
Abstract 
A novel sparsity optimization method is proposed to 
select features for multi-class classification 
problems by directly optimizing a ℓ2,p -norm 
( 0 < 𝑝 ≤ 1 ) based sparsity function subject to 
data-fitting inequality constraints to obtain large 
between-class margins. The direct sparse 
optimization method circumvents the empirical 
tuning of regularization parameters in existing 
feature selection methods that adopt the sparsity 
model as a regularization term. To solve the direct 
sparsity optimization problem that is non-smooth 
and non-convex when 0 < 𝑝 < 1, we propose an 
efficient iterative algorithm with proved 
convergence by converting it to a convex and 
smooth optimization problem at every iteration step. 
The proposed algorithm has been evaluated based 
on publicly available datasets. The experiments 
have demonstrated that our algorithm could achieve 
feature selection performance competitive to 
state-of-the-art algorithms. 

1 Introduction 
Feature selection has been an important component in 
machine learning models (Guyon & Elisseeff, 2003). Feature 
selection approaches in general can be divided into three 
groups: filter methods (Kira & Rendell, 1992; Lewis, 1992; 
Peng et al., 2005), wrapper methods (Guyon et al., 2002), and 
embedded methods (Cawley et al., 2006; Wang et al., 2008; 
Xiang et al., 2012). The filter methods use proxy measures 
that are independent on the machine learning models to rank 
features according to their relevance to the learning problem. 
The wrapper methods search subsets of features to optimize a 
given learning model’s performance, and typically have 
higher computational cost than the filter methods. The 
embedded methods integrate the feature selection task into 
the model learning, and are able to achieve good performance 
with a moderate computational cost. Particularly, sparse 
linear model based feature selection methods have achieved 
promising performance. The sparse linear model based 

methods typically adopt  ℓ1-norm regularization, and many 
variants have been proposed with different sparsity 
regularization terms, such as Lasso (Tibshirani, 1996) and 
sparse support vector machine (SVM) (Bradley & 
Mangasarian, 1998; Mangasarian, 2006). 

In multi-task learning, various ℓ2,1-norm (Liu et al., 2009; 
Nie et al., 2010; Obozinski et al., 2006) and ℓ∞,1-norm (Liu 
et al., 2009) based regularization models have been 
investigated for selecting features with joint sparsity across 
different tasks. Moreover, group Lasso based methods (Kong 
& Ding, 2013; Kong et al., 2014) have also been proposed in 
recent years. In fact, the multi-task feature selection 
algorithms share similarities with group lasso based methods. 
Since non-convex ℓ𝑝-norm or ℓ𝑟,𝑝-norm (0 < 𝑝 < 1) based 
regularization models can yield sparser solutions than 
ℓ1 -norm or ℓ𝑟,1 -norm based models, they have gained 
increasing attention in recent studies (Chartrand & Staneva, 
2008; Liu et al., 2007; Zhang et al., 2014). 

The sparse linear model based feature selection algorithms 
typically take a trade-off between a data-fitting loss function 
term and a sparsity term, therefore there inevitably exists 
residual in the loss function. However, little is known about 
such a residual’s impact on the feature selection. Most of 
these algorithms are developed for classification problems. 
However, their data-fitting loss functions adopted are 
typically based on the regression of class labels, rather than 
surrogates of 0-1 loss that are more appropriate for 
classification problems (Bartlett et al., 2004). To overcome 
the limitations of existing sparse model based feature 
selection methods, we present a novel feature selection 
method via directly optimizing a linear model’s sparsity with 
ℓ2,𝑝 -norm (0 < 𝑝 ≤ 1) , subject to data-fitting inequality 
constraints, instead of adopting the sparsity as a 
regularization term. Our constrained optimization 
formulation circumvents the difficulty of regularization 
parameter setting, and the inequality constraint based 
data-fitting loss function enables large between-class 
margins, similar to SVMs, but capable of handling 
multi-class problems. We propose an efficient algorithm to 
solve the optimization problem associated with the direct 
sparsity optimization, which is non-convex and non-smooth 
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when 0 < 𝑝 < 1, by transforming it to a Frobenius-norm 
induced problem at each iteration step, which has been 
proved to converge to Karush–Kuhn–Tucker (KKT) points.  

The proposed algorithm has been evaluated based on 6 
publicly available datasets, and extensive comparison 
experiments have demonstrated that our algorithm could 
achieve feature selection performance competitive to 
state-of-the-art algorithms, including ReliefF (Kira & 
Rendell, 1992),   Min-Redundancy Max-Relevance (mRMR) 
(Peng, et al., 2005), ℓ1 -norm based ℓ1 -SVM (Bradley & 
Mangasarian, 1998; Mangasarian, 2006), and ℓ2,1 -norm 
based Robust Feature Selection (RFS) (Nie, et al., 2010; 
Xiang, et al., 2012). 

2 Direct Sparsity Optimization Based Feature 
Selection (DSO-FS) 

Throughout this paper, matrices are written in bold uppercase, 
vectors are written in bold lowercase, and all the scalars are 
denoted by normal letters. 𝑰 denotes an identity matrix and 𝟏 
denotes a vector or matrix with all the elements equal to 1. 
Given a matrix 𝑨 ∈  ℝ𝑚×𝑛, the ℓ𝑟,𝑝-norm(𝑟 > 0, 𝑝 > 0)1 of 
𝑨 is defined as: 

‖𝑨‖𝑟,𝑝 =
(

 ∑(∑|𝑨𝑖,𝑗|
𝑟

𝑛

𝑗=1
)

𝑝
𝑟𝑚

𝑖=1 )

 

1
𝑝

= (∑(‖𝒂𝑖‖𝑟)𝑝
𝑚

𝑖=1
)
1
𝑝
, (1) 

where ‖𝒂𝑖‖𝑟 denotes ℓ𝑟-norm of the 𝑖-th row vector of 𝑨.  
Given 𝑚 training samples {𝒙𝑖, 𝑦𝑖}𝑖=1𝑚  where 𝒙𝑖 ∈ ℝ𝑛  is a 

data point and 𝑦𝑖  is its associated class label in 𝑐(𝑐 ≥ 2) 
classes, the multiclass classification problem can be modeled 
as a linear learning problem. For simplicity, the bias of the 
standard linear regression is absorbed into 𝑾 as an additional 
dimension with all elements equal to 1. 

𝑿𝑾 = 𝒀,                                          (2) 
where 𝑿 = [𝒙1; 𝒙2;… ; 𝒙𝑚; 1] , 𝑾 ∈ ℝ(𝑛+1)×𝑐  is the weight 
matrix to be learned, and 𝒀 = [𝒇1; 𝒇2;… , 𝒇𝑖; … ; 𝒇𝑚] ∈ ℝ𝑚×𝑐 
is a class label matrix with labels rearranged using a 
one-versus-rest model, i.e., 𝒇𝑖 = [−1,… ,1, … , −1] ∈ ℝc (the 
𝑗-th element is 1 and others 

For selecting a subset of features, 𝑾 should have sparse 
columns and share joint sparsity along its row direction since 
each row of 𝑾 corresponds to the same feature. Therefore, 
we model the feature selection problem as  

    𝑚𝑖𝑛
𝑾
‖𝑾‖2,0 ,   𝑠. 𝑡. , 𝑿𝑾 = 𝒀.                 (3) 

where ‖𝐖‖2,0  is the number of non-zero rows in 𝑾 , of 
which not all the elements are zero. 

It is NP-hard to solve the optimization problem of Eqn. (3). 
Therefore ℓ2,𝑝 -norm (0 < 𝑝 ≤ 1) can be adopted instead, 
resulting in a relaxed sparsity optimization problem: 

                                                 
1 If 0 < 𝑟 < 1 or 0 <  𝑝 < 1, ℓ𝑟,𝑝-norm does not satisfy triangle 
inequality. However, this does not affect the proposed algorithm. 

    𝑚𝑖𝑛
𝑾
‖𝑾‖2,𝑝 ,   𝑠. 𝑡. , 𝑿𝑾 = 𝒀 ,               (4) 

where 0 < 𝑝 ≤ 1. 
Many studies (Liu, et al., 2009; Nie, et al., 2010; 

Obozinski, et al., 2006) assumed that the ℓ2,1-norm based 
problems is equivalent to ℓ2,0-norm based problems under 
certain conditions (Candes & Tao, 2005). In practice, 
ℓ2,𝑝-norm (0 < 𝑝 < 1) can lead to sparser solutions in most 
cases although it is non-convex (Chartrand & Staneva, 2008; 
Liu, et al., 2007; Zhang, et al., 2014). 

It is desired that the classification model’s margins 
between classes are as large as possible for obtaining 
improved generalization performance. Accordingly, the 
equality constraint in Eqn. (4) is relaxed to be inequality 
constraints, i.e., 

    𝑚𝑖𝑛
𝑾
‖𝑾‖2,𝑝 ,    𝑠. 𝑡. , 𝒀 ⊙ 𝑿𝑾 ≽ 𝟏 ,              (5) 

where 𝟏 ∈ ℝm×c , ⊙  is a Hadamard product operator for 
element-wise multiplication between two matrices of the 
same dimensions, and ≽ denotes that the elements of the 
left matrix are greater than or equal to their corresponding 
ones of the right matrix. 

The optimization problem of Eqn. (5) can be reformulated 
by introducing a slack variable 𝑬 ∈ ℝ𝑚×𝑐  whose elements 
have the same positive or negative sign as the corresponding 
elements of 𝒀, as 

                                   𝑚𝑖𝑛
𝑾,𝑬

  ‖𝑾‖2,𝑝     
                                     𝑠. 𝑡.    𝑿𝑾 =  𝒀 + 𝑬   
                                             𝒀 ⊙ 𝑬 ≽ 𝟎 ,                                 (6) 

where 𝑬 ∈ ℝ𝑚×𝑐. 
To solve the optimization problem of Eqn. (6), we first 

solve the linear equation 𝑿𝑾 =  𝒀 + 𝑬 to obtain the solution 
space of 𝑾, and then directly search the solution space to 
find a solution with the minimum of ‖𝑾‖2,𝑝. Note that if 
𝑿𝑾 =  𝒀 + 𝑬 is inconsistent, especially when the number of 
data samples 𝑚  is greater than the number of features 𝑛 , 
least-square solution space of the equation can be used as a 
substitute. Actually, we only need to solve 𝑿𝑾 = 𝑿𝑿+(𝒀 +
𝑬), where 𝑿+ is pseudo-inverse. This equation is compatible 
when 𝑿 is row full rank, since 𝑿𝑿+ = 𝑰 on this occasion. 
Gaussian Elimination is a simple and efficient way to obtain 
the solution space of 𝑾. Without loss the generality, we 
assume that the first 𝑚0  column vectors of 𝑿  are linearly 
independent, i.e. 

[ 𝑿 ⋮ 𝑿𝑿+(𝒀 + 𝑬) ] =  [ 𝑿1  𝑿2 ⋮ 𝑿𝑿+(𝒀 + 𝑬)  ] 
left−multiply 𝑫 →           [𝑰 𝑴

𝟎 𝟎  
⋮ 𝑵 + 𝑳𝑬
⋮ 𝟎 ],                               (7) 

where the rank of 𝑿  is 𝑚0 ,  𝑿1 ∈ ℝ𝑚×𝑚0 ,  𝑿2 ∈ ℝ𝑚×𝑛0 , 
𝑰 ∈ ℝ𝑚0×𝑚0 , 𝑴 ∈ ℝ𝑚0×𝑛0 ,  𝑵 ∈ ℝ𝑚0×𝑐 , and 𝑫 ∈ ℝ𝑚0×𝑚0  
is product matrix of a series of elemental matrices, 𝑳 =
𝑫𝑿𝑿+ ∈ ℝ𝑚0×𝑚0 , and 𝑛0 = 𝑛 + 1 − 𝑚0. Thus, the solution 
space of 𝑾 is 
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𝑾 =  𝐏𝑼 + 𝑸 + 𝑭 = [𝑴𝑰 ]𝑼 + [
𝑵
𝟎] + [

𝑳𝑬
𝟎 ]     (8) 

where  𝑷 ∈ ℝ𝑛×𝑛0 ,  𝑸 ∈ ℝ𝑛×𝑐 , 𝑭 ∈ ℝ𝑛×𝑐 , 𝑰 ∈ ℝ𝑛0×𝑛0 , and 
𝑼 ∈ ℝ𝑛0×𝑐 is an arbitrary matrix. 

Finally, the optimization problem of Eqn. (5) can be 
reformulated as 

min 𝑼,𝑬 ‖ 𝑷𝑼 + 𝑸 + [𝑳𝑬𝟎 ]‖2,𝑝 , s.t.,  𝒀 ⊙ 𝑬 ≽ 𝟎   (9)  

where 0 < 𝑝 ≤ 1. 

3 An Iterative Algorithm for DSO-FS 
We propose an iterative algorithm to solve the optimization 
problem of Eqn. (9) due to that no analytical solution is 
available. At each iteration step, we alternately optimize 
variables 𝑼  and 𝑬 . An objective function with ℓ2,p -norm 
(0 < 𝑝 ≤ 1) is non-smooth and non-convex when 0 < 𝑝 < 1. 
To efficiently solve this problem, ℓ2,p-norm is reformulated 
by Frobenius-norm (ℱ-norm) that is smooth and convex, as  

‖𝑨‖2,𝑝𝑝 =  ‖𝜮𝑨‖𝐹2  ,                             (10) 
where 𝜮 is a diagonal matrix with the 𝑖-th diagonal element 
𝜮𝑖𝑖 = 1/‖𝒂𝑖‖21−𝑝 2⁄ , and ‖𝒂i‖2 is defined in Eqn.(1)2. Note 
that 𝒁∗ = argmin 𝒁‖𝑨(𝒁)‖2,𝑝𝑝 = argmin 𝒁‖𝑨(𝒁)‖2,𝑝, where 
𝑨(𝒁) is a function of 𝒁. The similar strategies has also been 
adopted in FOcal Underdetermined System Solver (FOCUSS) 
(Cotter et al., 2005; Gorodnitsky & Rao, 1997), and various 
optimization techniques for ℓ2,1-norm regularization based 
feature selection algorithms (Hou et al., 2011; Krishnapuram 
et al., 2005; Merchante et al., 2012; Nie, et al., 2010; Xiang, 
et al., 2012; Yi Yang et al., 2011) can be considered as its 
special case when 𝑝 = 1 . Our solution is summarized in 
Algorithm 1. 
 

Algorithm 1. Feature Selection via Direct Sparsity 
Optimization (DSO-FS) 
Input: data points {𝒙𝑖}𝑖=1

𝑚
(𝒙𝑖 ∈ ℝ𝑛) and their corre-

sponding label {𝑦𝑖}𝑖=1
𝑚

; norm power 𝑝 ; number of 
features 𝑑 to be selected. 
Construct 𝑿 and 𝒀 according to Eqn. (2), and 𝑳, 𝑴, 
𝑵, 𝐏 and 𝑸 according to Eqn. (7) and Eqn. (8). 

Set 𝑘 = 0  and initialize 𝑬0  and  𝜮0  ∈ ℝ𝑛×𝑛  with a 
zero matrix and an identity matrix respectively. 
repeat 

𝑮 =  𝑸 + [𝑳𝑬𝑘𝟎 ]  
𝑼𝑘+1 = argmin 𝑼 ‖𝜮𝑘(𝑷𝑼+ 𝑮)‖𝐹

2
  

𝑽𝑘 = −𝑴𝑼𝑘+1 + 𝑵 + 𝑳𝑬𝑘. 
Update diagonal matrix 𝜦𝑘 , where the 𝑖-th di-

                                                 
2 𝜮 = 𝚷−𝟏, where 𝚷 is a diagonal matrix with the 𝑖-th diagonal 
element 𝚷𝑖𝑖 = ‖𝒂𝒊‖21−𝑝 2⁄ . If any row vector 𝒂𝑖 = 0, we define 
𝜮 = 𝚷+. 

agonal element is 𝟏
‖𝑽𝑖𝑘‖2

1−𝑝 2⁄   

𝑯 = − 𝑴𝑼𝑘+1 + 𝑵  
𝑬𝑘+1 = argmin 𝑬 ‖𝜦𝑘(𝑳𝑬 + 𝑯)‖𝐹

2
,  s. t.  𝒀⊙ 𝑬 ≽

𝟎 
Update 𝑘 = 𝑘 + 1, 𝑾𝑘 =  𝐏𝑼𝑘 + 𝑸 + [𝑳𝑬𝑘𝟎 ] 
Update 𝜮𝑘, where the 𝑖-th diagonal element is 

𝟏
‖𝒘𝑖𝑘‖2

1−𝑝 2⁄   

until convergence 
Sort all features according to ‖𝒘𝑖‖2  and select the 
largest 𝑑 features. 

Note that at each iteration step, for solving 𝑼𝑘+1 =
argmin 𝑼‖𝜮𝑘(𝑷𝑼 + 𝑮)‖𝐹2 , an analytical solution is available, 
i.e., 

𝑼𝑘+1 = −(𝑷𝑡𝑺𝑷)−1𝑷𝑡𝑺𝑮.                      (11) 
where 𝑺 = (𝜮𝑘)2. 

According to Eqn. (8), Eqn. (11) can be reformulated as 

𝑼𝑘+1 = (𝑴𝑡𝑺1𝑴 + 𝑺2)−1𝑴𝑡𝑺1𝑲,                (12) 
where 𝑺1 ∈ ℝ𝑚0×𝑚0  is a diagonal matrix, of which the 
diagonal elements are the first m0 elements of 𝑺 , 𝑺𝟐 ∈
ℝ𝑛0×𝑛0 is a diagonal matrix, of which the diagonal elements 
are the last 𝑛0 elements of 𝑺, and 𝑲 = 𝑵 + 𝑳𝑬𝑘(∈ ℝ𝑚0×𝑐). 

If 𝑚0 < 𝑛0 , the optimization problem’s computational 
cost can be further reduced by a simple matrix operation  

𝑼𝒌+𝟏 = 𝑻(𝑴𝑻 + 𝑰)−1 𝑲,                 (13) 
where 𝑻 = 𝑺2−𝟏𝑴𝑡𝑺1 and 𝑰 ∈ ℝ𝑚0×𝑚0 . 

For feature selection problems with the number of samples 
less than the number of features, i.e., 𝑚0 ≤ 𝑚 ≪ 𝑛0 , 
updating Eqn. (13) has reduced computational cost than Eqn. 
(11). It is worth noting that it is not necessary to directly 
calculate 𝑪 = (𝑴𝑻 + 𝑰)−𝟏 𝑲 , which is computationally 
more expensive than solving the following linear equation 

(𝑴𝑻 + 𝑰)𝑪 = 𝑲.                          (14). 
Although no analytical solution is available for 𝑬𝑘+1 =

argmin 𝑬‖𝜦𝒌(𝑳𝑬 +𝑯)‖𝐹
2

 (s. t.   𝒀 ⊙ 𝑬 ≽ 𝟎), it is a smooth 
and convex optimization problem. Therefore, it can be 
efficiently solved by existing tools, such as CVX (CVX 
Research, 2011). 

4 Convergence proof  
Algorithm 1 makes ‖𝑾‖2,𝑝  to monotonically decrease at 
every iteration step and finally converges.  

Lemma 1. Given any two vectors 𝒂 and 𝒃, we have  

(1 − 𝜃)‖𝒂‖22  + 𝜃 ‖𝒃‖22 ≥ ‖𝒂‖22−2𝜃‖𝒃‖22𝜃,    (15) 
where 0 < 𝜃 < 1 and the equality holds if and only if 𝑎 = 𝑏.  

Proof. Since ln(𝑥2) is concave, we have 
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ln((1 − 𝜃)𝑥12 + 𝜃𝑥22) ≥ (1 − 𝜃) ln(𝑥12) + 𝜃 ln(𝑥22) , (16) 
where 0 < 𝜃 < 1. The equality holds if and only if 𝑥1 = 𝑥2, 
indicating that 

(1 − 𝜃)𝑥12 + 𝜃𝑥22 ≥ 𝑥12−2𝜃𝑥22𝜃.                   (17) 
Then, we have  

(1 − 𝜃)‖𝒂‖22  + 𝜃 ‖𝒃‖22 ≥ ‖𝒂‖22−2𝜃‖𝒃‖22𝜃,       (18) 
where the equality holds if and only if 𝒂 = 𝒃. □  

Lemma 2. Given an optimization problem: 

    min 
𝒁
‖ 𝑺 𝜱(𝒁) ‖𝑭2,   𝑠. 𝑡.  𝒁 ∈  𝓕 ,                 

where 𝜱(𝒁) is a function of 𝒁, 𝓕 is the feasible region, and 
𝑺  is a diagonal matrix whose 𝑖 -th diagonal element is 
1/‖𝜱(𝒁0)𝑖‖21−𝑝 2⁄  (𝒁0 could be any object in 𝓕, 𝜱(𝒁0)𝑖  is 
the 𝑖-th row vector of 𝜱(𝒁0) and 0 < 𝑝 ≤ 2 ), we have 

‖𝜱(𝒁∗)‖2,𝑝 ≤ ‖𝜱(𝒁𝟎)‖2,𝑝,          (19) 
where 𝒁∗ is the optimal solution of Eqn. (19) and the equality 
holds if and only if 𝜱(𝒁∗) = 𝜱(𝒁0)  

Proof. Since 𝒁∗ is the optimal solution, we have 

‖  𝑺 𝜱(𝒁∗) ‖𝐹2 ≤ ‖  𝑺 𝜱(𝒁𝟎) ‖𝐹2 .                (20) 
Then 

∑ ‖𝜱(𝒁∗)𝒊‖22
    ‖𝜱(𝒁𝟎)𝒊‖22−𝑝

≤∑‖𝜱(𝒁𝟎)𝒊‖2𝑝
𝒊𝒊

.           (21) 

where 𝜱(𝒁𝟎)𝑖 and 𝜱(𝒁∗)𝑖 are the 𝑖-th row vector of 𝜱(𝒁0) 
and 𝜱(𝒁∗), respectively. 

According to Lemma 1, we have  

(1 − 𝑝2) ‖𝜱(𝒁𝟎)𝑖‖2
2  + 𝑝2 ‖𝜱(𝒁

∗)𝑖‖22 

≥ ‖𝜱(𝒁𝟎)𝑖‖22−𝑝‖𝜱(𝒁∗)𝑖‖2𝑝.                          (22) 

Then dividing the both sides by ‖𝜱(𝒁0)𝑖‖22−𝑝, we have 

‖𝜱(𝒁∗)𝑖‖2𝑝 ≤ (1 −
𝑝
2) ‖𝜱(𝒁𝟎)𝑖‖2

𝑝  

              + 𝑝2 
‖𝜱(𝒁∗)𝑖‖22

    ‖𝜱(𝒁𝟎)𝑖‖22−𝑝
           (23) 

It indicates that 

∑‖𝜱(𝒁∗)𝑖‖2𝑝
𝑖

≤ (1 − 𝑝2)∑‖𝜱(𝒁𝟎)𝑖‖2𝑝
𝑖

 

       + 𝑝2 ∑
‖𝜱(𝒁∗)𝑖‖22

    ‖𝜱(𝒁𝟎)𝑖‖22−𝑝𝑖
.      (24) 

Combining Eqns. (21) and (24), we obtain  

∑‖𝜱(𝒁∗)𝑖‖2𝑝
𝑖

≤∑‖𝜱(𝒁𝟎)𝑖‖2𝑝
𝑖

.                 (25) 

Therefore, 

‖𝜱(𝒁∗)‖2,𝑝 ≤ ‖𝜱(𝒁𝟎)‖2,𝑝 ,                       (26) 

where the equality holds if and only if 𝜱(𝒁∗) = 𝜱(𝒁𝟎).□ 
Theorem 1. The sequence {𝑾𝑘} produced via Algorithm 

1 has the following properties: ‖𝑾𝑘‖2,𝑝 is non-increasing at 
successive iteration steps and {‖𝑾𝑘‖2,𝑝}  converges to a 
limited value. 

Proof. Supposing we have obtained the solution 𝑼𝑘 , 𝑬𝑘, 
and the objective function 𝑾𝑘 at the (𝑘 + 1)-th iteration step, 
we solve the optimization problem min 𝑼‖𝜮𝒌(𝑷𝑼 + 𝑮)‖𝑭

2
 to 

obtain 𝑼𝑘+1 by fixing 𝑬𝑘. According to Lemma 2, we have 

                     ‖𝑽𝒌‖2,𝑠 = ‖ 𝐏𝑼𝑘+1 + 𝑸 + [
𝑳𝑬𝑘
𝟎 ]‖2,𝑝

 

≤ ‖𝑾𝑘‖2,𝑝 .                                      (27) 
Then we fix 𝑼𝑘+1 ， and solve the optimization problem 

min 𝑬‖𝜦𝒌(𝑳𝑬 + 𝑯)‖𝑭
2
 to obtain 𝑬𝑘+1 . According to Lemma 

2, we have 

                  ‖𝑾𝑘+1‖2,𝑝 =  ‖𝐏𝑼𝑘+1 + 𝑸 + [𝑳𝑬
𝑘+1

𝟎 ]‖ 

   ≤ ‖𝑽𝑘‖2,𝑝.                                     (28) 
Combining (27) and (28), we obtain  

‖𝑾𝑘+1‖2,𝑝 ≤ ‖𝑾𝑘‖2,𝑝 ,                      (29) 
where the equality holds if and only if 𝐖k+1 = 𝐕𝐤 = 𝐖k. 
Since the lower bound of ‖𝑾‖2,p is limited, {‖𝑾𝑘‖2,𝑝} will 
converge. □ 

Theorem 2. If sequences {𝑾𝑘}  and {𝑬𝑘}  produced in 
Algorithm 1 have limit points, the limit points satisfy the 
Karush–Kuhn–Tucker (KKT) conditions of Eqn. (6). When 
𝑝 ≥ 1, the limited points are globally optimal. 

Due to space limitations, the proof is provided in 
supplementary document (Peng & Fan, 2016).. 

It is worth noting that Lemma 2 works for sparsity 
regularization based feature selection algorithms, i.e., 

min
𝒁
∑‖ 𝑨𝑖𝒁 + 𝑩𝑖‖2,𝑝
𝑖

+  λ‖𝒁‖2,𝑝 ,                  (30) 

where λ is the regularization coefficient.  
Eqn. (30) can be reformulated as  

min
𝒁
‖[(𝑨1𝒁 + 𝑩1)𝑡, … , (𝑨𝑖𝒁 + 𝑩𝑖)𝑡, … , λ𝒁𝑡 ]‖2,𝑝  .   (31) 

The Robust Feature Selection (RFS) (Nie, et al., 2010; 
Xiang, et al., 2012) is a special case of Eqn. (30) when 𝑖 = 1 
and 𝑝 = 1. 
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5 Experiments 

5.1 Experimental datasets and settings 
The proposed algorithm has been evaluated based on 6 
publicly available datasets. In particular, 2 datasets were 
obtained from UCI, including ISOLET and SEMEION. 
ISOLET is a speech recognition data set with 7797 samples 
from 26 classes, and each sample has 617 features; 
SEMEION contains 1593 handwritten images from ~80 
people, stretched in a rectangular box of 16 × 16. For these 2 
datasets, the number of features is less than the number of 
their samples. Another 2 datasets were microarray data, 
including LUNG and CLL-SUB-111. In particular, LUNG 
consists of 203 samples, each having 3312 genes with 
standard deviations larger than 50 expression units 
(Bhattacharjee et al., 2001); CLL-SUB-111 consists of 111 
samples with 11340 features (featureselection.asu.edu). Our 
algorithm has also been validated based on 2 image datasets, 
including UMIST and AR. In particular, UMIST includes 
face images with a resolution of 56 × 46 from 20 different 
people, and AR has 130 samples with 2400 features.  

We compared our method with sparsity regularization 
based feature selection methods, including ℓ1-SVM(Bradley 
& Mangasarian, 1998; Mangasarian, 2006) and ℓ2,1 -norm 
based Robust Feature Selection (RFS) (Nie, et al., 2010; 
Xiang, et al., 2012), with an objective function 𝒥(𝑾) =
‖𝑿𝑾 − 𝒀‖2,1 + 𝜆‖𝑾‖2,1. We also compared our algorithm 
with well-known filter methods, including ReliefF (Kira & 
Rendell, 1992) and mRMR (Peng, et al., 2005).  

The feature selection methods were evaluated based on 
their classification accuracy. Particularly, linear SVM 
(Chang & Lin, 2011) was adopted to build classifiers based 
on the selected features. The parameter 𝐶  of linear SVM 
classifiers were tuned using a cross-validation strategy by 
searching a candidate set [10-4, 10-3, 10-2, 10-1, 1, 101, 102]. 
The regularization parameter of ℓ1 -SVM and RFS were 
tuned using the same cross-validation strategy by searching a 
candidate set [10-3, 10-2, 10-1, 1, 101, 102, 103]. 

In our experiments, we first normalized all the data to have 

0 mean and unit standard deviation for each feature. 10 trials 
were performed on each dataset. In each trial, the samples of 
each dataset were randomly spitted into training and testing 
subsets with a ratio of 6:4. For tuning parameters, a 3-fold 
was used for datasets with less than 200 training samples, and 
an 8-fold cross-validation was used for other datasets. 

5.2 Effect of parameter 𝒑 
To investigate how the classification performance is affected 
by the parameter 𝑝 of DSO-FS, we performed experiments 
based on datasets ISOLET, LUNG, and UMIST. We 
obtained solutions of 𝑾 with different settings of 𝑝 ∈ [0.1, 
0.3, 0.5, 0.7, 0.9, 1] using Algorithm 1 based on the above 3 
datasets, and then selected top ranked features according to 
ℓ2 -norm ‖𝒘𝑖‖2  to build classifiers. Figure 1 shows the 
classification accuracy as a function of the number of the 
selected features and the parameter 𝑝. The results shown in 
Figure 1 indicated that 𝑝  played an important role in the 
classification. 

5.3 Comparisons with state-of-the-art methods 
Since the classification performance of linear SVM 
classifiers built on the features selected by our method is 
hinged on the parameter 𝑝 , we used a cross-validation 
strategy to select an optimal value from [0.1, 0.3, 0.5, 0.7, 0.9, 
1] for our method. Figure 2 shows the average classification 
performance of classifiers built on the features selected by 
different methods in 10 trials. In particular, the average 
classification accuracy is shown as a function of the number 
of features used in the classification model. Compared with 
other methods, the proposed method achieved higher 
classification accuracy on most datasets, indicating that our 
method had overall better performance than other algorithms.  

Table 1 summarizes mean and standard deviation of the 
classification rates in 10 trails for classifiers built on the top 
100 features selected by the algorithms under comparison. 
These results demonstrated that our algorithm had the overall 
best classification accuracy on all the 6 datasets. 

 
 

 
 

  
 

(a) (b) (c) 
Figure 1: Classification accuracy with different numbers of features selected with different values of 𝑝. The results shown were 
obtained based on datasets: (a) ISOLET, (b) LUNG, and (c) UMIST. 
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Table1: Mean and standard deviation of the classification Accuracy (%) of Linear-SVM built on the selected top 100features 
by different algorithms for datasets: ISOLET, SEMEION, LUNG, CLL-SUB-111, UMIST, and AR. 

 mRMR ReliefF L1-SVM RFS DSO-FS 
ISOLET 90.82±0.72 89.13±0.53 93.90±0.53 93.72±0.55 95.23±0.44 
SEMEION 88.18±1.01 86.54±0.89 90.36±0.33 90.45±1.00 90.64±0.93 
LUNG 94.88±1.20 94.88±1.42 95.12±1.22 95.37±1.42 95.37±1.42 
CLL-SUB-111 76.47±11.0 72.94±9.18 79.41±4.15 75.88±6.80 81.18±6.60 
UMIST 96.87±0.84 98.17±0.92 98.17±0.80 98.04±0.73 98.39±1.16 
AR 87.31±5.02 85.58±6.15 87.12±9.26 88.85±6.76 89.62±3.74 

 

   
a) (b) (c) 

   
(d) (e) (f) 

Figure 2: Average classification accuracy of 10 trials for classifiers built on the selected top 100 features by different algorithms. The 
results shown were obtained based on datasets: (a) ISOLET, (b) SEMEION, (c) LUNG , (d) CLL-SUB-111, (e) UMIST, and (f) AR. 

6 Conclusions and Discussions 
In this paper, a novel feature selection algorithm via 

direct sparsity optimization was proposed. Our method 
directly optimizes a large margin linear classification 
model’s sparsity with ℓ2,𝑝-norm (0 < 𝑝 ≤ 1) subject to a 
data-fitting constraint, different from the sparse 
regularization based algorithms that typically take a 
trade-off between a data-fitting loss function term and a 
sparsity term. Since little is known about such a trade-off’s 
impact on the feature selection, empirical parameter tuning is 
typically adopted for choosing the trade-off parameter. Our 
feature selection method adopts data-fitting inequality 
constraints to obtain large between-class margins, which 
could improve the generalization ability of the selected 
features, rather than data-fitting loss functions built upon the 
regression of class labels (Bartlett, et al., 2004). We also 
proposed an efficient algorithm to solve the non-convex 

( 0 < 𝑝 < 1 ) and non-smooth optimization problem 
associated with the feature selection problem. Extensive 
experiments based on 6 datasets have demonstrated that 
the proposed method could achieve better performance 
than state-of-the-art feature selection algorithms. 
Furthermore, our algorithm can be easily extended for 
solving other sparsity regularization algorithms. In 
particular, our algorithm could be used to solve ℓ0 and 
ℓ2,0  based optimization problems subject to linear 
constraints by setting 𝑝 close to 0. Furthermore, similar to 
SVM, we could also add soft-margin to our algorithm for 
better performance in the future work. 
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