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Abstract
Effectiveness and robustness are two essential as-
pects of supervised learning studies. For effective
learning, ensemble methods are developed to build
a strong effective model from ensemble of weak
models. For robust learning, self-paced learning
(SPL) is proposed to learn in a self-controlled pace
from easy samples to complex ones. Motivated
by simultaneously enhancing the learning effective-
ness and robustness, we propose a unified frame-
work, Self-Paced Boost Learning (SPBL). With an
adaptive from-easy-to-hard pace in boosting pro-
cess, SPBL asymptotically guides the model to fo-
cus more on the insufficiently learned samples with
higher reliability. Via a max-margin boosting op-
timization with self-paced sample selection, SPBL
is capable of capturing the intrinsic inter-class dis-
criminative patterns while ensuring the reliability
of the samples involved in learning. We formulate
SPBL as a fully-corrective optimization for clas-
sification. The experiments on several real-world
datasets show the superiority of SPBL in terms of
both effectiveness and robustness.

1 Introduction
Effectiveness and robustness are two essential principles of
generic supervised learning studies. The effective learning
focuses on the discriminativeness of the model to capture the
intrinsic data patterns for an accurate prediction. The robust
learning typically lies in a distinction of the reliable data from
the noisy, confusing data, such that the learning is guided
by the reliable samples and less influenced by the confusing
ones. The efforts of most approaches for learning from the
data generally come down to these two aspects.

For effective learning, the key issue lies in the complex
distributions of data with local nonlinear structures. To ef-
fectively explore these patterns, the boosting scheme [Zhou,
2012] is developed. Generally, the boosting methods build
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Figure 1: Decision boundaries of boosting and SPBL clas-
sifiers and the ground truth for synthetic data with confus-
ing/noisy points. The decision boundary of SPBL is more
robust and effective (closer to the ground truth) than that of
boosting, since SPBL focuses on the misclassified samples
with high reliability based on a self-paced boosting optimiza-
tion.

a strong ensemble model as a combination of multiple weak
models, where each weak model focuses on the samples mis-
predicted by the previous model ensembles. Through this,
boosting performs an asymptotic piecewise approximation to
the data distributions to fit each sample sufficiently. On the
other hand, since only the mispredicted samples are consid-
ered in each step, the boosting is sensitive to the noisy and
confusing data which greatly affect the optimization, espe-
cially at the later learning stage. Figure 1 shows a toy exam-
ple of the decision boundary of boosting classifier for syn-
thetic data with confusing data points. The boosting scheme
is very discriminative while lacking a learning robustness.

For robust learning, the goal is to relieve the influence of
the noisy and confusing data. The confusing data generally
correspond to the highly nonlinear local patterns hardly learn-
able for the model space, and the noisy ones are the outliers
that should not be learned. Typically, the learning robustness
relies on a sample selection to distinguish the reliable sam-
ples from the confusing ones. The recently studied self-paced
learning (SPL) [Zhao et al., 2015] is such a representative
effort. SPL is a learning paradigm that dynamically incor-
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porates the samples into learning from easy ones to complex
ones. With a self-controlled sample selection embedded in
learning, the model is calibrated in a pace adaptively con-
trolled by what it has already learned. Thus, SPL smoothly
guides the learning to emphasize the patterns of the reliable
discriminative data rather than those of the noisy and confus-
ing ones, and obtains the learning robustness.

Based on the above analysis, we notice that boosting and
SPL are consistent in basic principles and complementary in
methodology. For consistency, both schemes are based on
an asymptotic learning process from a weak/simple state to a
strong/hard state. On the other hand, boosting and SPL are
complementary in three aspects. First, the two schemes are
respectively concerned on each of the two essential tasks of
machine learning, the effectiveness and the robustness. Sec-
ond, while boosting imposes a negative suppression on the
insufficiently learned samples, SPL positively encourages the
easily learned ones in a controlled pace. Third, boosting fo-
cuses more on the inter-class margins by striving to fit each
sample, while SPL is more concerned with the intra-class
variations by dynamically selecting easy samples with differ-
ent patterns. Thus, boosting tends to reflect the local patterns
and is more sensitive to the noisy data, while SPL tends to ex-
plore the data smoothly with more robustness. As a result, the
two learning schemes are prone to benefit from each other.

To simultaneously enhance the learning effectiveness and
robustness, in this paper, we propose a unified framework
Self-Paced Boost Learning (SPBL). With an adaptive pace
from easy to hard in boosting optimization, SPBL asymp-
totically guides the learning to focus on the insufficiently
learned samples with high reliability. Through this, SPBL
learns a model in both directions of positive encouragement
(on reliable samples) and negative suppression (on misclassi-
fied samples), and is capable of capturing the intrinsic inter-
class discriminative patterns while ensuring the reliability of
the samples involved in learning. Figure 1 further shows the
decision boundary of SPBL on the toy dataset, which demon-
strates its robustness and effectiveness.

We formulate SPBL as a fully-corrective optimization for
classification problem. Note that SPBL is a general frame-
work for supervised learning and could be formulated for
other supervised applications. The contributions of this pa-
per are summarized as follows:

1. We propose a unified learning framework SPBL that
learns in a joint manner from weak models to strong model
and from easy samples to complex ones. To the best of our
knowledge, this is the first work that reveals and utilizes the
association of boosting and SPL to simultaneously enhance
the effectiveness and the robustness for supervised learning.

2. We formulate SPBL as a fully-corrective max-margin
boosting optimization with self-paced sample selection for
classification task.

2 Related Work
We review the literature from the aspects of boost learning
and self-paced learning.

Boosting is a family of supervised ensemble learning ap-
proaches which convert weak learners to strong ones [Zhou,

2012]. The boosting methods construct a strong (highly ac-
curate) model by iteratively learning and combining many
weak, inaccurate models, where each weak model focuses on
the samples mispredicted by the previous models. The main
variation among different boosting methods is their ways of
weighting training samples and weak learners. Examples of
boosting methods include Adaboost [Freund and Schapire,
1997], SoftBoost [Rätsch et al., 2007], TotalBoost [War-
muth et al., 2006], LPBoost [Demiriz et al., 2002], Logit-
Boost [Friedman et al., 2000], and MadaBoost [Domingo and
Watanabe, 2000]. Boosting methods are applied in exten-
sive applications, such as multi-class classification [Shen et

al., 2012b; Zhu et al., 2009], regression [Duffy and Helm-
bold, 2002], metric learning [Shen et al., 2012a], and sta-
tistical modeling[Tutz and Binder, 2006; Mayr et al., 2014].
The effectiveness of boosting lies in its piecewise approxi-
mation of a nonlinear decision function to sufficiently fit the
data patterns [Schapire and Freund, 2012]. However, [Long
and Servedio, 2010] indicates that many boosting methods
cannot withstand random classification noise.

First proposed by [Kumar et al., 2010], the self-paced
learning is inspired by the learning process of humans that
gradually incorporates the training samples into learning from
easy ones to complex ones. Different from the curriculum
learning [Bengio et al., 2009] that learns the data in a prede-
fined order based on prior knowledge, SPL learns the training
data in an order from easy to hard dynamically determined
by the feedback of the learner itself, which is initially devel-
oped for avoiding the bad local minima. SPL is applied in
different applications, such as image segmentation [Kumar et

al., 2011], multimedia reranking [Jiang et al., 2014a], matrix
factorization [Zhao et al., 2015], and multiple instance learn-
ing [Zhang et al., 2015]. Variants of SPL are also developed,
such as self-paced curriculum learning [Jiang et al., 2015],
and SPL with diversity [Jiang et al., 2014b]. Furthermore,
[Meng and Zhao, 2015] provides a theoretical analysis of the
robustness of SPL, which reveals the consistency of SPL with
the non-convex regularization. Such regularization is upper-
bounded to restrict the contributions of noisy examples to the
objective, and thus enhances the learning robustness.

3 Self-Paced Boost Learning

3.1 Problem Formulation

Let {(x
i

, y
i

)}n
i=1 be a set of n multi-class training samples,

where x
i

2 Rd is the feature of sample i, y
i

2 {1, 2, . . . , C}
is the class label of x

i

, and C is the number of classes. Based
on the standard supervised learning scheme, a classification
model lies in learning a score function F

r

(·) : Rd ! R for
each class with which the prediction is made:

ỹ (x) = argmax

r2{1,...,C}
F
r

(x;⇥), (1)

where F
r

(x;⇥) serves as the confidence score of classifying
sample x to class r, parameterized by ⇥. Following the max-
margin formulation, the general objective function for multi-
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class classification is given by:

min

⇥

nX

i=1

CX

r=1

L (⇢
ir

) + ⌫R (⇥) (2)

s.t. 8i, r, ⇢
ir

= F
yi (x;⇥)� F

r

(x;⇥) ,

where ⇢
ir

is the score margin of x
i

between its ground truth
class y

i

and class r; L : R! R+ is a loss function; R (⇥) is
a regularization for ⇥; ⌫ > 0 is a trade-off hyperparameter.
Generally, the loss function L (·) should be convex as a con-
vex surrogate of the 0-1 loss, and be monotonically decreas-
ing for a large margin. The regularization R (⇥) is introduced
to impose prior constraints on ⇥ to relieve overfitting.

The two key issues of learning the classifier lie in an ef-
fective formulation of the score function F

r

(·), and a robust
formulation of the loss function L (·). For an effective mod-
eling, we adopt the boosting strategy that learns the classifier
F
r

(·) from weak models to a strong model. The effective-
ness of boosting for classification lies in its asymptotic piece-
wise approximation for a nonlinear decision function to suf-
ficiently fit the underlying data distributions. Specifically, a
strong classifier F

r

(·) is formulated as an ensemble of weak
classifiers {h

j

(·) 2 H}k
j=1 in the space of weak models H:

F
r

(x;W ) =

kX

j=1

w
rj

h
j

(x), r = 1, . . . , C, (3)

where each h
j

(·) : Rd ! {0, 1} is a binary weak classi-
fier; w

rj

> 0 is the weight parameter to be learned. Here
⇥ is specified as the weight matrix W , defined as W =

[w1, · · · , wC

] 2 Rk⇥C with each w
r

= [w
r1, · · · , wrk

]

T .
On the other hand, the learning robustness relies on the for-

mulation of the loss function L (·) to relieve the influence of
noisy and confusing data. Instead of directly learning from
the whole data batch, we aim to guide the boosting model
to learn asymptotically from the easy/faithful samples to the
complex/confusing ones in a smooth pace. Therefore, in-
spired by the self-paced learning (SPL) scheme [Kumar et

al., 2010], we reformulate the boosting model with a self-
paced loss formulation, and propose a unified framework,
Self-Paced Boost Learning (SPBL).

The general objective of SPBL is formulate as:

min

W,v

nX

i=1

v
i

CX

r=1

L (⇢
ir

) +

nX

i=1

g (v
i

;�) + ⌫R (W ) (4)

s.t. 8i, r, ⇢
ir

= H
i:wyi �H

i:wr

; W > 0; v 2 [0, 1]
n

,

where H 2 Rn⇥k is the weak classifiers’ responses for the
training data with [H

ij

] = [h
j

(x
i

)], and H
i: is the i-th row of

H; v
i

2 [0, 1] is the SPL weight of sample x
i

that indicates its
learning “easiness”; g (·;�) : [0, 1] ! R is the SPL function
that specifies how the samples are selected (the reweighting
scheme of v) controlled by the SPL parameter � > 0.

In Eq. (4), a weight v
i

is assigned to each sample as a mea-
sure of its “easiness”. These SPL weights are tuned based on
the current losses of samples and the SPL function g (v

i

;�)
to dynamically select the easily learned samples that are more

reliable and discriminative. With a joint optimization of sam-
ple selection (for v) and boost learning (for W ), the SPBL
model gradually incorporates the training samples into learn-
ing from easy ones to complex ones, so as to control the pace
of boost learning by what the model has already learned.

For a specific formulation of Eq. (4), we specify L (·) as a
smooth loss function, the logistic loss, for the convenience of
derivation, and specify R (W ) as the l2,1-norm to exploit the
group structure of the weak classifier ensembles:

min

W,v

X

i,r

v
i

ln

�
1 + e�⇢ir

�
+

X

i

g (v
i

;�) + ⌫kWk2,1 (5)

s.t. 8i, r, ⇢
ir

= H
i:wyi �H

i:wr

; W > 0; v 2 [0, 1]
n

,

where kWk2,1 =

P
k

j=1 kWj:k2. Note that the above objec-
tive is l2,1-norm regularized to impose a group sparsity con-
straint on the rows of W . The optimization would encourage
the columns of W (each class) to select a relatively concen-
trated and shared subset of base classifiers, instead of learning
them independently. We present the optimization of Eq. (5)
and the specification of g (v

i

;�) in the next subsection.

3.2 Optimization
We use an alternating optimization to solve Eq. (5), which
optimizes each of the two variables with the other one fixed
in an alternating manner. For the optimization of v, we have

v⇤
i

= argmin

vi

v
i

l
i

+ g (v
i

;�), s.t. v
i

2 [0, 1], (6)

where l
i

=

P
r

ln (1 + e�⇢ir
) denotes the loss of sample x

i

.
To solve v

i

in Eq. (6), the self-paced function g (v
i

;�)
needs to be specified. [Jiang et al., 2014a] has summarized
the general properties of a self-paced function in three as-
pects. First, g (v

i

;�) is convex w.r.t. v
i

2 [0, 1] to guar-
antee the uniqueness of v⇤

i

. Second, v⇤
i

(l
i

;�) is monotoni-
cally decreasing w.r.t. l

i

, which guides the model to select
easy samples with smaller losses in favor of complex samples
with larger losses. Third, v⇤

i

(l
i

;�) is monotonically increas-
ing w.r.t. �, which means that a larger � has a higher tol-
erance to the losses and can incorporate more complex sam-
ples. Several examples of the self-paced function have been
listed in [Jiang et al., 2014a], such as hard weighting, linear
weighting, and mixture weighting. We specify the self-paced
function as the one for mixture weighting, due to its overall
better performance in the experiments:

g (v
i

;�, ⇣) = �⇣ ln (v
i

+ ⇣/�), �, ⇣ > 0, (7)
where an extra SPL parameter ⇣ is introduced in addition to
�. The corresponding optimal v⇤

i

is given by:

v⇤
i

=

(
1, l

i

6 ⇣�/(⇣ + �)
0, l

i

> �
⇣/l

i

� ⇣/�, otherwise
, (8)

which is a mixture of a hard 0-1 weighting and a soft real-
valued weighting.

For the optimization of W , we have

W ⇤
= argmin

W

X

i,r

v
i

ln

�
1 + e�⇢ir

�
+ ⌫kWk2,1, (9)

s.t. 8i, r, ⇢
ir

= H
i:wyi �H

i:wr

; W > 0.
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To solve W in Eq. (9), we adopt the column generation
method [Demiriz et al., 2002], due to the potentially infinite
number of candidate weak models in the H space. The col-
umn generation is applied in the dual space of W to main-
tain a small set of weak models as the active dual constraints.
This active set is augmented during optimization until it is
sufficient to reach a solution within a tolerance threshold. We
check the dual problem of Eq. (9):

max

U,Q

�
X

i,r

{U
ir

lnU
ir

+ (v
i

� U
ir

) ln (v
i

� U
ir

)} (10)

s.t. 8r,
nX

i=1

[�
ryi(

X
l

U
il

)� U
ir

]H
i: 6 ⌫QT

:r;

8j, kQ
j:k2 6 1,

where �
ryi = 1 (r = y

i

) is an indicator function. U 2 Rn⇥C

is the Lagrangian multiplier of the equality constraints of
Eq. (9), with a relation to the primal solution:

U
ir

=

v
i

1 + e⇢ir
, i = 1, · · · , n, r = 1, · · · , C. (11)

The derivation of Eqs. (10) and (11) is similar to that of [Shen
et al., 2012b].

Based on the column generation, the set of active weak
classifiers is augmented by a weak model ˆh (·) that most vio-
lates the current dual constraints in Eq. (10):

{ˆh (·) , r̂} = argmax

h(·)2H,r

nX

i=1

[�
ryi(

X
l

U
il

)� U
ir

]h (x
i

). (12)

Then the optimization continues with the new set of active
weak models, until the violation score (objective value of
Eq. (12)) reaches a tolerance threshold.

Eq. (12) indicates that the matrix U serves as the sample
importance for learning a new weak classifier. Moreover,
from Eq. (11) we see that U gives high weights to not only
the misclassified samples with small margins ⇢

ir

, but also the
easy samples with high SPL weights v

i

. That means that U
is actually a composite measure of learning insufficiency and
learning easiness. Since the v

i

weights are set in the previous
iteration, based on Eq. (12), the future weak learners will put
emphasis on samples that are both insufficiently learned cur-
rently and easily learned previously. The interactions of the
update of the model parameters are summarized in Figure 2.
As a balance and trade-off between boosting and SPL, the
proposed SPBL performs learning in both directions of posi-
tive encouragement (on reliability) and negative suppression
(on learning insufficiency), and takes both effectiveness and
robustness into concern for learning a classification model.

Further, it is easily seen that the multi-class boosting clas-
sification model of [Shen et al., 2012b] is a special case of
SPBL with all SPL weights v fixed as 1

n

. By replacing v
i

in
Eq. (11) with 1, the matrix U only emphasizes the misclassi-
fied samples with small margins, with the new weak classifier
learned accordingly. Thus, the boosting method tends to be
sensitive to the noisy and hardly learnable data by striving
to correctly classify these samples. Therefore, the proposed
SPBL is a robust generalization of boosting models.

Figure 2: The interactions of the update of the model param-
eters. The blue blocks represent the boosting stage while the
green block represents the SPL stage. The update of W and
v are mutually interacted in successive iterations, while the
current W and the previous v jointly influence the learning of
the new weak classifier through U .

We summarize the optimization procedure in Algorithm 1.
The algorithm alternates between learning new ˆh (·) (Line 5),
updating W (Line 6), updating U (Line 7) and reweighting
v in an SPL manner (Line 8). Note that the SPL parameters
(�, ⇣) are iteratively increased (annealed) if they are small
(Line 10 to 12), so as to introduce more (difficult) samples
in the future learning. Furthermore, we adopt an early stop-
ping criterion on a held-out validation set when the iteration
number exceeds T

ES

times to maintain a better generalization
performance and a reasonable running time.

4 Experiments
We evaluate the performance of SPBL classification on three
real-world datasets. The comparative methods include soft-
max regression (SR), multi-class SVM (MultiSVM), Multi-
Boost [Shen et al., 2012b], and Multi-class Adaboost (Ad-
aBoost) [Zhu et al., 2009]. SR and MultiSVM are also em-
bedded with a self-paced learning scheme for comparison, de-
noted as SR-S and MultiSVM-S.

Specifically, the two baseline methods, SR and MultiSVM,
are formulated based on a linear classifier, where SR opti-
mizes a log-likelihood and MultiSVM optimizes a hinge-loss.
The MultiBoost is a fully-corrective formulation of multi-
class boosting classification, which is a special case of SPBL
with v fixed as 1

n

. The Multi-class AdaBoost is a multi-class
generalization of AdaBoost as a stagewise additive boosting
model. It is worth comparing SPBL with the above methods
to verify its effectiveness by learning a classifier in a joint
boosting and self-paced manner.

4.1 Dataset Description
Three real-world image datasets are used. We choose the
image data for experiments because the underlying patterns
of image features tend to have rich nonlinear correlations.
The three datasets are Caltech256

1, AnimalWithAttributes

(AWA)2, Corel10k

3. All of them are publicly available and
fully labeled with each sample belonging to only one class.
The statistics of the datasets are summarized in Table 2.

1http://www.vision.caltech.edu/Image Datasets/Caltech256/
2http://attributes.kyb.tuebingen.mpg.de/
3http://www.ci.gxnu.edu.cn/cbir/dataset.aspx
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Algorithm 1: SPBL for Classification
Input : Training set {(x

i

, y
i

)}n
i=1; ⌫ > 0; initial

SPL parameters �0, ⇣0 > 0; initial SPL
weights v0; �

max

; T
ES

; µ > 1; ✏ > 0.
Output : A set of k weak classifiers {h

j

(·)}k
j=1; W .

1 Initialize: v(0)  v0; (�, ⇣) (�0, ⇣0); U  v(0)1T

C

;
2 t 0;
3 repeat
4 t t+ 1;

Boosting :
5 Learn a new weak classifier: solve Eq. (12) to obtain

{h
t

(·), r̂} based on U ;
6 Update W : solve Eq. (9) for W (t) based on v(t�1);
7 Update U : compute U by Eq. (11) based on v(t�1);

SPL :
8 Update v: compute v(t) by Eq. (8) based on W (t);

Validation:
9 Test {h

j

(·)}t
j=1 and W (t) on the validation set, to

obtain the error rate err(t);
Annealing:

10 if � < �
max

then
11 � µ�; ⇣  µ⇣;
12 end
13 until

P
i

[�
r̂yi (

P
l

U
il

)� U
ir

]h
t

(x
i

) < ⌫ + ✏ or

t > T
ES

and err(t) > min

16s6t�1
err(s);

14 k  argmin

s

err(s);
Return : {h

j

(·)}k
j=1, W = W (k).

We use the spatial pyramid features for Caltech256 and
Corel10k extracted based on [Lazebnik et al., 2006], and use
the available Decaf feature for AWA. We reduce the dimen-
sions of all the features to 512 by PCA.

4.2 Experimental Settings
For a convenience of optimization, we first extend the output
of a weak classifier h (·) to real value [0, 1]. We assume a
logistic linear form for h (·):

h (x; ✓
h

, b
h

) =

�
1 + exp

�� �✓T
h

x+ b
h

�� �1
, (13)

where ✓
h

2 Rd, b
h

2 R are the parameters of h (·).
We adopt the strategy in [Jiang et al., 2014b] for the an-

nealing of the SPL parameters (�, ⇣) (Line 10 to 12 in Algo-
rithm 1). Specifically, at each iteration, we sort the samples in
the ascending order of their losses, and set (�, ⇣) based on the
number of samples to be selected by now. Instead of anneal-
ing the absolute values of (�, ⇣), we anneal the proportion of
the number of selected samples. It is shown in [Jiang et al.,
2014b] that such annealing scheme is more stable.

We implement a grid search for the tuning of the hyper-
parameter ⌫. Further, in order to test the robustness of our
model, we manually add label noise into the training set by
randomly selecting and relabeling s% of the training samples
with the other labels different from the true ones. We conduct
experiments with s 2 {0, 5, 10, 15} for the three datasets.

4.3 Experimental Results

Table 1 shows the error rate performance of SPBL and the
comparative methods on the three datasets, with different pro-
portions of noisy samples. The best results are shown in bold
face. To give a concise demonstration of the performances,
we show in Figure 3 the error rates for three datasets w.r.t.
the noise ratio. We see that SPBL has a better overall perfor-
mance than the comparative methods.

Figure 3 further shows that the performances of boost-
ing methods (MultiBoost, AdaBoost) are sensitive to the
noisy data, and that the comparative methods embedded with
SPL (SR-S, MultiSVM-S) are more robust than their origi-
nal counterparts. It is expected, since the suppression effect
to noise of a comparative method stems from the self-paced
learning scheme. By effectively utilizing the complementar-
ity of boosting and SPL, the proposed SPBL demonstrates
a stable performance improvement over the SPL-embedded
methods, and an increasing performance improvement over
the other comparative methods.

Further, we show in Figure 4 the change of the error rates
on the training set and the test set w.r.t. the learning iterations
of SPBL and MultiBoost, for s = 0. We see that the test and
training error rate curves of SPBL are generally in between
the corresponding curves of MultiBoost. Therefore, Figure 4
shows that SPBL relieves the overfitting problem of boosting
methods, since it has a smaller gap between the training er-
rors and the test errors. This is due to the smooth learning
pace of SPBL based on a self-paced boosting optimization
from easy samples to hard ones, instead of learning from the
whole data batch as MultiBoost does. Through this, SPBL
guides the model to focus on the samples not only insuffi-
ciently learned, but also with high confidence of reliability,
and thus relieves the overfitting and obtains a better general-
ization performance.

5 Conclusions

In this work, we propose a unified learning framework, Self-
Paced Boost Learning (SPBL), that learns in a joint manner
from weak models to a strong model and from easy samples
to complex ones, for both effective learning and robust learn-
ing. With an adaptive pace from easy to hard in boosting opti-
mization, SPBL asymptotically guides the model to focus on
the samples not only insufficiently learned but also with high
reliability. Through this, SPBL learns a model in both di-
rections of positive encouragement (on reliable samples) and
negative suppression (on misclassified samples), and is ca-
pable of capturing the intrinsic inter-class discriminative pat-
terns while ensuring the reliability of the samples involved in
learning. To the best of our knowledge, this is the first work
that reveals and utilizes the association of boosting and SPL
to simultaneously enhance the effectiveness and the robust-
ness for supervised learning. We formulate SPBL as a fully
corrective optimization for classification task. The experi-
ments on real-world datasets show the superiority of SPBL in
terms of both effectiveness and robustness.
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Table 1: The classification error rate performance of each approach on the three datasets
Caltech101 AWA Corel10k

s = 0 s = 5 s = 10 s = 15 s = 0 s = 5 s = 10 s = 15 s = 0 s = 5 s = 10 s = 15

SPBL 0.3321 0.3634 0.3890 0.4058 0.3462 03545 0.3846 0.3841 0.2182 0.2573 0.2716 0.2899
MultiBoost 0.3682 0.3903 0.4320 0.4361 0.3585 0.3898 0.4139 0.4256 0.2332 0.2762 0.3091 0.3262
AdaBoost 0.3719 0.4011 0.4216 0.4298 0.3573 0.3906 0.4200 0.4379 0.2316 0.2790 0.3002 0.3388

SR 0.4093 0.4188 0.4265 0.4293 0.3805 0.3852 0.3970 0.4085 0.2900 0.3012 0.3026 0.3284
SR-S 0.3964 0.3997 0.4131 0.4122 0.3790 0.3711 0.3835 0.3921 0.2762 0.2810 0.2922 0.3165

MultiSVM 0.4332 0.4440 0.4455 0.4787 0.3986 0.4183 0.4227 0.4354 0.2868 0.3112 0.3126 0.3580
MultiSVM-S 0.4041 0.4164 0.4109 0.4335 0.3830 0.3932 0.3995 0.4090 0.2772 0.3001 0.3049 0.3356

(a) Caltech256 (b) AWA (c) Corel10k

Figure 3: The error rate results w.r.t. the noise ratio s% for the three datasets. The proposed SPBL has a better overall
performance than the comparative methods.

(a) Caltech256 (b) AWA (c) Corel10k

Figure 4: The error rates on the training and the test set of SPBL and MultiBoost w.r.t. the iterations for s = 0. The learning
pace of the proposed SPBL is more smooth with a smaller gap between the training and the test performance. SPBL relieves
the overfitting of boosting methods.
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