
Tri-Party Deep Network Representation

Shirui Pan†, Jia Wu†, Xingquan Zhu⇤, Chengqi Zhang†, Yang Wang‡

†Centre for Quantum Computation & Intelligent System, FEIT, University of Technology Sydney
⇤ Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, USA

‡The University of New South Wales, Australia
{shirui.pan, jia.wu, chengqi.zhang}@uts.edu.au; xzhu3@fau.edu; wangy@cse.unsw.edu.au

Abstract
Information network mining often requires exami-
nation of linkage relationships between nodes for
analysis. Recently, network representation has
emerged to represent each node in a vector format,
embedding network structure, so off-the-shelf ma-
chine learning methods can be directly applied for
analysis. To date, existing methods only focus on
one aspect of node information and cannot lever-
age node labels. In this paper, we propose TriDNR,
a tri-party deep network representation model, us-
ing information from three parties: node struc-
ture, node content, and node labels (if available) to
jointly learn optimal node representation. TriDNR
is based on our new coupled deep natural language
module, whose learning is enforced at three levels:
(1) at the network structure level, TriDNR exploits
inter-node relationship by maximizing the proba-
bility of observing surrounding nodes given a node
in random walks; (2) at the node content level,
TriDNR captures node-word correlation by maxi-
mizing the co-occurrence of word sequence given a
node; and (3) at the node label level, TriDNR mod-
els label-word correspondence by maximizing the
probability of word sequence given a class label.
The tri-party information is jointly fed into the neu-
ral network model to mutually enhance each other
to learn optimal representation, and results in up
to 79% classification accuracy gain, compared to
state-of-the-art methods.

1 Introduction
Many network applications, such as social networks, pro-
tein networks, and citation networks, are characterized with
complex structure and rich node content information, where
the network structure is naturally sparse in that only a small
number of nodes are connected and the node content is usu-
ally represented as text information indicating the properties
of a node, such as the title or abstract information of each
paper (node) in a citation network. The complexity of net-
worked data imposes great challenge to many machine learn-
ing tasks such as node classification in networks. To address
this problem, network representation [Perozzi et al., 2014;

Tang et al., 2015; Yang et al., 2015; Tian et al., 2014;
Chang et al., 2015] encodes each node in a common, contin-
uous, and low-dimensional space while preserving the neigh-
borhood relationship between nodes, so machine learning
algorithms can be applied directly. For network represen-
tation, existing methods mainly employ network structure
based methods or node content based methods.

Majority network representation methods are based on net-
work structure. Early works aim to learn social dimensions
[Tang and Liu, 2009] or knowledge bases [Bordes et al.,
2011; Socher et al., 2013] to embed the entities in a network.
Inspired by the deep learning techniques in natural language
processing [Mikolov et al., 2013], Perozzi et al.

[Perozzi
et al., 2014] recently proposed a DeepWalk algorithm which
employs neural network models to learn a feature vector for
each node from a corpus of random walks generated from
networks. These methods take the network structure as input
but ignore content information associated to each node.

From the content perspective, many methods exist to rep-
resent a text message into a vector space. Early studies em-
ploy bag of word approaches (e.g., TFIDF) or topic models
(e.g. LDA [Blei et al., 2003]) to represent each document
as a vector. However, these models do not consider the con-
text information of a document (i.e., order of words), result-
ing in suboptimal representation. Recently, neural network
or deep learning based approaches [Mikolov et al., 2013;
Le and Mikolov, 2014; Luong et al., 2013] have emerged for
text embedding. The Skip-gram model [Mikolov et al., 2013]
employs a simple neural network model to learn distributed
vectors for words. Due to its simplicity, efficiency, and scala-
bility, Skip-gram model is further extended as paragraph vec-
tor model [Le and Mikolov, 2014], which learns latent vector
representation for arbitrary piece of text.

The drawback of existing methods [Tang and Liu, 2009;
Perozzi et al., 2014; Tang et al., 2015; Le and Mikolov, 2014],
regardless of network exploration approaches or text model-
ing methods, is twofold: (1) they only utilize one source of
information, so the representation is inherently shallow. (2)
all these methods learn network embedding in a fully unsu-
pervised way. For many tasks, such as node classification, we
may have a limited number of labeled nodes, which provides
usefully information to assist network representation.

When considering networks as a whole, the main challenge
of learning latent representation for network nodes is twofold:
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Figure 1: Our model takes an information network as input
and outputs a low-dimensional representation for each node.
In this toy citation network, each node denotes a paper, links
are citation relationships, and texts are paper titles. Red and
blue nodes are labeled nodes from two classes (transfer learn-
ing vs. video coding). Remaining nodes are unlabeled. (1)
paper 1 and paper 9 share two common words transfer and
networks in their titles. If we ignore their labels, they will
likely be represented with similar representation. So label
is useful. (2) paper 14 and paper 1 belong to the transfer

learning class. Although paper 14 is more similar to paper 9
in terms of shared title words, the weak citations/connections
between paper 1 and paper 14 will make them close to each in
the learned node representation space. So structure is useful
for node representation. (3) By combining structure, text, and
labels, our method is positioned to learn best representations.

• Network Structure, Node Content, and Label Infor-
mation Integration (Challenge 1) How to learn node
embedding for networks containing links and rich text
information, and further tailor the representation for
learning tasks provided with labeled samples?

• Neural Network Modeling (Challenge 2) How to de-
sign effective neural network models for networked data,
in order to obtain deep network representation results?

In terms of neural network modeling (Challenge 2), a
straightforward method for this problem is to separately learn
a node vector by using DeepWalk [Perozzi et al., 2014] for
network structure and learn a document vector via Paragraph
Vectors model [Le and Mikolov, 2014] (the state-of-the art
model to embed text into a vector space), and then concate-
nate these two vectors into a unified representation. How-
ever this simple combination is suboptimal because it ignores
the label information, and overlooks interactions between net-
work structures and text information.

In order to exploit both structure and text information
for network representation (Challenge 1), a recent work
TADW [Yang et al., 2015] shows that DeepWalk is equivalent
to factorize a matrix M (sum of a series transition matrix).
However, this method has following drawbacks: (1) The ac-
curate matrix M for factorization is non-trivial and very diffi-
cult to obtain. As a result, TADW has to factorize an approxi-
mate matrix, which will weaken its representation power; (2)
TADW simply ignores the context of text information (e.g.,
orders of words), so cannot appropriately capture the seman-
tics of the words and nodes in a network setting; (3) unlike
neural network models that can scale up to millions of records
in a single machine [Mikolov et al., 2013], TADW requires

expensive matrix operation like SVD decomposition, which
prohibits TADW from handling large scale data.

In this paper, we propose a tri-party deep network repre-
sentation model, TriDNR, which uses a coupled neural net-
work architecture to exploit network information from three
parties: node structure, node content, and node labels (if
available). At the node level, we maximize the probabil-
ity of observing the surrounding nodes given a node vi in
a random walk sequence, which well preserves inter-node

relationship in networks. At the node content and node la-
bel levels, we maximize the co-occurrence of word sequence
given a node and co-occurrence of word sequence given a la-
bel, which accurately captures the node-word correlation and
label-word correspondence. The tri-party information mutu-
ally enhances each other for optimal node representation. An
example of using TriDNR to represent nodes of a citation net-
work to a two dimensional space is shown in Fig 1.

2 Problem Definition
An information network is represented as G = (V,E,D, C),
where V = {vi}i=1,··· ,N consists of a set of nodes, ei,j =
(vi, vj) 2 E is an edge encoding the edge relationship be-
tween the nodes, di 2 D is a text document associated with
each node vi, C = L

S
U is the class label information of the

network, with L denoting the labeled nodes and U being the
unlabeled nodes. The network representation aims to learn a
low-dimensional vector vvi 2 Rk (k is a smaller number) for
each node vi in the network, so that nodes close to each other
in network topology or with similar text content, or sharing
the same class label information are close in the representa-
tion space. Fig 1 demonstrates the importance of combining
structure, text, and labels for learning good representations.

In this paper, we assume the network has partial labeled
nodes. If the label set L = ;, the representation becomes
pure unsupervised, and our proposed solution is still valid.

3 Preliminary: Skip-Gram and DeepWalk
Recently, Skip-Gram [Mikolov et al., 2013], which is a lan-
guage model exploiting word orders in a sequence and as-
suming that words closer are statistically more dependent or
related, has drawn much attention due to its simplicity and ef-
ficiency. Specifically, Skip-Gram aims to predict the context

(surrounding words) within a certain window given current
word by maximizing the following log-likelihood:

L =
TX

t=1

log P(wt�b : wt+b|wt) (1)

where b is the context width (window size), wt�b : wt+b is a
sequence of words excluding the word wt itself. The proba-
bility P(wt�b : wt+b|wt) is computed as:

Y

�bjb,j 6=0

P(wt+j |wt) (2)

Eq. (2) assumes that the contextual words wt�b : wt+b are
independent given word wt. P(wt+j |wt) is computed as:

P(wt+j |wt) =
exp(v>

wtv0
wt+j

)
PW

w=1 exp(v>
wtv0

w)
(3)
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where vw and v0w are the input and output vectors of w. After
training the model, the input vector vw can be used as the final
representation of word w.

3.1 DeepWalk Model
Motivated by the Skip-Gram, DeepWalk [Perozzi et al., 2014]
constructs a corpus S that consists of random walks generated
from the network. Each random walk v1 ! v3 ! · · · ! vn

can be considered as a sentence and each node vi can be con-
sidered as a word in neural language models. Then Deep-
Walk algorithm trains the Skip-Gram model [Mikolov et al.,
2013] on random walks, and obtain a distributed representa-
tion vector for each node. The objective of DeepWalk model
is to maximize the likelihood of the surrounding nodes given
current node vi for all random walks s 2 S:

L =
NX

i=1

X

s2S

log P(vi�b : vi+b|vi)

=
NX

i=1

X

s2S

X

�bjb,j 6=0

log P(vi+j |vi)

(4)

where N is the total number of nodes. The architecture of
DeepWalk model is illustrated in the left panel of Fig 2.

DeepWalk can only utilize the network information for
model learning, without considering any text information
augmented with each node and label information provided by
the specific task like node classification.

4 Tri-Party Deep Network Representation
In this section, we present our tri-party deep network rep-
resentation algorithm for jointly utilizing network structure,
text content, and label information to learn a latent vector for
each node in the network.

We use neural network models to learn vvi , the latent repre-
sentation for node vi in a network. This latent representation
vvi acts as an input vector in our neural network model. More
specifically, our TriDNR algorithm consists of two steps:

1. Random Walk Sequence Generation uses network
structure as the input and randomly generates a set of
walks over the nodes, with each walk rooting at a node
vi and randomly jumping to other nodes each time. The
random walk corpus can capture the node relationship.

2. Coupled Neural Network Model Learning embeds
each node into a continuous space by considering the
following information: (a) random walk corpus which
captures the inter-node relationship, (b) the text corpus
which models the node-content correlations, (c) label in-
formation which encodes label-node correspondences.

4.1 Model Architecture
Our coupled neural network model architecture is illustrated
in the right panel of Fig 2, which has the following properties:

1. Inter-node Relationship Modeling. The upper layer of
TriDNR learns the structure relationship from the ran-
dom walk sequences, under assumption that connected
nodes are statistically dependent on each other.

Inter-Node Relationship Modeling

Node-word & Label-word 
Correlation Modeling

v1

v3 v2 v4 v7output

projection

input

c1

w5

w3

w2

input projection output

 DeepWalk Model

v3 v2 v4 v7output

projection

v1input

 TriDNR Model

Figure 2: Architecture of the DeepWalk (Skip-Gram) method
and our proposed TriDNR method. The DeepWalk approach
learns the network representation based on the network struc-
ture only. Our TriDNR method couples two neural networks
to learn the representation from three parties (i.e., node struc-
ture, node content, and node label) to capture the inter-node,
node-word, and label-word relationship. The input, projec-

tion, and output indicate the input layer, hidden layer, and
output layer of a neural network model.

2. Node-content correlations Assessing. The lower layer
of TriDNR models the contextual information (node-
content correlations) of words within a document.

3. Connections. We couple these two layers by the node
v1 in the model, indicating that v1 is influenced by both
random walk sequences and node content information.

4. Label-content Correspondence Modeling To utilize
the valuable class label information of each node, we
also use the label of each document as input and simul-
taneously learn the input label vectors and output word
vectors, providing directly modeling between node la-
bels and node content.

Note that the label information is not used for inter-node rela-
tionship modeling. This is because we can hardly assess the
class label of a random walk sequence.

The lower level (panel) of Fig 2, which exploits document
and class label information, can be formalized by the follow-
ing objective function:

L =

|L|X

i=1

log P(w�b : wb|ci) +
NX

i=1

log P(w�b : wb|vi) (5)

where w�b : wb is a sequence of words inside a contextual
window of length b. ci is the class label of node vi. Note that
if no label information is used (i.e., |L| = 0), the first term
vanishes, Eq. (5) will become the Paragraph Vector model
[Le and Mikolov, 2014], which exploits the text information
to learn vector representation for each document.

Given a network G which consists of N nodes (i.e., V =
{vi}i=1,··· ,N ), suppose the random walks generated in G is
S , our TriDNR model aims to maximize the following log-
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likelihood:

L = (1� ↵)
NX

i=1

X

s2S

X

�bjb,j 6=0

log P(vi+j |vi)

+ ↵
NX

i=1

X

�bjb

log P(wj |vi) + ↵

|L|X

i=1

X

�bjb

log P(wj |ci)

(6)

where ↵ is the weight that balances network structure, text,
and label information. b is the window size of sequence, and
wj indicates the j-th word in a contextual window.

Given equation Eq. (6), the first term requires the calcula-
tion of P(vi+j |vi), the probability of observing surrounding
nodes given current node vi, which can be computed using
the soft-max function as follows:

P(vi+j |vi) =
exp(v>

viv0
vi+j

)
PN

v=1 exp(v>
viv0

v)
(7)

where vv and v0
v are the input and output vector represen-

tation of node v. Furthermore, the probability of observing
contextual words w�b : wb given current node vi is:

P(wj |vi) =
exp(v>

viv0
wj

)
PW

w=1 exp(v>
viv0

w)
(8)

where v0
wj

is the output representation of word wj and W is
the number of distinct words in the whole network. Similarly,
the probability of observing the words given a class label ci
is defined as:

P(wj |ci) =
exp(v>

civ0
wj

)
PW

w=1 exp(v>
civ0

w)
(9)

From Eq. (8) and Eq. (9), we know that the text informa-
tion and label information will jointly affect v0

wj
, the output

representation of word wj , which will further propagate back
to influence the input representation of vi 2 V in the network.
As a result, the node representation (i.e., the input vectors of
nodes) will be enhanced by both network structure, text con-
tent, and label information.

4.2 Model Optimization
We train our model Eq. (6) using stochastic gradient ascent,
which is suitable for large-scale data. However, computing
the gradient in Eq. (7) is expensive, as it is proportional to
the number of nodes in the network N . Similarly, comput-
ing the gradient in Eq. (8) and Eq. (9) are proportional to
the unique number of words in the document content W . To
handle this problem, we resort to the hierarchical soft-max
[Morin and Bengio, 2005], which reduces the time complex-
ity to O(Rlog (W )+N log (N)) where R is the total number
of words in the document content.

Specifically, the hierarchical model in our algorithm uses
two binary trees, one with distinct nodes as leaves and another
with distinct words as leaves. The tree is built using Huffman
algorithm so that each vertex in the tree has a binary code and
more frequent nodes (or words) has shorter codes. There is a
unique path from the root to each leaf. The interval vertices of
the trees are represented as real-valued vector with the same

dimension as the leaves. So instead of enumerating all nodes
in Eq. (7) in each gradient step, we only need to evaluate the
path from the root to the corresponding leaf in the Huffman
trees. Suppose the path to the leaf node vi is a sequence of
vertices (l0, l1, · · · , lP ), (l0 = root, lP = vi), then

P(vi+j |vi) =
PY

t=1

P(lt|vi) (10)

where P(lt|vi) can be further modeled by a binary classifier
which is defined as:

P(lt|vi) = �(v>vi
v0vlt

) (11)

here �(x) is the sigmoid function, and v0
vlt

is the representa-
tion of tree vertex lt’s parent. By doing this, the time com-
plexity is reduced to O(N log N). Similarly, we can use hier-
archical soft-max technique to compute the words and labels
in Eq. (8) and Eq. (9).

5 Experimental Results
5.1 Experimental Setup
We report our experimental results on two networks. Both of
them are citation networks and we use the paper title as node
content for each node in the networks.

DBLP dataset 1 consists of bibliography data in computer
science [Tang et al., 2008]. Each paper may cite or be cited
by other papers, which naturally forms a citation network.
In our experiments, we select a list of conferences from 4
research areas, database (SIGMOD, ICDE, VLDB, EDBT,
PODS, ICDT, DASFAA, SSDBM, CIKM), data mining

(KDD, ICDM, SDM, PKDD, PAKDD), artificial intelligent

(IJCAI, AAAI, NIPS, ICML, ECML, ACML, IJCNN, UAI,
ECAI,COLT, ACL, KR), computer vision (CVPR, ICCV,
ECCV, ACCV, MM, ICPR, ICIP, ICME). The DBLP network
consist of 60,744 papers (nodes), 52,890 edges in total.

CiteSeer-M10 is a subset [Lim and Buntine, 2014] of
CiteSeerX data 2 which consist of scientific publications from
10 distinct research areas: agriculture, archaeology, biology,
computer science, financial economics, industrial engineer-

ing, material science, petroleum chemistry, physics, and so-

cial science. This dataset consists of multidisciplinary 10
classes, with 10,310 publications and 77,218 edges in total.

The following algorithms are comparing in our paper:
1. DeepWalk [Perozzi et al., 2014] learns network repre-

sentation using network structure only.
2. LINE [Tang et al., 2015] is a state-of-the-art algorithm

for network representation based on network structure.
3. Doc2Vec [Le and Mikolov, 2014] is the Paragraph Vec-

tors algorithm which embeds any piece of text in a dis-
tributed vector using neural network models. Here we
use PV-DBOW model in [Le and Mikolov, 2014].

4. LDA [Blei et al., 2003] is the Latent Dirichlet alloca-
tion algorithm that learns a topic distribution to represent
each document (or text).

1http://arnetminer.org/citation (V4 version is used)
2http://citeseerx.ist.psu.edu/
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Table 1: Average Macro F1 Score and Standard Deviation on Citeseer-M10 Network

%p DeepWalk Doc2Vec DW+D2V DNRL LDA RTM LINE TADW TriDNR

10 0.354±0.007 0.432±0.008 0.495±0.007 0.564±0.007 0.458±0.005 0.504±0.007 0.531±0.004 0.600±0.008 0.626±0.009
30 0.411±0.002 0.477±0.005 0.586±0.004 0.667±0.003 0.549±0.003 0.598±0.004 0.569±0.006 0.652±0.005 0.715±0.004
50 0.425±0.004 0.494±0.004 0.614±0.006 0.702±0.006 0.581±0.009 0.629±0.005 0.581±0.005 0.671±0.006 0.753±0.006
70 0.434±0.007 0.503±0.006 0.628±0.009 0.725±0.005 0.589±0.007 0.638±0.011 0.589±0.010 0.681±0.005 0.777±0.006

Table 2: Average Macro F1 Score and Standard Deviation on DBLP Network

%p DeepWalk Doc2Vec DW+D2V DNRL LDA RTM LINE TADW TriDNR

10 0.398±0.004 0.605±0.005 0.653±0.005 0.663±0.002 0.644±0.002 0.665±0.004 0.427±0.003 0.676±0.006 0.687±0.004
30 0.423±0.003 0.617±0.003 0.681±0.003 0.698±0.002 0.652±0.003 0.674±0.001 0.438±0.003 0.689±0.004 0.727±0.002
50 0.426±0.002 0.620±0.003 0.686±0.003 0.710±0.002 0.655±0.003 0.676±0.002 0.438±0.002 0.692±0.003 0.738±0.003
70 0.428±0.004 0.623±0.003 0.690±0.003 0.718±0.003 0.654±0.003 0.678±0.003 0.439±0.003 0.695±0.003 0.744±0.002

5. RTM [Chang and Blei, 2009] is the relational topic
model which captures both text and network structure
to learn topic distributions of each document.

6. TADW [Yang et al., 2015] is a state-of-the-art algorithm
that utilizes both network and text information to learn
the network representation.

7. DW+D2V approach simply concatenates the vector rep-
resentations learned by different neural network models,
i.e., DeepWalk and Doc2Vec.

8. TriDNR is our proposed tri-party deep network repre-
sentation algorithm that exploits network structure, node
content, label information for learning.

9. DNRL is a variant of our TriDNR, which only uses node
content and label information (lower layer of Fig 2) and
ignores the network structure information.

Measures & Parameter Setting We perform node clas-
sification to evaluate the quality of different algorithms. In
each network, p% nodes are randomly labeled, the rest are
unlabeled. The whole network, including node content, are
used to learn the network representation. Once we obtained
the node vectors using different comparing methods, we train
a linear SVM from the training data (nodes) to predict unla-
beled nodes. We choose a linear classifier, instead of non-
linear model or sophisticated relational classifiers [Sen et al.,
2008], in order to reduce the impact of complicated learning
approaches on the classification performance.

The default parameter for TriDNR are set as follows: win-
dow size b=8, dimensions k =300, training size p = 30%,
↵ = 0.8. For fairness of comparison, all comparing algo-
rithms will use the same same number of features k. The pa-
rameters for other algorithms will keep the same or be close
to TriDNR as much as possible. For instance, for all neural
network models, we use window size b = 8. The rest param-
eters are set following the suggestion in their original papers.
For each parameter setting, we repeat the experiment 10 times
and report the average results and standard deviation.

5.2 Performance on Node Classification
We vary the percentages of training samples p% from 10% to
70% and report the results in Table 1 and Table 2.
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Figure 3: Results with Different Number of Features k.

Table 1 and Table 2 show that DeepWalk and LINE al-
gorithms perform fairly poor on citation networks. This is
mainly because the network structure is rather sparse and only
contains limited information. Doc2Vec (Paragraph Vectors)
is much better than DeepWalk, especially on DBLP dataset,
as the text content (title) has rich information comparing to
network structure. When concatenating the embeddings from
DeepWalk and Doc2Vec, as DW+D2V does, the representa-
tion is substantially improved. However, DW+D2V is still far
from optimal, comparing with TriDNR algorithm.

Importance of Label Information. Our experimental
results show that DNRL, which uses label information to
learn the network embedding (only used the lower layer
of our TriDNR model), has already significantly outper-
formed the naive combination of two neural network mod-
els (DW+D2V). This observation validates the importance of
label information for network representation.

Effectiveness of Coupled design. When we add an-
other layer of neural network on top of DNRL, our pro-
posed TriDNR model shows that it outperforms DeepWalk,
Doc2Vec, and DW+D2V by a large margin. The experimen-
tal result demonstrated the importance of using label informa-
tion and the effectiveness of our coupled architecture design.

Topic model based algorithms: As for the topic model
based algorithms, relational topic model (RTM) outperforms
the traditional topic model LDA. This is because RTM takes
the network structure into consideration. Both LDA and RTM
are not comparable to TriDNR.

TriDNR vs. TADW: The results in Table 1 and 2 demon-
strate that TriDNR is also superior to TADW. This is be-

1899



Figure 4: 2D visualization on Citeseer-M10 network by different algorithms.

cause: (1) TADW is a matrix factorization algorithm which
factorizes a matrix M (sum of a series transition matrix) to-
gether with a text matrix T . In reality, an accurate M is very
computationally expensive so TADW only factorizes an ap-
proximate M , which will affect its representation power; (2)
TADW does not consider context information, and its T ma-
trix cannot preserve the orders of word; (3) TADW does not
explore the valuable label information for a specific task, re-
sulting in suboptimal result only. In contrast, TriDNR takes
each document (node) and the words within of a window (in-
cluding the order information) into consideration, which well
preserve the neighborhood relationship and documents. Ad-
ditionally, TriDNR exploits label information, which signifi-
cantly improves the representation power, leading to a good
classification performance.

Overall, TriDNR significantly outperforms its peers. With
p%=70, TriDNR (0.777) beats DeepWalk (0.434) and TADW
(0.681) by 79.0% and 14.1% in the Citeseer-M10 network.

Results with different number of dimensions k
We vary the number of dimensions (k) used in comparing al-
gorithms, and report the results in Fig 3. When k increases
from 50 to 150, there is a slightly increase for TriDNR al-
gorithm. Afterwards, not much difference is observed with
different number of features. The results show that TriDNR
is very stable with various dimension size.

5.3 Case Study
In this subsection, we retrieve the most similar nodes w.r.t. a
given query node. Specifically, we compute the top 5 nearest
neighbors with Consine distance based on the vector repre-
sentations learned by different algorithms. The results are
shown in Table 3.

The query paper is the best paper of KDD 2006 and is also
one of the top-10 downloaded paper according to ACM dig-
ital library 3 (access on 19/01/2016). Basically, the paper
considers using advanced optimization techniques like cut-
ting plane algorithm for training linear svm algorithm.

Table 3 shows that all results retrieved by TriDNR are sim-
ilar or closely related to SVM or optimization techniques. For
instance, the first result optimized cutting plane algorithm for

support vector machines is actually a following-up work of
the query paper. In contrast, the results returned by Doc2Vec
or TADW only have 1 record matching with the query, which
is mostly based on the term linear time. For DeepWalk, there
are indeed some similar answers by using the network infor-
mation (citation relationship), because this is a highly cited

3http://dl.acm.org/event.cfm?id=RE329

Table 3: Top-5 Similar Node Search: matched results are (•)

Query: Training Linear SVMs in Linear Time [Joachims, 2006]

TriDNR :
1. optimized cutting plane algorithm for support vector machines (•)
2. proximal regularization for online and batch learning (•)
3. a sequential dual method for large scale multi-class linear svms (•)
4. a dual coordinate descent method for large-scale linear svm (•)
5. bootstrap based pattern selection for support vector regression (•)

Doc2Vec :
1. training linear discriminant analysis in linear time (•)
2. circularity measuring in linear time
3. mining association rules in hypertext databases
4. approximate matching in xml
5. disaggregations in databases

DeepWalk :
1. bootstrap based pattern selection for support vector regression (•)
2. large margin training for hidden markov models with ...
3. optimized cutting plane algorithm for support vector machines (•)
4. proximal regularization for online and batch learning (•)
5. extremely fast text feature extraction for classification and indexing

TADW :
1. Circularity Measuring in Linear Time
2. Training Linear Discriminant Analysis in Linear Time (•)
3. Maximal Incrementality in Linear Categorial Deduction
4. Variational Linear Response
5. How Linear are Auditory Cortical Responses
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paper (1348 according to Google Scholar by 19/01/2016).
However, its result are still worse than our TriDNR algorithm.

5.4 Network Visualization
An important application of network representation is to cre-
ate meaningful visualizations that layout a network in two
dimensional space. Following [Tang et al., 2015], we learn
a low-dimensional representation for each node and map the
Citeseer-10 network into a 2D space in Fig 4.

In Fig 4, the visualization using Doc2Vec and TADW algo-
rithms are not very meaningful, in which the papers from the
same cluster are not clustered together. The result obtained by
DeepWalk is slightly better, in which a large group is formed
representing the research of Petroleum Chemistry. However
papers from other groups are still highly overlapping. The vi-
sualization results of TriDNR are quite clear, with meaningful
layout for each class.

6 Conclusion
In this paper, we proposed a Tri-party deep network represen-
tation algorithm. We argued that most exiting algorithms are
simple shallow methods that only use one aspect of node in-
formation. In addition, none of the existing method is able to
utilize the label information in the network for representation.
Accordingly, we proposed a coupled neural network based al-
gorithm to exploit inter-node relationships, node-content cor-
relation, and label-content correspondence in a networks to
learn an optimal representation for each node in the network.
Experimental results demonstrated the superb performance of
our algorithms. The key contribution of the paper is twofold:
(1) we exploit network representation from multiple parties
and different network levels, and (2) we propose a new neu-
ral network model for deep network representation learning.
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