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Abstract

Non-negative Matrix Factorization (NMF) has re-
ceived considerable attentions in various areas for
its psychological and physiological interpretation
of naturally occurring data whose representation
may be parts-based in the human brain. Despite
its good practical performance, one shortcoming of
original NMF is that it ignores intrinsic structure
of data set. On one hand, samples might be on a
manifold and thus one may hope that geometric in-
formation can be exploited to improve NMF’s per-
formance. On the other hand, features might corre-
late with each other, thus conventional L, distance
can not well measure the distance between sam-
ples. Although some works have been proposed to
solve these problems, rare connects them together.
In this paper, we propose a novel method that ex-
ploits knowledge in both data manifold and fea-
tures correlation. We adopt an approximation of
Earth Mover’s Distance (EMD) as metric and add
a graph regularized term based on EMD to NMF.
Furthermore, we propose an efficient multiplicative
iteration algorithm to solve it. Our empirical study
shows the encouraging results of the proposed al-
gorithm comparing with other NMF methods.

1 Introduction

Data representation plays a fundamental role in various prob-
lems in the fields of pattern recognition, information retrieval
and computer vision [Bengio er al., 2013]. A good repre-
sentation can significantly improve the performance of algo-
rithms. Nowadays, it is easy to collect massive data with
lots of features for the problems, which leads to large-scale
high-dimensional data set. However, the intrinsic degrees
of freedom could be far less. Naturally, one might hope to
find the space where the data can be represented by a small
number of semantic concepts. To achieve this goal, a large
number of methods were proposed in the last decades, among
which matrix factorization based methods [Wall er al., 2003;
Srebro et al., 2004] have received considerable attentions.
Since its psychological and physiological interpretation of
naturally occurring data, Non-negative Matrix Factorization
(NMF) [Lee and Seung, 1999] is especially striking among
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these methods. Different from other methods, NMF uses non-
negativity constraints and these constraints lead to a parts-
based representation, which may be as same as the form that
data is represented in human brains[Lee and Seung, 1999]. Tt
has been shown to be superior to other matrix factorization
based methods in various applications, such as face recogni-
tion [Guan et al., 2012] and document clustering [Shahnaz et
al., 2006; Xu et al., 2003]. One shortcoming of the original
NMF is that it ignores the intrinsic structure of the data set.
The problem is twofold. First, samples might be on a mani-
fold and thus one may hope this information can be exploited
to improve NMF’s performance[Cai et al., 2011]. Second,
features might correlate with each other, thus conventional Lo
distance can not well measure the distance between samples
[Sandler and Lindenbaum, 2011].

To address this limitation, researchers propose to improve
NMF in different ways. [Cai er al., 2011] uses a nearest
neighbor graph to model the local geometry structure and
aims at finding a matrix factorization that preserves the graph
structure. Therefore, the proposed GNMF keeps the local
structure on the data manifold. Instead of constructing a lo-
cal connection graph, EMD NMF [Sandler and Lindenbaum,
2011] uses Earth Mover’s Distance (EMD) [Rubner et al.,
2000] (also known as Wasserstein distance) to measure the
difference between original data matrix and the product ma-
trix. EMD is defined as the cost of the optimal transport plan
for moving the mass between two histograms. It has been ap-
plied to a wide range of problems, including label propaga-
tion [Solomon ef al., 2014], and supervised learning [Frogner
et al., 2015]. EMD is sensitive to relationships between the
different dimensions and agrees with perceptual dissimilarity
better than other measures[Rubner et al., 2000]. Thus EMD
NMF achieves more robust results over traditional Lo NMF
for problems where the error mechanism follows complex lo-
cal deformation[Sandler and Lindenbaum, 2011].

However, the computation of EMD NMF is time consum-
ing, thus limits its scalability. Even though the wavelet EMD
(WEMD)[Shirdhonkar and Jacobs, 20081, which is an accel-
erated approximation of EMD, is employed to accelerate opti-
mization, EMD NMEF is still slow. For a data matrix with 200
samples and 1024 features, one full iteration of WEMD based
EMD NMF takes around 23 minutes and the algorithm con-
verges after 4 hours by using Matlab on an Intel Core 2 Quad
2.5GHz processor[Shirdhonkar and Jacobs, 2008]. Moreover,



for the WEMD-based EMD NMF algorithm, the factoriza-
tion results may not be non-negative since only soft penalty
is used to encourage non-negativity.

In this paper, we propose a novel NMF algorithm which
exploits information in both data manifold and features corre-
lation. Inspired by the recent progress on EMD [Cuturi, 2013;
Frogner et al., 2015], we propose to model the relation-
ship between different feature dimensions by unnormalized
Wasserstein distance with entropic regularization (also named
as Sinkhorn distance in short), whose gradient can be solved
efficiently. Meanwhile, graph regularization based on this
distance is incorporated to preserve local geometry structure.
Our model can capture both manifold structure and features
correlation and is named as Non-negative Matrix Factoriza-
tion with Sinkhorn distance (SDNMF). We further propose
an efficient multiplicative update algorithm for the proposed
NMF model. The non-negative factorization can then be ef-
ficiently computed. Experimental results on real-world data
sets demonstrate the effectiveness of our model and the effi-
ciency of our proposed multiplicative update algorithm.

The rest of the paper is organized as follows: section 2
provides a brief review of EMD and its entropic regulariza-
tion. Our SDNMF model and multiplicative update rules are
introduced in section 3. Experiments on two real-world data
sets are presented in section 4. Related work is presented in
section 5. Finally, we provide some concluding remarks in
section 6.

2 Preliminary

Notation. Here we briefly introduce the notations used in
this paper. We use italic uppercase letters to denote matrices,
bold lowercase letters to denote vectors. Given an arbitrary
m X n matrix A,we define a; and a;; as the j-th column vector
and the (3, j)-th entry of matrix A respectively. ® represents
element-wise multiplication and @ represents element-wise
division.

2.1 Earth Mover’s Distance

Given two normalized histograms x,y € R™(>, ¢ =
>y = 1), and a distance metric matrix A/, the Earth
Mover’s Distance dp;(x,y) [Rubner et al., 2000] is defined
as:

dy(x,y) = Tmigo Z MpgTpq (D

P4 p,q=1

m m
st Y Tpg=2p, ¥ Tpg =Yg, 0,4
g=1 p=1

Eq. (1) is the well-known transportation problem and the flow
variable T},, denotes the quantity transported from the p-th
supply to the q-th demand. The parameter M, represents
the ground distance between bins p and g. Usually M, is
defined by L, or Lo distance or is determined based on the
priori knowledge of the features in the considered problem.
However, the computation of EMD is time consuming.
[Cuturi, 2013] proposes a method to accelerate its computa-
tion. They smooth the classical optimal transportation prob-
lem with an entropic regularization term and show that the

1961

resulting optimum is also a distance which can be computed

through Sinkhorn-Knopps matrix scaling algorithm at a speed

that is several orders of magnitude faster than that of trans-

portation solvers. They call the new distance as Sinkhorn dis-

tance and the the specific form is:

O MoT+ 1h
P.q

LH(T)),

2)

min

d3,
(X, y) T

st. T1=x,TT1=y

where H(T') = =3 T,qlogT),q is the entropy of T'. It
can approximate the exact EMD closely with A large enough.
Moreover, [Frogner et al., 2015] proposes a relaxation
that extends the smoothed transport to unnormalized mea-
sures. They replace the equality constraints on the transport
marginals in Eq. (2) with soft penalties with respect to KL di-
vergence and obtain an unconstrained approximate transport

problem. The distance becomes:
)7 (x,y) Tﬁigo{; MoT+ %H

3)

(T)

+ WKL(T1[x) + KL(T"1|ly))}

where K L(w||z) = w"log(w©z) — 17w+ 17z is the gener-
alized KL divergence between w and z. It degenerates to Eq.
(2) with ~ large enough when >, z; = Y, v = 1.

Eq. (2), Eq. (3) and their gradients can be efficiently solved
by Sinkhorn-like iterations [Frogner et al., 2015].

3 SDNMF

Given a data matrix X = [z;;] = [Xq, ...,Xp] € R™*", where
each column is a sample vector, NMF tries to find two non-
negative matrices U = [u;x] = [uy,...,u;] € R™**and V =
[Vjk] = [V1, ..., Ve] € R™ suchthat Y = [y;5] = [¥q, -, Y0l
is an approximation of origin data matrix X under the new
data representation y,; = 22:1 u,v; . Previous works usu-
ally assume the error between X and Y is due to Gaussian
error. However, this assumption neglects the relationship be-
tween different dimensions of features. Considering the case
where we have two documents represented by Bag-of-Words
which have the same topic “soccer”, one is represented as

“soccer” : 100, “football” : 0, ...} and the other is repre-
sented as {“soccer” : 0, “football” : 100,...}. It does not
affect their topics if we change the count of “soccer” and the
count of “football” as long as we keep the count of “soccer”
and “football”. Noted that the topic vector “soccer” produced
by NMF will probably have nonzero count on both of them.
It causes that the new representation produced by NMF will
have nonzero count on both of them and the error of NMF in-
creases. Obviously, this kind of error can not be modeled by
Gaussian error. Therefore, we adopt EMD as the metric. Op-
timizing with respect to the exact EMD is costly and it’s diffi-
cult to ensure ) . y;; = >, x;; in the whole iterative solving
process. Eq. (3) describes a regularized approximation which
can be efficiently computed even with unnormalized data. So
we change the objective function as:

0= Zdiﬂ(xj,yj)

j=1

“4)



In addition to the correlation of features, there exists a ge-
ometry structure in the sample space. We hope that the infor-
mation of the geometric structure of samples can be exploited
for better discovery of the basis [uy, ..., u;]. Inspired by [Cai
etal.,2011], we also use the manifold assumption on the data.
This assumption can be explained as that if two data points x;
, X are close in the intrinsic geometry of the data manifold,
then v; and v,, the representations of these two points in the
new basis, are also close to each other. Formally, it can be
written as:

mVinR:ZWjSij—vS\F )
7,8
where W is a nearest neighbor graph on a scatter of data
points. Different from [Cai ef al., 20111, our nearest neighbor
graph is constructed based on Sinkhorn distance.
Combining both of them, we get our final objective func-
tion:
- §
0= "dy/(x;,y;) + >R 6
j; M(Xj7y])+4 ()
where ¢ is a regularization parameter that controls the trade-
off between the features correlation and the data manifold.

3.1 Multiplicative Update Rules

The objective function O of SDNMF in Eq. (6) is not jointly
convex in U and V. Therefore it is impractical to expect an
algorithm to seek the global minimum of O. Fortunately, the
objective function O is convex in U and V' separately. Similar
to [Lee and Seung, 2001], we also adopt a two-stage multi-
plicative update rules which can keep non-negativity and find
a local minimum:

*it

T
ZS Usk t%:

Uik, 4 Uik S o )
tT_*st
D Usk Eysj + &2 s Wisvjs
Vjk < Vjk (8)

Zs Usk + gvjk Zs;ﬁj Wj5

where T is the (i, t)-entry of the optimal transportation ma-
trix between X, and y, and can be solved by a slight variation
of algorithm 1 in [Frogner et al., 2015] efficiently. What’s
more, the following theorem guarantees that the update rules
of U and V in Eq. (7) and (8) converge and the final solution
will be a local optimum. A detailed proof can be found in the
appendix.

Theorem 1. The objective function O in Eq. (6) is non-
increasing under the update rules in Eq. (7) and (8). The
objective function is permanent under these updates if and
only if U and V are at a stationary point.

4 Experiments

In this section, we test the performance of the proposed al-
gorithm in the context of two challenging tasks. Previous
studies show that NMF is very powerful on clustering, es-
pecially in the document clustering [Shahnaz et al., 2006;
Xu et al., 2003] and image clustering tasks [Guan er al.,
2012]. For Image clustering, previous works usually align
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Figure 1: Examples of images with translation noise. Left
images are original images and right images are generated
with 6 = 4. The L, distance between right images is larger
than that between left images.

images first. But in the real world, images might be too com-
plex to be aligned perfectly. There may still exist local defor-
mation after alignment. In the first experiment, we use small
random translation to simulate local deformation and show
that our method is more robust than previous methods. In
the second experiment, we use NMF to estimate texture de-
scriptors for texture mosaic images and show that our method
has a strong ability of description for images with high local
variability.

4.1 Image Clustering with Translation Noise

Data Set. The data set used in this section is COIL20 im-
age library [Nene et al., 19961, which contains well aligned
32 x 32 gray scale images of 20 objects viewed from 72 vary-
ing angles. However images might be too complex to be
aligned perfectly in the real world. There will still exist local
deformation after alignment. We use small random transla-
tion to simulate local deformation and test our method on the
new data set to show its robustness. Specifically, our data sets
are generated by:

1. Resizing each image to (32 — §) x (32 — §) and placing
it at the center of a 32 x 32 blank image, where ¢ is a
small integer that controls the degree of random transla-
tion noise.

2. Generating a random integer vector (4, j), where 7 and
j are sampled from a discrete uniform distribution on
{-4, ..., ¢} independently.

3. Translating the resized image with a vector (3, ).

Some examples are shown in Figure 1.
Compared Algorithms. We compare our method with the

following four popular clustering algorithms on data sets gen-
erated with 0 = 0, 1,2, 3, 4 respectively. For each compared



Table 1: Clustering performance on COIL20

Accuracy(%) Normalized Mutual Information(%)
d Kmeans NMF GNMF EMDNMF SDNMF Kmeans NMF GNMF EMDNMF SDNMF
0 59.9843.89 | 58.8542.82 | 79.59+2.95 | 58.89+3.43 | 78.16+4.35 71.37+1.23 | 69.724+1.53 88.32+1.31 69.061+1.58 | 88.77+1.46
1 50.1643.43 | 48.774+2.37 | 51.124£2.99 | 45.64+4.35 | 52.32+3.17 64.204+2.00 | 59.964+1.70 | 69.24+2.18 | 57.95£2.98 | 70.08+1.99
2 33.784+0.82 | 31.674+1.74 | 47.53£1.97 | 30.49+1.73 | 52.78+0.91 48.78+£1.03 | 44.17+2.13 | 62.60+1.90 | 41.574+1.89 | 65.88+0.85
3 24.77+1.11 22.9841.28 | 33.27£1.63 | 22.74+1.33 | 39.92+1.78 35.794+0.78 | 32.294+1.09 | 46.604+0.91 31.4240.93 | 53.66+0.71
4 19.55+0.80 19.524£1.06 | 21.31£0.77 18.70+£0.88 | 23.15£1.56 27.88+1.24 | 26.484+1.08 | 29.7941.12 | 24.7540.51 34.28+1.61

method, several parameter configurations are tested and the
best performance is reported.

e Canonical K-means clustering method (Kmeans in
short).

Non-negative Matrix Factorization based clustering
(NMF in short) [Lee and Seung, 2001].

Graph Regularized Non-negative Matrix Factorization
(GNMF in short) with Frobenius norm formulation. Fol-
lowing [Cai er al., 2011], we use binary weighting
scheme for constructing the 5-nearest neighbor graph
and set the regularization parameter A to 100.

Non-negative Matrix Factorization with Earth Mover’s
Distance (EMD NMF in short). Since the WEMD al-
gorithm in [Sandler and Lindenbaum, 2011] is too slow
(the detailed performance will be discussed later) and
can not ensure its result is non-negative, we use our ef-
ficient algorithm to solve it!. We set the A and y to 100
and 10 respectively and use the 2D distance of pixels’
location of the image as the ground metric.

Non-negative Matrix Factorization with Sinkhorn Dis-
tance (SDNMF in short). We use binary weighting
scheme for constructing the 5-nearest neighbor graph for
its simplicity. We set the A\ , v and & to 100,1 and 10 re-
spectively and use the 2D distance of pixels’ location of
the image as the ground metric.

We evaluate the clustering performance by comparing the
obtained label of each sample with the label provided by the
data set. Two metrics, the accuracy (AC) and the normalized
mutual information (NMI) are used to measure the clustering
result. The detailed definitions of these two metrics can be
found in [Cai et al., 2005].

Clustering Results. Table 1 shows the clustering results
on the COIL2 data sets with different levels of random trans-
lation noise. For each given random size 4, 10 test runs were
conducted on different randomly chosen clusters. The table
reports the mean and the standard error of the performance.

It can be seen from Table 1 that our method has the best
performance in most cases. When the size of random noise is
increasing, our method has the most robust performance.

Recall that for a data matrix with 200 samples and 1024
features, one full iteration of the algorithm in [Sandler and
Lindenbaum, 2011] takes around 23 minutes and the algo-
rithm converges after 4 hours by using Matlab on an Intel
Core 2 Quad 2.5 GHz processor. Our algorithm needs only

ISetting £ to zero, our objective function Eq. (6) is another alter-
native approximation of EMD NMF
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Figure 2: The performance of SDNMF vs. different parame-
ters on original COIL20 data set.

2.9 seconds per full iteration and converges after 290.9 sec-
onds by using Matlab on an Intel 17-4790K 4.0GHz processor
on a data set with 1440 samples and 1024 features. It demon-
strates the efficiency of our algorithm.

Parameters Selection. Our SDNMF model has three es-
sential parameters: the regularization parameter of Sinkhron
distance A, the relaxation parameter of unnormalized
Sinkhorn distance v and the trade-off parameter £. Figure 2
shows how the average performance of SDNMF varies with
these parameters. As we can see, the performance of SD-
NMF is very stable with respect to these parameters. SDNMF
achieves consistently good performance when these parame-
ters varies in a large range.

4.2 Texture descriptor estimation

In this section we do the same experiment in section 6.2 of
[Sandler and Lindenbaum, 2011]. Our task is estimating the
texture descriptors associated with each texture class of the
mosaic from [Haindl and Mikes, 2008] (some examples are
shown in Figure 3). Moreover, roughly classification of the
textures in each mosaic location (e.g., for consecutive seg-
mentation) is also expected. [Haindl and Mikes, 2008] con-
tains online generated 512 x 512 mosaics with different num-
bers of textures and the number can be chosen from 3 to 12.
For each number, we choose 9 samples to make up our data
set. For our task, we consider the texture in non-overlapping
square image patches and assume the texture in each block is
a positive mixture of the basic textures. Then NMF is used to
analyse it.

For each texture, we assume there exists a vector descrip-



Figure 3: Examples of texture mosaics. Mosaics involve sev-
eral types of textures in random arrangements and textures
have high local variability.

tor uf“‘e connected with it. Therefore, a mosaic with C tex-
tures is connected with a texture descriptor matrix U"%¢ =
™, ..., ug"]. We expect that the texture descriptor in the
j-th image patch should be x; = U*™"“v{™¢, where v&"™* is
the vector of true fractions of the j-th block area associated
with each texture class. Then we can use NMF to roughly
estimate texture descriptors and classify the textures in each
mosaic location.

The specific process is:

1. Converting the image to a new representation which
each location is represented by a vector of Gabor re-
sponses, since Gabor filters have been widely used in
texture analysis [Ramakrishnan et al., 2002].

Dividing the image into N non-overlapping patches and
computing the mean feature vector x; for each patches.
Now, X = [Xq,...,Xx] is a new representation of the
image.

3. Using NMF to find the factorization X ~ UV T.

The factorization results U = [uy, ...,uc] and V = [vq,...v¢]
are the approximated representative texture descriptors and
the approximated fraction of each texture in each patch re-
spectively.

We conduct the tests with different number of patches N
= 16, 64, 256, 1024 and these patches tessellate the image.
Thus, N determines the patch size 128 x 128, 64 x 64, 32 x 32,
and 16 x 16 pixels respectively. The U!"“¢ consists of the
mean descriptors on the single texture segments of the mo-
saic and the V'*"“¢ consists of the fractions of each class in the
patch. We use average correlation between the true represen-
tation and the approximated one to evaluate the performance.
This metric can be written as:

< Wi, W true >
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Figure 4: The performance of texture descriptor estimation

Figure 4 shows the performance of texture descriptor esti-
mation. We still use NMF, GNMF and EMDNMF as com-
pared algorithms. It can be seen from Figure 4 that our
method has the best performance in most cases. Since tex-
tures exhibit lots of spatial variation, EMD might be prefer-
able over L. Therefore, EMD based method will be more
robust when the variation increasing (patch size decreasing).
What’s more, Lo based graph regularizer will damage the per-
formance.

5 Related Work

In the past decade, based on the standard NMF, many vari-
ants have been proposed to find effective data representation
for various problems. The family of NMF algorithms have
been applied in many areas, such as face recognition[Guan
et al., 2012], clustering[Xu et al., 2003], hyperspectral
unmixing[Jia and Qian, 2009], etc., and achieve remarkable
performance.

The works that are closely related to our method could
be roughly categorized into two lines. First, various differ-
ence metrics are adopted to measure the dissimilarity be-
tween the original data matrix and the product. [Kompass,
2007] proposes a generalized divergence measure that inter-
polates between square loss and Kullback-Leibler divergence
for non-negative matrix factorization. [Févotte et al., 2009]
uses Itakura-Saito divergence to incorporate Bayesian priors.
Howeyver, none of these works model the features correlation
explicitly and they may fail to capture the relationships of
different dimensions. [Sandler and Lindenbaum, 2011] first
proposes to use Earth Mover’s Distance as difference metric,
and employs wavelet EMD approximation to derive practical
algorithm. Since EMD is sensitive to the feature correlation



and agrees with the perceptual dissimilarity better than other
measures[Rubner et al., 2000, EMD NMF achieves more
robust results for problems where the error mechanism fol-
lows complex local deformation. However, the WEMD based
EMD NMF is still computationally costly. In contrast, both
the Sinkhorn Distance that is considered in our method and its
gradient can be computed efficiently by Sinkhorn-like matrix
scaling algorithm.

Second, considering the local geometry structure of the
data manifold, [Cai et al., 2011] constructs a nearest neigh-
bor graph and finds a matrix factorization that preserves this
graph structure. The proposed GNMF can keep the local
structure on the data manifold, thus achieves superior results
on clustering. GNMF is further extended to problems like co-
clustering[Shang er al., 2012], by adding more constraints.
A semi-supervised NMF method is also proposed in [Liu et
al., 2012] to incorporate available labeled samples, which in-
creases the discriminative ability of the obtained represen-
tation. However, the local graphs in these works are based
on conventional Lo distance or Kullback-Leibler divergence,
which can not reflect the feature correlation. Meanwhile, cur-
rently we only consider the case without supervision.

6 Conclusions and Future Work

In this paper we propose a new NMF method, SDNMF, which
exploits knowledge in both data manifold and features corre-
lation. We use EMD to utilize information of feature corre-
lation and use a graph regularizer to keep the local geometric
structure of the data manifold. Although optimizing with re-
spect to the exact EMD objective function is computationally
costly, our approximate Sinkhorn distance objective function
is efficiently computed. By this approximation, we propose a
fast implementation of the proposed algorithm. SDNMF out-
performs previous NMF based algorithms in the context of
two challenging computer vision tasks.

Although our multiplicative update algorithm is efficient,
SDNMF has to pay high computational cost in graph con-
struction and subsequent matrix calculation, which limits its
applicability to large-scale problems. Inspired by [Liu ef al.,
2010] an interesting direction for future work may be to use
landmark points to speed up our algorithm.
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A (Proofs of Theorem 1)

To prove Theorem 1, we will imitate the proof process from
[Lee and Seung, 2001] and use its Definition 1 and Lemma 1.
Please see [Lee and Seung, 2001] for details.
Definition 1. G(h, 1) is an auxiliary function for F'(h) if the
conditions

G(h, ') >

F(h),G(h,h) = F(h)

1965

are satisfied.
Lemma 1. If G is an auxiliary function of F’, then F' is non-
increasing under the update

R = arg mhin G(h,h")
For simplicity, we only prove that O is non-increasing un-
der the update step in Eq. (8) (the other half can be proved in

similar way). Fixed U, we rewrite the objective function O as
follows

=D A O vikur,x;) +
j k

According to Definition 1 and Lemma 1, we need to find
an auxiliary function G(V, V) for it.

% Z WjS(Ujk - Usk)2

jis.k

a)
ulkvﬁk

Lemma 2.  Setting o« — > @ and o =
) Zkuzkv
[@1ky s ey Qmik, | T Then function
G(V, V@)
- Z Ho‘lk day (( Z%kuk ) © a,X;)
Jkl, K 1

+1 ij 5, kWjs (v — vsr)?
is an auxiliary function for F'(V).

Proof. 1t is straightforward to verify that G(V,V) = F(V).

Since d?)ﬂ is convex [Frogner erf al., 2015], we use the con-
vexity for ¢ = 1, ..., m one by one and obtain

Z Haikidf\\f((z Vi) @ o, X;)
k1,.okm @ k

> dy () vjpug, x;)
k

= G(V,V9) > P(V)
Thus we find a proper function G(V, V (@), O
Then we can prove Theorem 1:
Proof of Theorem 1. Note that the gradient of )7 (y, x) with

respect to y is: [Frogner et al., 2015]
Vydy (y,x) =1(1 =T x10y).

By setting the gradient of G(V, V(%)) with respect to V to
zero, we can find V(@1

oG(V, V(q)) 0
Uik
(9)
- q+1) )Z U’Sk +€Es;¢£] JSUjs
7k ]k

Z Usk + gv(q) Ze;ﬁj

According to Definition 1 and Lemma 1, Theorem 1 is proved
O
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