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Abstract

Recommender systems rely on techniques of pre-
dicting the ratings that users would give to yet un-
consumed items. Probabilistic matrix factorization
(PMF) is a standard technique for such prediction
and makes a prediction on the basis of an under-
lying probabilistic generative model of the behav-
ior of users. We investigate a new model of users’
consumption and rating, where a user tends to con-
sume an item that emphasizes those features that
the user seeks to enjoy, and the ratings of the users
are more strongly affected by those features than
others. We incorporate this new user model into
PMF and show that the resulting method, Gated
PMF (GPMF), improves the predictive accuracy
by several percent on standard datasets. GPMF is
widely applicable, as it is trained only with the rat-
ings given by users and does not rely on any auxil-
iary data.

1 Introduction

Providing effective recommendations is critical in online
stores, social media, and other large systems where users can-
not easily find what they want (products, friends, or other
items). Many recommender systems ask their users to rate
the items to improve the quality of future recommendation.
Here, the ratings provided by users are used to predict the
ratings that (those or other) users would give to yet unrated
items. Improving the quality of such prediction (and then rec-
ommendation) has an immediate impact on user satisfaction
and the revenue of service providers.

Probabilistic matrix factorization (PMF) [Mnih and
Salakhutdinov, 2007] is a widely used technique of predicting
such ratings and has been particularly influential in the liter-
ature. PMF is based on a generative model where the rating
given by a user on an item follows a distribution that depends
on the latent preferences of the user and the latent features
of the item. Here, a user tends to give high ratings on those
items whose features match the preferences of the user.

The key information that has been used to improve the
quality of prediction made by PMF and other approaches is
the dependency between which items a user rates and what
ratings the user gives. For example, users who have rated
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common items (e.g., watched common movies) tend to pro-
vide ratings that are similar to each other [Mnih and Salakhut-
dinov, 2007].

What has been ignored in the prior work is the particu-
lar dependency between why a user consumes an item and
how that affects the user’s rating. This paper investigates
our own hypothesis, which is motivated by observations
in the literature of economics [Davenport and Beck, 2001;
Schoormans and Robben, 1997], about how a user consumes
and rates items. A user looks for an item that has the particu-
lar features that the user wants to enjoy and tends to consume
those items that emphasize such features (e.g., by printing
those features on their packages). When the user rates the
consumed item, the rating is more strongly affected by the
quality of those features that are emphasized by the item and
that have caught the attention of the user. For example, a user
might choose to watch a movie simply because it has been
advertised to be funny. We expect that this user’s rating on
this movie will be strongly affected, either negatively or pos-
itively, by whether the movie is funny in the way that the user
has expected.

Here, we propose Gated PMF (GPMF), which extends
PMF to take into account the dependency between why a user
consumes an item and how that affects the rating. Similar
to PMF, GPMF is based on a probabilistic generative model,
which we refer to as the consumption-rating model (CRM).
In the CRM, a user consumes an item with some probability
that depends on what features the user seeks (i.e., attention of
the user) and what features the item emphasizes (i.e., attrac-
tion of the item). The attention and attraction then modify the
distribution of the user’s rating, which would otherwise de-
pend solely on the user’s preferences and the item’s features.
More specifically, the attention and attraction select some of
the dimensions of the preferences and features so that the se-
lected dimensions have more impact on the rating than others.
GPMF and the CRM, motivated by our own hypothesis, con-
stitute the first contribution of this paper.

We then show the effectiveness of GPMF through numer-
ical experiments with datasets from the real world. Specif-
ically, we found that GPMF improves the predictive accu-
racy upon PMF by several percent depending on the settings.
These experimental results supporting our hypothesis consti-
tute our second contribution.

After we discuss related work, we introduce GPMF



Specifically, we show how to learn the parameters of the
CRM and discuss how GPMF implements the ideas from our
hypothesis. We then show the results of numerical experi-
ments.

2 Gated Probabilistic Matrix Factorization

We present GPMF in this section. After we give a formal def-
inition of the problem we deal with, we propose CRM, upon
which GPMF is based. We then construct the GPMF with the
CRM. After that, we discuss how the GPMF implements the
ideas in our hypothesis.

2.1 Problem Definition

We study the problem of predicting the values of users’ rat-
ings on items. Users have consumed and rated some of the
items, and we assume that we can observe and know those
ratings. We then seek to predict the users’ ratings on items
that have not yet been rated. Let N be the number of users
and M be the number of items. A rating is a real value in
[-1,1].

Let R € [-1,1]V*M be a matrix, which we refer to as
the observed rating matrix. The (i, j)-th element of R de-
notes the observed rating that the i-th user has given to the
7-th item. If the item has not been rated by the user, the ob-
served rating is undefined. Let C € {0,1}V* be an in-
dicator matrix whose (¢, j)-element, ¢;;, is 1 if the i-th user
has consumed (and rated) the j-th item (i.e., r;; is defined)
and 0 otherwise. We refer to C as the observed consumption
matrix.

We consider a stochastic generative model for users to con-
sume and rate items. Let R* be a random matrix of size
N x M, which we refer to as the real rating matrix. Its
(i, j)-element, r;;» 1s a random variable, having the support
on [—1, 1], that denotes the rating that the i-th user gives to
the j-th item given that the user consumes the item. Let C*
be a random matrix of size N x M, which we refer to as the
real consumption matrix. Its (i, j)-element, ¢;j, is a random
variable, having the support on {0, 1}, that denotes whether
the j-th item is consumed by the i-th user (¢;; = 1) or not
(cij = 0). Here, R is a sample from R*, and C is from C*.

Our goal is to give an estimated rating matrix, R, in such
a way that its (4, j)-element comes close to the rating that the
i-th user gives to the j-th item. The quality of R is evaluated
on the basis of Rycs¢ and Ciyegt, a realized rating matrix and
a realized consumption matrix, that will be sampled from R*
and C~*, respectively, after estimating R. Specifically, we
seek to minimize the following:

B o [ Cuono (R-Re) [ 1] )

where || - || denotes the Frobenius norm of a matrix, and the
expectation is with respect to the distributions of R* and C*,
which are unknown to us.

2.2 The Consumption-Rating Model

Here we describe the generative model behind GPMF: the
consumption-rating model (CRM). CRM naturally extends

the generative model behind PMF by explicitly modeling the
phenomenon that a user consumes an item before he rates it.

The rating model of PMF [Mnih and Salakhutdinov, 2007]
is a probabilistic model that extends the singular value de-
composition (SVD) to take into account missing values. Let
L be the dimension of the feature space. The rating model
of PMF, shown in Figure 1(a) as a graphical model, models
the observed rating * with an inner product of two vectors, a
user preference u; € R and an item feature v; € R%:

p(rij = rijlug, vy, 07) = N(rijlufv;, o7), (2)

where 02 € R is a variance of r* (02 € RT denotes a vari-
ance in this paper) and N(+|-) is a probability density func-
tion (PDF) of a normal distribution. We denote two matrices
containing all the user preferences and the item features, re-
spectively, with U = (uy,...,uy) and V = (vy,...,vy).
For brevity, we omit random variables in PDFs when those
random variables are clear from the context. For example, we
will write p(r;;) to mean p(r; = 7;;). The rating model of
PMF models the likelihood of U and V by ignoring missing
values and assumes that each element r}; of R* is condition-

ally independent of each other given U, V, and 03. That is,

N M
p(R|C,U,V,07) = ]___[ H [p(rijlui, v, 02)] ™ . (3)
i=1 j=1

We now describe our CRM, whose graphical model is
shown in Figure 1(b). The key elements of the CRM are
the attention of a user and the attraction of an item, which
are respectively denoted by L-dimensional vectors g; and h;.
Namely, g; denotes what features of items a user seeks to en-
joy and h; denotes what features an item emphasizes.

CRM models ¢}; with a Bernoulli distribution whose mean
is an inner product of the two vectors:

p(cijlgi hy) = Bleij|gl hy), 4)

where B(-|q) = ¢*(1 — ¢)'* forz € {0,1} and 0 < ¢ < 1.
The elements of g; and h; independently follow Beta distri-
butions:

L

p(gilag, by) = H Beta(gik|ag, by), (5)
k=1
L

p(hylan, bp) = [ Beta(hjklan, bn), (6)
k=1

where Beta(qla,b) = ¢*(1 — ¢)*/Z(a + 1,b+ 1) for q €
(0,1), @ > 0, and b > 0, and Z denotes the Beta function.
We denote two matrices containing all the attention and the
attraction, respectively with G = (g1,...,gn) and H =
(hy,..., hy).

In our rating model, the rating value follows normal dis-
tribution whose mean is a “gated” inner product of the user
preference u; and the item feature v;. By “gated” we mean
that the vectors are weighted by a diagonal matrix that de-
pends on the consumption model. That is, the PDF of the
rating value is given by

p(rijlwi, vj, g, hy,02) = N (rij|[ulTyvi,02) . (7)
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Figure 1: The graphical models of each probabilistic model of PMF and GPMF. Gray circles and white circles indicate observed

variables and latent variables, respectively. Symbols without circles indicate constants.

Arrows between symbols indicate

probabilistic dependency (e.g., X generates Y). Rectangle with suffixes indicates a block, which consists of multiple elements.

where
) giihij 0
L, = 8
7 glh ®)
0 grihr;
For k € {1,..., L}, the element gy;hy; takes a large value

when both attention and attraction have large values. The co-
efficient 1/g] h; guarantees that the trace of T';; is 1. Hence,
I';; determines the relative importance of each axis in the vec-
tor space for the i-th user and the j-th item. The distribution
of r;; is equivalent to the rating model of PMFif I';; = L~'I
because the mean is proportional to u; v;. The priors of the
parameters u; and v; follow zero-mean normal distribution
and their PDFs are denoted by

N (u;]0,021), p(vjlo2) = N(v;]0,02I). (9)

Similar to the rating model of PMF, we assume that ele-
ments of C are conditionally independent of each other given
G and H and that elements of R are conditionally indepen-

dent of each other given U and V. The PDFs of C and R are
then denoted as follows:

p(uz‘|03>

N M
p(CIG, H) =[] [] plciilei, hy) (10)
1=17=1
p(R|C,U,V,G, H,02)
*HHP T1_7|u7vvj7g77 5 g)qja 11

i=17=1
where the right-hand sides are given by Eqgs. (4) and (7).

In summary, the proposed CRM is characterized by the fol-
lowing PDF:

p(R,U,V,C,G,H|)
p(R|C,U,V,G,H,02)p(Ulo?) p(V|o?)
p(C|G, H) (Glag, by) p(Hlan, by), (12)
2
g

where Q = (02,02, 02, ag, by, an, by,) denotes the hyperpa-
rameters and the factors in the right-hand side are given by
Egs. (5), (6), (9), (10), (11).

The main feature differentiating CRM from the rating
model of PMF is the dependency between rating and con-
sumption that are modeled with two latent factors, attention
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and attraction. In our consumption model, g; and h; rep-
resent the mean value of ¢ with their inner product, g?hj.
When g; and h; have elements that take large values in com-
mon dimensions, the i-th user tends to consume the j-th item.
In our rating model, g; and h; define the gate matrix I';;,
which is diagonal. Intuitively, each element in the gate matrix
scales the vector space where the inner product of u; and v;
is evaluated. In other words, the value of u T';;v; is strongly
affected by the values of u; and v; in the dimensions where
I';; has large values. Hence, CRM improves the predictive
accuracy by using the consumption behavior to estimate the
importance of the features in rating.

While we could consider a simpler method that applies
PMF twice, such a method (two-phase PMF) is inferior to
GPMEF, for the following reasons. In two-phase PMF, the first
PMF predicts consumption values and the second PMF pre-
dicts rating values. The two drawbacks here are that first, two-
phase PMF does not consider how to connect consumption
values and rating values, and second, two-phase PMF treats
the distribution of consumption value as normal distribution
even though the individual consumption value only takes the
binary value. In the experiment, we show that GPMF outper-
forms two-phase PMF.

2.3 Learning and Predicting with the GPMF

We now derive the loss function on the basis of maximum a
posteriori (MAP) estimation. We define ® = {U,V, G, H}
as a set of parameters to optimize. We maximize the posterior
distribution of @ with respect to the observed ratings R and
missing values C. We seek to obtain the optimal parameter
© = argmaxep(0|R, C, Q) by minimizing the following
loss function, F, with respect to ©:

E=—-logp(O|R,C, Q). (13)

The loss function E can be written as £ = Eo + Eg,
where E- and ER are the loss function of the consumption
model and the rating model, respectively. Specifically, each



loss function can be derived as follows.

Eo = Hc o LogC + (1 - C) o Log(1 — C)H
1

+ ag [|LogGl[; + by [|[Log(1 - G)|,;
+ ap ||[LogH||; + by, ||Log(1 — H)||; + const.,
(14)
_ 1 1 9
Pr =503 |0 =R+ 57 IV + 52 VI3
(15)
where
C=G"H, (16)
R=Clo(GoU)T(HOoV), A7)

Log(-) is an element-wise natural logarithm function for a
matrix, 1 is a matrix with every element being 1, ||-||, is a
Iy norm, - is an inverse matrix for Hadamard product (i.e.,
X o X! = 1 for a matrix X)), and const. includes the terms
that depends only on the hyperparameters, £2. The learning
process of the GPMF proceeds by minimizing I with respect
to ® by using stochastic gradient descent (SGD). In each step
of SGD, we squash the value of each element of R into [-1,1]
using a hyperbolic tangent function, tanh(7;;), to be consis-
tent with the range of ratings. We perform a grid search to
optimize (2.

2.4 Automatic Feature Selection and Resampling

GPMF performs feature selection and resampling automati-
cally by optimizing the loss functions. In the feature selec-
tion, from the L-dimensional features, GPMF places higher
weights on the element that the user pays attention to. In the
resampling, GPMF selects the items that users tend to con-
sume and increases the weight on the rating value of those
selected items. In the following, we elaborate on these roles
that GPMF plays.

Feature Selection To describe why GPMF acts as a feature
selector, we change variables: U, = GoUand V;, = Ho
V. We can interpret U, and V), as feature matrices filtered
by attraction and attention, respectively. Substituting U, and
V}, into the CRM instead of U and V, we can rewrite Egs.
(15) and (17) as

Ep = 2% Co(R— RH
1
+ 5.5 |G OUHF+ HHﬁOVhHw (18)
O—’U.
where
R=Clo (UgTVh> . (19)

The last two terms of Eq. (18) indicate that G and H are
regularization coefficients that control the variance of the el-
ements of U, and V. By optimizing the loss function, the
relevant features in U, and V), take large variance and ir-
relevant features take small variance. Hence, the irrelevant
features should vanish.
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Resampling Next, we discuss why GPMF performs resam-
pling in the context of minimizing mean squared error (MSE).
MSE is a popular objective function that is often used to eval-
uate methods such as PMF for predicting ratings. The ex-
pected value of MSE with respect to C* can be written as
.2
Ec- [MSER'] = | o (R" — R)HF . Qo)
where ¥ € RY*M in an element-wise manner, denotes the
expected value of C*. The expected MSE is proportional to
the squared Euclidean distance between the real matrix R*
and the predicted matrix R, as long as R is randomly ob-
served from R* or the entries of ¥ are identical. The ob-
served ratings, however, do not follow the distribution of R*
because of the dependency on C*, and the MSE is biased by
w.

Therefore, predicting consumption (i.e., which elements of
W have large values) can contribute to reducing the MSE.
This is the trick GPMF implicitly utilizes. In our CRM, ¥ =
C holds because of Eq. (4). Therefore, Eq. (20) can be
written as follows.

Ec- [MSE|R*] = Hc o (R

3l @1

2
F
As we cannot observe R* in the training phase, we use CoR
instead of R*. By Eq. (19), the objective function is then
approximated as follows.

- 2
Ec- [MSE[R] ~ Hc °o(CoR-TUyVy)| . (22

GPMF minimizes (22) with regularization. We can inter-

pret that C o R is resampled from R by taking into account
whether a user is likely to consume an item.

3 Experimental Results

3.1 Data Sets and Evaluation Metrics

We evaluate GPMF using real-world datasets. Al-
though the most popular dataset is that of Netflix, used
in the paper of PMF [Mnih and Salakhutdinov, 2007],
this dataset is currently unavailable due to privacy is-
sues. Hence, we use MovieLens-100k (http://grouplens.org/
datasets/movielens/) and MovieTweetings (http://github.com/
sidooms/MovieTweetings); see Table 1. MovieLens-100k
(ML100K) is a real-world dataset from MovieLens, which
provides services of rating movies. In ML100K, users give
ratings (1, 2, 3, 4, or 5) to items (i.e., movies). MovieTweet-
ings (MTweet) is a dataset for benchmarking, crawled from
social media, for several recommendation tasks in RecSys
2013 [Dooms et al., 2013] and has been used in several stud-
ies [Hernandez-lobato et al., 2014]. MTweet consists of rat-
ing values of 1-10 given to movies by users of Twitter. We
squash the ratings into the range [0, 1] such that 0 is the low-
est.

3.2 Baselines and Parameter Settings

Our experiments compare GPMF against several baselines:



Table 1: Summary of the datasets. N and M indicate the
number of users and items, respectively. #Ratings is the num-
ber of observed ratings and Sparsity is #Ratings per N M.

Datasets N M #Ratings Sparsity
MLIOOK | 943 1,682 100,000  0.063
MTweet | 3,871 2217 111,566  0.013

PMF and its extension (CPMF) [Mnih and Salakhut-
dinov, 2007]. CPMF exploits the consumption effect
by smoothing. The difference between our method and
CPMF is that we consider the effect of attention and at-
traction.

MNAR-PMF [Hernandez-lobato et al., 20141, which
models value-based missing value mechanisms.

Low rank completion (LRC) [Jain et al., 2013], which
predicts missing values of the rating matrix by assuming
that the matrix has a low rank.

» Two-phase PMF, which simply applies PMF twice.

As the CRM tightly integrates a rating model and a con-
sumption model, we evaluate only the end-to-end accuracy
of GPMF on predicting ratings. Note that GPMF makes pre-
dictions about consumption only to improve the predictive
accuracy of ratings.

In the training, we adjust hyperparameters by grid search.
Specifically, we choose the dimension of feature space L, the
learning rate of the SGD, and the regularization parameter A
from the following candidates: 1073,1072,10~!, and 1.

We utilize mean absolute error (MAE) and root mean
squared error (RMSE) for evaluating the experimental re-
sults. Note that, in our settings, RMSE is proportional to
log-likelihood, which was used in the related work [Laksh-
minarayanan e al., 2011; Hernandez-lobato et al., 2014]. We
evaluate both the MAE and the RMSE by five-fold cross val-
idation.

3.3 Experimental Results

Table 2 shows that the GPMF outperforms the baselines. Fig-
ure 2 shows more details of the comparisons, where we now
vary the degree of freedom (i.e., the number of parameters to
optimize, which is varied with L) for each method. Both pan-
els in Figure 2 suggest that GPMF enables us to obtain higher
predictive accuracy than PMF and MNAR-PMF when the de-
gree of freedom is at most 30. GPMF is inferior or compa-
rable to the baselines for high degrees of freedom. In Figure
2a, although GPMF has comparable accuracy to MNAR-PMF
for high degrees of freedom (10% — 4 x 10%), GPMF outper-
forms MNAR-PMF for lower degrees of freedom (10 — 30).
This means that GPMF is able to obtain simpler models than
MNAR-PMF. GPMF consistently outperforms PMF for all
degrees of freedom under consideration. In Figure 2b, GPMF
outperforms PMF and MNAR-PMF for low degrees of free-
dom. The reason for the differing trends between the two
datasets is that the MovieTweetings data can be represented
by the product of matrices, each having a low rank. When
the dimension of the model is larger than the rank of the data,
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Table 2: Performance of GPMF compared against several ex-
isting methods. We performed a grid search for each method,
and the best performance is shown.

ML100K MTweet
Method MAE RMSE | MAE RMSE
LRC 0.7313  0.9384 | 0.6037 0.7961
PMF 0.7330 0.9248 | 0.6000 0.7942
CPMF 0.7305 0.9233 | 0.5876 0.7823
Two-phase PMF | 0.7314 0.9211 | 0.6021 0.7935
MNAR-PMF 0.7251 0.9209 | 0.5962 0.7899
GPMF 0.7207 0.9197 | 0.5788 0.7690

1.00,

- PMF
—  MNAR-PMF
— GPMF

0.98¢
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---o PMF
—  MNAR-PMF
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(b) MovieTweet
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Degree of Freedom

(a) MovieLens-100k

Figure 2: RMSE with varying degree of freedom for each
method. The y-axis indicates RMSE. The degree of freedom
in the x-axis is the number of parameters that the model opti-
mizes.

the model tends to overfit the data and the error increases.
Overall, GPMF tends to outperform PMF, primarily because
GPMF selects the relevant features from noisy rating values.
Note that, similar to PMF, the computational cost of GPMF
scales linear with the sample size, since GPMF requires only
an additional computation of consumption matrix.

We now discuss why GPMF achieves the higher accuracy
for lower dimensional cases. GPMF aims to improve the ac-
curacy by suppressing the samples made up of pairs of a user
and an item if that item is unlikely to be consumed by that
user according to the consumption model. Thus, the resam-
pling has the effect of feature learning, analogous to cluster-
ing or dimensionality reduction, on the basis of users’ atten-
tion: a user continues to consume the items of a topic that
the user seeks to enjoy. By resampling, GPMF succeeds in
learning a good representation of the features even in low di-
mensional cases. However, attention and resampling incurs
a side effect in that it cannot model the case where a user
tends to consume multiple topics. This drawback results in
GPMF being inferior or comparable to the PMF and MNAR-
PMF in high dimensional cases. There are a few possible
ways of circumventing this disadvantage. One is a multi-
topical consumption model such as LDA [Blei et al., 2003;
Hofmann, 2004]. Another is to model the temporal dynam-
ics of the attention. Several studies [McAuley and Leskovec,
2013] have taken into account users’ preferences that vary
over time. We are planning to overcome the drawback of
GPMF by utilizing some of the ideas in these approaches in
our future work.



4 Related Work

Although our particular model of users’ consumption and rat-
ing is new, prior works have studied other models of con-
sumption behavior to improve the predictive accuracy of rat-
ings. A particularly attractive property of GPMF that dis-
tinguishes it from existing techniques is that a regularization
term in the objective function of training GPMF is naturally
derived from the model of user’s consumption. Here, we re-
view the prior work related to ours primarily from two per-
spectives: one on consumption models and the other on reg-
ularization. We will also briefly review the prior work on
attention-based models, which have been studied outside the
literature on recommender systems but motivated our study
on improving recommender systems by modeling users’ at-
tention.

Modeling Consumption Behavior Our method regular-
izes user preferences and item features on the basis of con-
sumption behavior. Previous works use consumption be-
havior for smoothing user preferences and predicted rating
values. Constrained PMF (CPMF) [Mnih and Salakhutdi-
nov, 2007] models user preferences on the basis of ratings
given by other users who have similar consumption behavior.
There are many techniques based on the dependency between
consumption and ratings such as CPT-v [Marlin and Zemel,
2009], Logit-vd [Marlin and Zemel, 2009], and MNAR-PMF
[Hernandez-lobato et al., 2014]. While Hu et al. (2008) aims
to predict consumption from ratings, they do not apply their
work for rating prediction.

Regularization GPMF adjusts the model complexity by es-
timating the variance of parameters in the training phase.
While existing models have a regularization term in their
objective function, the terms do not depend on the any im-
plicit feedback from users. Hence, the fixed model complex-
ity should be given prior to the training. PMF and several
techniques of matrix factorization [Srebro et al., 2004] have
a regularization term that has fixed weight, which we should
give preliminarily.

While several methods dynamically train the model com-
plexity like ours does, they do not consider the consumption
data. Salakhutdinov et al. (2008) proposed a model to adjust
the model complexity by assuming hyperprior to prior distri-
bution of parameters. Their method optimizes the parameter
by Markov Chain Monte Carlo (MCMC). Lakshminarayanan
et al. (2011) pointed out that PMF assumes homoscedasticity
of the features and proposed a heteroscedastic model. Ren-
dle et al. (2012) proposed a method to automatically adjust
the hyperparameter of several matrix factorization methods.
Although their method also fixes the number of parameters,
it is able to adjust the model complexity by underestimating
the variance of irrelevant features. They pointed out that a
several matrix factorization method such as PMF can be gen-
erally formed by Factorization Machines [Rendle, 2010] and
proposed a two-step model to tune hyperparameters by using
a training set and a validation set. Nakajima et al. (2010) pro-
posed the variational Bayesian approach to minimizing pos-
teriori distribution of the parameters.
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Although several works use auxiliary data such as social
networks [Ma et al., 2008; Jamali and Ester, 2011] and times-
tamps of ratings [Koren, 2010] to train the models, GPMF
uses only observed ratings in order to ensure its applicabil-
ity to standard collaborative filtering settings. Information
of consumption behavior is included in the observed ratings.
Pan et al. (2012) train the model from the possible range of
rating values that we have to specify in advance.

Learning the Attention The attention, which we exploit in
this literature, is the curious habit of humans to focus on a rel-
evant feature from an object for a certain goal such as recog-
nition [Rensink, 2000; Corbetta and Shulman, 2002]. The
works motivated us to bring the attention into recommenda-
tion systems. In computer vision, the attention corresponds
to saliency, which selects the relevant features by masking
the input image. Sohn et al. (2013) proposed Gated Boltz-
mann machines consisting of a gate layer on top of restricted
Boltzmann machines. Their method automatically selects the
relevant features by masking the input. The gate corresponds
to the salience of the human, and the gate separates the rele-
vant and the irrelevant features from the data, such as numer-
ical image data with real-world background. DRAW [Gregor
et al., 2015] is an image generation model that utilizes atten-
tion to model what a user sees. Xu et al. (2015) proposes the
recurrent neural network-based model for image caption gen-
eration. The method generates a caption by moving attention
to each object on an input image.

5 Conclusion and Future Work

We have proposed gated probabilistic matrix factorization
(GPMF), which is based on a new probabilistic generative
model, CRM, that models the attention of users to improve
predictive accuracy on ratings. The key elements of CRM
are the attention and attraction matrices, which play the role
of selecting relevant features from the rating matrix. In the
numerical experiment, GPMF outperformed PMF, MNAR-
PMF, and other baseline methods with respect to MAE and
RMSE.

GPMF is widely applicable to problems that can be re-
duced to rating prediction because it uses only the informa-
tion of ratings given by users and does not use any auxil-
iary data (e.g., trust network and temporary dynamics, which
would be required by other approaches). Although several
researchers have proposed attention-based methods for a va-
riety of tasks, this paper is the first study showing that an
attention-based method is effective for collaborative filtering.
An additional novelty of this paper is the way that we deal
with missing values, making the ideas presented here of po-
tential interest in other SVD-based methods such as biased
SVD.
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