know that F’
makes the objective of Eq. (12) have the smaller value than F'.

Combining o(*) = 1/(2, /Tr (FTL(”)F)), we can derive:

m Tr (ﬁTL@)ﬁ) Ty (FTLOF)

o= 12w/T7’ (FTLOF v=124/Tr (FTL( ”)F

2y

According to Lemma 1, we have

o n ()
Tr (FTLOF) -
1 r( ) ;wT (FTLU)F
m T () @2)
o ) -3 Tr (FTL

1 v=1 2\/T FTL U)F

Summing Eq. (21) and Eq. (22) in the two sides, we arrive at

Z JTr (ﬁTL@)ﬁ) < i,/Tr (FTLOF).  (23)
v=1 v=1

Thus the alternating optimization will monotonically de-
crease the objective of the problem (8) in each iteration until it
converges. In the convergence, the equality in Eq. (23) holds,
thus F' will satisfy Eq. (10), the KKT condition of problem
(8). Therefore, the Alg. 1 will converge to a local optimum
of the problem (8).

NE

2
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v

4.2 Convex of Problem (16)

To prove the convex of problem (16), we introduce the fol-
lowing lemma.

Lemma 2 For any arbitrary convex function h (x) and linear
Sunction g (), the compound function h (g (z)) is convex.
Proof: For any real number « and 3, because ¢ () is a linear
function and h (z) is convex, we have

h(g(az + By)) = h(ag(z) + Bg (y)) < ah(g(x)) + Bh(g(y)). 24

Obviously, the compound function & (g ()) is convex.
For indicator matrix F € R"*°, we define f7 =

[flla ey fnh f]_g, ey fn27 ey f]_c, . fnc] It is easily verified
that the following equation holds:

Tr (FTL(” ) fTA@ (25)

where A(Y) € R™*"¢ is a block diagonal matrix and each
non-zero block equals to L(*). Obviously, A(*) is positive
semi-define since L(*) is positive semi-define. Therefore,
there must exist a matrix B(®) € Rrexp'” (p™) is the rank of

L) ) that satisfies
AW = B (BNT, (26)

Taking Eq. (26) into the root form of the left side in Eq. (25),
we can obtain

JTr(FTLOF) =/ fTBO)(BO)T f = H(B<”>)TfH2 @7

Because ||.||, is a convex and (B(”))Tf is a linear function
w.I.t z, it can be concluded that the objective of Eq. (16)
is convex according to Lemma 2. Since the constraints in
Eq. (16) are linear functions, we know that problem (16) is
convex. Combining Theorem 1 we conclude that Alg. 3 will
obtain the global optimal solution to the problem (16).
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5 Experiment

In this paper, a new graph construction approach introduced
in [Nie er al., 2016] is adopted in our methods. The advan-
tage of this approach is that it has no parameters if we set the
number of neighbors.We evaluate the performance of the pro-
posed framework AMGL for clustering and semi-supervised
classification on the following four data sets:

MSRC-v1 data set [Winn and Jojic, 2005] contains 240
images and can be divided into 8 classes. Following [Lee
and Grauman, 20091, we select 7 classes composed of tree,
building, airplane, cow, face,car, bicycle and each class has
30 images. To distinguish all of scenes, we extract five visual
features from each image: 24 Color Moment, 576 Histogram
of Oriented Gradient, 512 GIST, 256 Local Binary Pattern
and 254 Centrist features.

Handwritten numerals data set [Asuncion and Newman,
20071 is composed of 2,000 data points for 0 to 9 ten digit
classes and each class has 200 data points. Six published fea-
tures can be used for classification: 76 Fourier coefficients of
the character shapes (FOU), 216 profile correlations (FAC),
64 Karhunen-love coefficients (KAR), 240 pixel averages in
2 x 3 windows (PIX), 47 Zernike moment (ZER) and mor-
phological (MOR) features.

CiteSeer data set [Asuncion and Newman, 2007] consists
of 3,312 documents which are about scientific publications.
These documents can be further classified into 6 classes:
Agents, Al, DB, IR, ML and HCI. For our multi-view learn-
ing classifications, a 3,703-dimensional vector representing
whether the key words are included for the text view, and
the other 3279-dimensional vector that records the citing re-
lations between every two documents are built up.

NUS-WIDE data set [Chua et al., 2009] contains 269,648
images of 81 concepts. In our experiments, 12 categories
about animal concept are selected. They are cat, cow, dog,
elk, hawk, horse, lion, squirrel, tiger, whales, wolf, and ze-
bra. Each image can be represented by six type low-level fea-
tures: 64 color histogram, 144 color correlogram, 73 edge di-
rection histogram, 128 wavelet texture, 225 block-wise color
moment and 500 bag of words based on SIFT descriptions.

5.1 Performance Evaluation

Although the proposed approach has no free parameter, we
allow the compared methods to tune the parameter ~y (if has)
with the strategy that v for the type of Eq. (5) is searched
in logarithm form (log;,y from 0.1 to 2 with step size 0.2)
while it is a little different (log; 7y from -5 to 5 with step size
1) for the type of Eq. (6). In addition, if there are other pa-
rameters in compared methods, they will be set as the optimal
values. We construct each graph by selecting 5-nearest neigh-
bors among raw data. Both an unnormalized and normalized
Laplacian matrix will be computed for each method and the
better result will be employed in the final performance com-
parison. All the experiments are repeated for 20 times and the
average results are reported. We mark the best result in bold
face.

Clustering Evaluation
Besides conducting each single view for Spectral Clustering
(SC) [Ng et al., 2002], the proposed method is compared

1885

Table 1: Clustering purity comparison on all data sets.(%)

Dataset | MSRC-vl | HW | CiteSeer | NUS
SC(1) 39.52 58.95 18.75 16.29
SC(2) 58.10 83.10 21.75 19.83
SC(3) 69.05 72.15 - 17.54
SC4) 48.10 72.35 - 20.38
SC(5) 56.19 55.25 - 17.11
SC(6) - 53.25 - 18.50
CoregSC 69.04 82.23 20.38 24.20
MMSC 77.14 85.35 22.50 26.67
MVSC 81.45 86.05 22.56 28.03
AMGL 79.09 85.92 21.92 25.08

Table 2: Clustering NMI comparison on all data sets.

Dataset | MSRC-vl HW CiteSeer | NUS

SC(1) 0.2850 0.5758 | 0.0206 | 0.0604
SC(2) 0.4763 0.8187 | 0.0589 | 0.0840
SC(@3) 0.6383 0.7190 - 0.0573
SC4) 0.3982 0.7213 - 0.0876
SC(5) 0.4692 0.5384 - 0.0681
SC(6) - 0.5286 - 0.0808
CoregSC 0.6754 0.8068 | 0.0540 | 0.1105
MMSC 0.7357 0.8460 | 0.0600 | 0.1315
MVSC 0.7197 0.8585 | 0.0558 | 0.1600
AMGL 0.7432 0.8515 | 0.0469 | 0.1229

with some state-of-the-art approaches: Co-regularized Spec-
tral Clustering(CoregSC) [Kumar et al., 2011], Multi-Modal
Spectral Clustering (MMSC) [Cai et al., 2011] and Multi-
view Spectral Clustering (MVSC) [Li et al., 2015]. For ex-
perimental results, two metrics mean purity and normalized
mutual information (NMI) are employed.

Table 1 and Table 2 show the clustering purity and NMI
respectively. In general, almost every multiple graph-based
clustering method obtains the better result than single graph
learning result. Furthermore, AMGL constantly outperforms
the best single graph learning result and achieves a compa-
rable or even superior result to other methods. As we know,
AMGL has no extra parameter to handle and automatically
learns the weight for each graph. Thus, comparing with the
previous works, our method is convenient to use and shows
strong practicability in multi-view clustering.

Semi-supervised Classification

On different proportions of labeled data (denoted with 7),
we investigate the single graph leaning of Label Propagation
(LP) [Zhu et al., 2003] and compare our method with some
popular multiple graph leaning methods for semi-supervised
classification: Sparse Multiple Graph Integration (SMGI)
[Karasuyama and Mamitsuka, 2013], and Adaptive Multi-
Model Semi-Supervised classification (AMMSS) [Cai et al.,
2013].

Table 3 and Table 4 show the semi-supervised classifica-
tion performance on four data sets. In general, almost all of
the multiple graph learning methods outperform the best sin-
gle graph learning of label propagation. Comparing with the
state-of-the-art approaches, our method keeps a close result



Table 3: Classification accuracy comparison on three data sets.

Data set MSRC-v1(%) Handwritten numerals(%) NUS-WIDE(%)
T 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
LP(1) 39.15 | 4524 | 49.66 | 48.41 | 81.83 | 82.59 | 83.37 | 83.52 || 19.77 | 20.89 | 22.14 | 22.36
LP(2) 69.84 | 80.95 | 81.75 | 82.14 | 92.79 | 93.75 | 94.07 | 94.57 || 24.72 | 24.53 | 26.13 | 26.39
LP(3) 77.78 | 85.12 | 88.10 | 89.12 || 94.39 | 96.72 | 97.03 | 97.39 || 17.13 | 17.14 | 16.31 | 17.64
LP(4) 60.32 | 69.05 | 72.22 | 74.15 || 93.78 | 96.48 | 97.61 | 97.63 || 21.99 | 24.48 | 23.93 | 16.39
LP(5) 67.72 | 72.79 | 73.81 | 75.40 || 82.98 | 83.05 | 82.78 | 82.52 || 22.87 | 27.71 | 27.44 | 28.75
LP(6) - - - - 41.12 | 41.51 | 43.05 | 44.27 || 24.44 | 25.26 | 26.73 | 27.57
AMMSS || 83.41 | 88.28 | 89.35 | 91.67 || 96.78 | 97.13 | 97.21 | 97.83 | 30.56 | 35.84 | 39.21 | 40.89
SMGI 83.02 | 89.88 | 88.84 | 90.48 || 94.07 | 96.75 | 97.75 | 98.33 || 31.03 | 35.24 | 38.09 | 40.60
AMGL 82.46 | 87.50 | 89.90 | 91.47 || 94.78 | 96.18 | 97.37 | 97.75 || 28.93 | 33.59 | 36.43 | 38.28
Table 4: Classification accuracy comparison on CiteSeer.(%) = o 2
T 0.1 0.2 0.3 0.4 o7 Y
LP(1) 27.50 | 34.38 | 39.88 | 44.72 a0 s
LP(2) 35.09 | 40.94 | 46.31 | 46.39 ' e e
AMMSS | 38.42 | 45.78 | 51.22 | 54.37 . o e ’
SMGI 37.24 | 44.54 | 49.88 | 53.26 o s
AMGL 39.93 | 46.86 | 50.35 | 54.10 P G e e e g
(a) MSRC-v1 (b) MSRC-v1
= o . ] :
£ & 2 . S U e SN
085 § K4 e gere 010 02 ": \"o‘" * "0,“,'
o8l Lo 024 - AMMSS 4= smal ¢
o 02 —— AMGL 0.05| — AMGL

0 02 04 06 08 1 112 14 18 18 2

log, ;1

(a) MSRC-v1

12 14 16 18 2

(b) NUS-WIDE

Figure 1: Clustering result of the proposed method comparing
with MVSC on MSRC-v1 and NUS-WIDE data set.

to the best performance, such as in Handwritten numerals and
NUS-WIDE data sets, and sometimes even achieves the best
performance, especially in CiteSeer data set.

5.2 Why AMGL

In this part, we further exploit the property of the proposed
methods. According to the statement in Section 2.1, Eq.
(7) is often used to model a semi-supervised problem [Kara-
suyama and Mamitsuka, 2013] while the type of Eq. (6)
can be applied both in clustering [Li et al., 2015] and semi-
supervised classification [Cai er al., 2013]. Thus, we com-
pare our method with MVSC in clustering, with AMMSS and
SMGI under semi-supervised classification. For simplicity,
we analyze the experimental results on MSRC-v1 and NUS-
WIDE data sets.

From Figure 1, it is observed that for the optimal -, mean
purity and NMI of MVSC are better than our method, but its
performance drops down dramatically with the change of ~.
In addition, comparing Figure 1(a) with Figure 1(b), we note
that MVSC obtains the best performance at the different ~y
in two data sets. For MSRC-v1, it seems a larger ~y is more
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(c) NUS-WIDE
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log, v

(d) NUS-WIDE

Figure 2: Classification accuracy of the proposed method
comparing with AMMSS and SMGI on MSRC-v1 and NUS-
WIDE data set respectively, where 7 = 0.2.

suitable, while for NUS-WIDE, a smaller + is preferred. In
semi-supervised classification, where 7 = 0.2, from Figure
2 the similar conclusions can be come to. For AMMSS and
SMGI, they enjoy the good performance at the optimal v but
are prone to get a terrible result when ~ changes. Further-
more, from a data set to another one, the parameter y needs
to be tuned anew, which makes attempting to apply a fixed ~y
throughout all the applications is not available in practice.

Particularly, in clustering and semi-supervised learning,
there are few labeled data and thus the traditional supervised
hyperparameter tuning techniques such as cross validation
can not be used. Therefore, a method, such like the proposed
approach, without too much accuracy loss but having no free
parameter, is interesting and acceptable.

6 Conclusion

In this paper, we propose a novel parameter-free auto-
weighted multiple graph learning framework, named AMGL.
This model can be used both for multiview clustering and



semi-supervised classification. The proposed methods have
no parameter to deal with and can naturally assign suitable
weights to all of the graphs. The relative proof guarantees that
the proposed framework can converge to a local optimal solu-
tion. Particularly, when it is applied to semi-supervised clas-
sification, we find that the corresponding problem becomes
convex and the global optimal solution will be obtained after
optimization. Experimental results on four data sets show the
proposed methods have the comparable or even better accu-
racy than the state-of-the-art methods.
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