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Abstract

Heterogeneous data with complex feature depen-
dencies is common in real-world applications.
Clustering algorithms for mixed – continuous and
discrete valued – features often do not adequately
model dependencies and are limited to modeling
meta–Gaussian distributions. Copulas, that provide
a modular parameterization of joint distributions,
can model a variety of dependencies but their use
with discrete data remains limited due to challenges
in parameter inference. In this paper we use Gaus-
sian mixture copulas, to model complex dependen-
cies beyond those captured by meta–Gaussian dis-
tributions, for clustering. We design a new, effi-
cient, semiparametric algorithm to approximately
estimate the parameters of the copula that can fit
continuous, ordinal and binary data. We analyze
the conditions for obtaining consistent estimates
and empirically demonstrate performance improve-
ments over state-of-the-art methods of correlation
clustering on synthetic and benchmark datasets.

1 Introduction

The fundamental task of clustering has been studied exten-
sively in machine learning [Jain, 2010]. Real world data of-
ten contains mixed – continuous and discrete – features as
well as complex dependencies between features. Dependency
clustering, that detects clusters corresponding to feature de-
pendency patterns, for mixed data remains a challenging open
problem [Plant, 2012; Wang et al., 2015].

Clustering methods for mixed data, that are much fewer
than those for continuous data, often do not address depen-
dencies satisfactorily. For example, K-prototypes [Huang,
1998] quantifies similarity between mixed observations but
does not address dependency; K-Means-Mixed [Ahmad and
Dey, 2007] models dependencies of discrete features only;
mixture [Hunt and Jorgensen, 2011], assuming normally dis-
tributed data, captures dependence of continuous features
only. A coupled representation (which can subsequently be
used for clustering) for nominal data [Wang et al., 2011] and
for continuous data [Wang et al., 2013] has recently been
combined for mixed data [Wang et al., 2015]. The method,
called CoupledMC, transforms mixed to continuous valued

data through a series of steps that capture dependencies both
within and between continuous and discrete features using
non-parametric metrics like correlations and co-occurrence.
The high computational complexity (upto cubic in dimension
and quadratic in size of data, for CoupledMC) is a disadvan-
tage of many of these distance-based methods.

Correlation clustering methods discover clusters in sub-
spaces based on correlations revealed by low dimensional
representations, e.g. through Principal Component Analysis.
This approach has been extended to mixed data in INCONCO
[Plant and Böhm, 2011], SCENIC [Plant, 2012] and Spectral-
CAT [David and Averbuch, 2012] that find low dimensional
embeddings of the data, in different ways, to detect clusters.
INCONCO models dependencies by distinct Gaussian dis-
tributions for each category of each discrete feature. While
SCENIC is not as restrictive in the dependencies, it also as-
sumes a Gaussian distribution to find the embedding space.
SpectralCAT discretizes continuous features before spectral
clustering using an adaptive Gaussian kernel. Normality as-
sumptions limit the modeling capability of these techniques.

Model–based approaches for continuous data can lever-
age the flexible framework of copulas that provides a mod-
ular parameterization of multivariate distributions – arbitrary
marginals independent of dependency models from copula
families which can model a wide variety of linear and non–
linear dependencies. For example, with the Gaussian copula
itself, using different marginals, many different joint distri-
butions can be constructed, called meta–Gaussian distribu-
tions, that have been used in several applications (see [Elidan,
2013]) including multi-view clustering [Rey and Roth, 2012].
However, meta–Gaussian dependencies from the Gaussian
copula cannot model many kinds of dependencies, notably
asymmetric and tail dependencies, and the Gaussian mix-
ture copula (GMCM) was proposed by [Tewari et al., 2011]
to allow flexible dependency modeling going beyond meta–
Gaussian distributions. These copula–based models can be
used with continuous features only.

With discrete data, copula dependencies are not marginal-
free but they can still be used effectively [Genest and Nesle-
hova, 2007]. Clustering with a mixture of copulas was
proposed by [Kosmidis and Karlis, 2015] but for discrete
marginals it is computationally inefficient, the runtime for pa-
rameter estimation being exponential in data dimensions.

An efficient alternative not yet explored for dependency
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clustering, is the semiparametric extended rank likelihood
(ERL) approach of [Hoff, 2007] that allows us to use the mod-
eling flexibility of copulas with mixed data. We exploit this
technique to enable the efficient use of GMCM on mixed data,
to model complex dependencies, that in turn, improves clus-
tering performance. We analyze, both theoretically and em-
pirically, and find that the ERL approximation yields accurate
parameter estimates, and good clustering performance, when
all features are continuous or ordinal with not many levels.

To summarize, our contributions are:
1. We present a Gaussian mixture copula based clustering
algorithm that:

- can model complex dependencies beyond those captured
by meta-Gaussian distributions,

- can fit mixed – continuous, ordinal and binary valued –
data, which previous GMCM-based methods cannot and

- scales linearly with size and quadratically with dimen-
sions of input, which is significantly faster than state-of-
the-art correlation clustering methods for mixed data.

2. We theoretically analyze the conditions necessary to obtain
consistent and asymptotically unbiased estimates of GMCM
parameters, which, to our knowledge, is the first such analy-
sis of an ERL approach for mixed data clustering.
3. Our experimental results demonstrate the efficacy of our
method, that outperforms state-of-the-art methods for corre-
lation clustering on synthetic and real benchmark data sets
with mixed features, thus illustrating the advantage of our
copula-based approach for dependency clustering.

2 Gaussian Mixture Copulas

A p–dimensional copula is a multivariate distribution func-
tion C : [0, 1]

p 7! [0, 1]. A theorem by [Sklar, 1959]
proves that copulas can uniquely characterize continuous
joint distributions: for every joint distribution with continu-
ous marginals, F (Y1, . . . , Yp), there exists a unique copula
function such that F (Y1, . . . , Yp) = C(F1(Y1), . . . , Fp(Yp))

as well as the converse. In the discrete case, the copula is
uniquely determined on Ran(F1) ⇥ . . . ⇥ Ran(Fp), where
Ran(Fj) is the range of marginal Fj . See [Joe, 2014] for a
comprehensive treatment of copulas. Parametric copula fam-
ilies are typically defined on uniform random variables ob-
tained through CDF transformations from the marginals. In
a Gaussian Mixture Copula Model (GMCM) [Tewari et al.,
2011], the dependence is obtained from a Gaussian Mixture
(GMM). Note the difference from a mixture of copulas [Kos-
midis and Karlis, 2015]. GMCM copula density is given by:

C(#, zi) =
PG

g=1 ⇡g�(zi | µg,⌃g)Qp
j=1  j(zij)

(1)

The generative process is:
zij ⇠ p-dimensional, G-component GMM, parameters: #

uij =  j(zij)

yij = F

�1
j (uij) for j = 1, . . . , p and i = 1, . . . , n.

Notation: The observed data matrix is Y = {yij}; in-
dices i, j denote the observation (i = 1, . . . , n) and dimen-
sion (j = 1, . . . , p); Fj is the unknown marginal distribu-
tion for the j

th dimension, and uniform random variables

uij = Fj(yij). Latent variables Z 2 Rn⇥p
= {zij},

zi denotes p–dimensional row vectors and zj denotes n–
dimensional column vector along the j

th dimension;  j and
 j are the marginal CDF and density of the GMM along the
j

th dimension, � is the multivariate Gaussian density and
# = {⇡g,µg,⌃g} is the (unknown) parameter set represent-
ing mixing proportions (⇡g > 0, with

PG
g=1 ⇡g = 1), mean

vectors (µg) and covariance matrices (⌃g; �gij : ij

th entry
of ⌃g) for GMM component g = 1, . . . , G. Vectors and ma-
trices are in bold font.
Copula Parameter Estimation. Standard maximum likeli-
hood inference requires specifying a parametric family for
each marginal and inferring the parameters simultaneously
with the copula parameters which is computationally pro-
hibitive for even moderate dimensions. The two–step IFM
procedure [Joe, 2014] requires fitting a marginal to each fea-
ture and then using the CDF transformation to obtain pseudo
data for estimating copula parameters. Often marginal fam-
ilies are unknown and a semiparametric approach is to use
rank–transformed scaled empirical marginals to obtain the
pseudo data. The copula function for a joint distribution is in-
variant to monotone increasing transformations of marginals
and the resulting pseudo–likelihood estimator is consistent
for continuous marginals [Genest et al., 1995].

With discrete marginals, rank transformation leads to ties
with non–zero probability. In general, technical hurdles have
to be surmounted to use copulas with discrete marginals: the
copula may be unidentifiable and may not be margin–free, in-
ference algorithms based on Kendall’s tau or Spearman’s rho
may be biased or inconsistent [Genest and Neslehova, 2007].
The Extended Rank Likelihood (ERL) approach is an approx-
imation to the full likelihood that can accommodate both con-
tinuous and discrete (ordinal and binary) data [Hoff, 2007].

The key idea of ERL is that, since F

�1
j is monotonic, al-

though we don’t observe variables zi directly, we still know
the order of zi’s induced by the data. Estimation of the copula
parameters # using rank likelihood can be implemented by
conditioning on the partial ordering induced by Y. The ERL
function is given by P (Z 2 D|#); D is the rank–induced
set: D = {Z 2 Rn⇥p

: zlj < zij < zuj} where zlj =

max {zkj : ykj < yij} and zuj = min {zkj : yij < ykj},
along the j

th dimension. Since the ERL approach bypasses
the estimation of marginals, it can be applied to both discrete
and continuous data. Note that the ERL function is equiva-
lent to the distribution of the ranks for continuous data. For
discrete data, the distribution of the ranks depends on the
marginals, which is ignored resulting in some loss of infor-
mation. Bayesian inference can be achieved by construct-
ing a Markov chain having a stationary distribution equal to
P (#|Z 2 D) / P (#)⇥ P (Z 2 D|#).

3 Clustering with Gaussian Mixture Copulas

Our algorithm, EGMCM (Extended GMCM), fits a Gaussian
mixture copula to data in a semiparametric manner and infers
clusters from the obtained parameters. Algorithm 1 outlines
our iterative scheme for obtaining approximate samples to es-
timate the posterior P (#|Z 2 D). Each iteration has 2 steps:

1968



estimating GMM parameters # and resampling Z.
The algorithm is initialized with two steps. First, rank

transformed data is obtained by transforming each data point
yij of the feature vector Yj to R(yij) =

1
n

Pn
i=1 1(Yij 

yij), the scaled rank of yij in all the observations of Yj , the
j

th feature (where 1(c) denotes the indicator function which
is 1 if the condition c is true and 0 otherwise). To initialize
the values of Z, we take the inverse CDF of a standard nor-
mal on the rank transformed data. We empirically find that
this simple choice works well; note that the values of Z are
resampled through the iterations.

We use Expectation Maximization (EM) to estimate #.
Gibb’s sampling could also be used. If a single Gibb’s sweep
is used to sample # instead of a full estimation, the clustering
performance deteriorates – also explained by our theoretical
analysis which shows that initial unbiased estimates of # are
important to obtain final unbiased mean estimates.

In the Resample Z step, we sample from each Gaussian in
the GMM, truncated by the bounds zuj and zlj which con-
strains the sampled z to be in the set D. The Truncated Nor-
mal (TN) random variates are then combined using the mix-
ing proportions of the estimated GMM. The function unique,
that returns the set of unique values in the input, is used to
avoid repeated computation for ties.

Algorithm 1 EGMCM
Input: R(Y), scaled rank transformed data Y; G, number
of clusters
Initialization

Z = �

�1
(R(Y))

loop

Estimate, via EM, GMM parameters # = [⇡g,µg,⌃g]

Resample Z:
for j: 1 to p do

for all y 2 unique {y1j , . . . , ynj} do

Compute zlj = max{zij : yij < y} and zuj =

min{zij : y < yij}
For each i such that yij = y:

Sample rgij from TN(µgj ,�gij , zlj , zuj)

Set zij =
PG

g=1 ⇡grgij

end for

end for

end loop

Output: Cluster labels (latent variables of GMM (Z|#))

The algorithm can easily handle data missing–at–random.
If yij is missing, zij is obtained (in each Resample Z step)
from the unconstrained GMM with current estimates of #.

Computational Complexity Comparison

The time complexity of EGMCM is O(tGnp

2
) where t is

the number of iterations of the outer loop. The runtime is
dominated by EM (O(Gnp

2
)). Empirically we obtain good

results with t < 50 and so, the runtime is comparable to that
of GMM estimation algorithms.

In comparison, note that the runtime for SCENIC is
O(t

0
n

2
p

2
v) where t

0 includes terms proportional to number
of iterations in their algorithm and pv is the dimension of the

low–dimensional embedding; the runtime for coupledMC is
O(n

2
R

3
) where R is the maximal number of attribute val-

ues for all features, including continuous features that are dis-
cretized in their method, hence p  R  np.

4 Theoretical Analysis

Our iterative algorithm has two steps: estimation of # through
EM and the second Resample Z step. EM estimates of GMM
parameters are consistent and asymptotically unbiased when
the component means are not too close to each other; and
for large sample sizes (> 200) the bias in mean and vari-
ance can be ignored for practical purposes [Nityasuddhi and
Bohning, 2003]. Thus, assuming that the initial estimates ob-
tained via EM in the first iteration of the loop are consistent
and asymptotically unbiased, for large number of iterations
m, we analyze the deviation in the mean from the initial es-
timate in subsequent Resample Z steps for discrete (theorem
2) and continuous (theorem 3) marginals. We show that the
deviation tends to zero under simple conditions that can be
maintained in the algorithm.

Similar properties cannot be inferred for the variance pa-
rameters because we are assuming a full variance–covariance
matrix; thus the behaviour of the variance components after
truncating the GMM will be dependent on the data, the na-
ture of truncation and position of the component means with
respect to the mixture means, among other factors. To our
knowledge, similar analysis of previous ERL based methods
has not been done before.

Notation: Superscript (m) denotes the iteration; zl and
zu depend on g and j, i.e. the corresponding cluster and
the dimension but we do not use them for notational sim-
plicity. Let �2

gj denote the j

th diagonal element of ⌃g ,
and �gj denote the contribution of the component mean of
cluster g to the mixture mean along the j

th dimension, i.e.
�gj = ⇡gµgj/

PG
g=1 ⇡gµgj . Also denote:

↵

(m)
gj =

zl
(m) � µ

(m)
gj

�

(m)
gj

,�

(m)
gj =

zu
(m) � µ

(m)
gj

�

(m)
gj

,

�

(m)
gj =

�(�

(m)
gj )� �(↵

(m)
gj )

�(�

(m)
gj )� �(↵(m)

gj )

�

(m)
gj

µ

(m)
gj

.

�

(m)
gj is the deviance in mean due to truncation of the g

th

component of the normal distribution along the j

th dimen-
sion in the m

th iteration (which depends on the coeffi-
cient of variation, �

µ ). Note that the mixture mean of the
GMM is µ =

PG
g=1 ⇡gµg and the mixture variance is

⌃ =

PG
g=1 ⇡g

h�
µg � µ

� �
µg � µ

�T
+⌃g

i
. In addition

to set D defined in section 2, we define the set D1 =

{Z : zl1  zij  zu1} where zl1 = max {zkj : ykj = yij},
zu1 = min {zkj : ykj = yij}. The initial estimate of mean,
µ

(0) is obtained in the first iteration of the outer loop, through
EM, and is considered asymptotically unbiased.

Lemma 1 After m iterations of the loop in algo-
rithm EGMCM, the deviation of the g-th component
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of mixture mean µ(m) from the g-th component of
the initial estimate µ(0) along the j

th dimension is
µ

(0)
gj

hQm
k=1(1� �

(k�1)
gj )� 1

i
.

Proof: According to the algorithm, for each j 2
{1, 2, ..., p}, for each i 2 {1, 2, ..., n} and for each y 2
unique {y1j , y2j , ..., ynj}, at the mth iteration we sample rgij
from the truncated normal distribution N(µ

(m�1)
gj ,�

(m�1)
gj

2
)

with the truncation points (zl, zu), as described in the algo-
rithm, for g = 1, 2, ..., G. Then zij is taken as

PG
g=1 ⇡grgij

and µ is estimated based on zij . But since rgij is taken from
a truncated normal distribution,

µ

(m)
gj = µ

(m�1)
gj � �(�

(m�1)
gj )� �(↵

(m�1)
gj )

�(�

(m�1)
gj )� �(↵(m�1)

gj )

�

(m�1)
gj

= µ

(m�1)
gj

⇣
1� �

(m�1)
gj

⌘
.

Repeating the iteration and applying the above equation,
after m iterations we have µ

(m)
gj = µ

(0)
gj

Qm
k=1(1� �

(k�1)
gj ).

Theorem 1 If the marginal distribution, Fj , is discrete and
there exists some m0 such that (zl, zu) does not contain 0 at
the mth

0 iteration, and if (z(m)
u �z

(m)
l )/�

(m)
gj ! 0 as m ! 1

then �(m)
gj ! 0 as m ! 1.

Proof: For discrete Fj , if z(m)
l and z

(m)
u are the two ex-

tremes at the m

th iteration, then z

(m)
u � z

(m)
l  z

(m�1)
u �

z

(m�1)
l for all m.

What if equality holds for all subsequent iterations? � will
not tend to 0 then. This is because of the discreteness of the
marginals. Recall, for the extended rank likelihood, we con-
sider the set D and not the set D1. For discrete Fj , the mea-
sure of D1 is non–zero. Thus (zDl , z

D
u ) ⇢ (z

D[D1
l , z

D[D1
u )

where z

D
l is the lowest order statistic taken based on the set

D only, and z

D[D1
l is the lowest order statistic taken based

on the union of D and D1 (similarly for zu). Thus at each it-
eration some positive measure will be assigned to the set D1

and hence z

(m)
u � z

(m)
l < z

(m�1)
u � z

(m�1)
l , i.e. the relation

will actually be a strict inequality.
Let us consider the sequence sm = z

(m)
u � z

(m)
l . From the

discussion above, we can infer that sm is a positive sequence
and sm < sm�1. Thus sm ! 0 as m ! 1. In other words,
for each m̄ there exists an ✏ such that sm < ✏ for all m � m̄.
Thus z(m)

u � z

(m)
l ! 0.

Now, since µ

(m)
gj 2

⇣
z

(m)
l , z

(m)
u

⌘
, (z(m)

u � z

(m)
l )/�

(m)
gj !

0 implies that (z

(m)
u � µ

(m)
gj )/�

(m)
gj ! 0 and (z

(m)
l �

µ

(m)
gj )/�

(m)
gj ! 0 as m ! 1. Thus, using the expression

of �(m)
gj we get

lim

m!1
�

(m)
gj = lim

�!0

h
�(↵

(m)
gj + �)� �(↵

(m)
gj )

i

h
�(↵

(m)
gj + �)� �(↵(m)

gj )

i
�

(m)
gj

µ

(m)
gj

, (2)

where � = (z

(m)
u � µ

(m)
gj )/�

(m)
gj . Using L’Hospital’s rule,

lim

�!0

�(↵

(m)
gj + �)� �(↵

(m)
gj )

�(↵

(m)
gj + �)� �(↵(m)

gj )

= �2↵

(m)
gj ! 0.

Thus we show that zl and zu become closer to each other,
and the change in difference of their respective CDFs also be-
comes smaller (since the Gaussian CDF is a uniformly con-
tinuous function of its arguments). Also, as zl and zu be-
comes closer and the subsequent iterations are based on sam-
ples taken from the shrinking set (zl, zu), �

(m)
gj tends to 0.

Also, since there exists m0 such that (zl, zu) does not con-
tain 0 at the m

th
0 iteration, it will not contain 0 for all the

subsequent iterations since (zl, zu) is a shrinking set. Thus
µ

(m)
gj 6! 0 for all m � m0. Using these conditions in equa-

tion 2, we have �(m)
gj ! 0 as m ! 1.

Theorem 2 If the marginal distribution, Fj , is continuous
and the initial values are sampled unrestrictedly (i.e. from
the entire sample space), the deviation in the estimate of µ
along the jth dimension after the mth iteration, �(m)

gj ! 0 as
m ! 1.

Proof: For continuous Fj , we have {Z} = D [ D1 = D

(since the measure of D1 is zero). Thus zl and zu will not
change over the iterations, if the initial values are taken over
the entire domain space of z along the j

th dimension. Thus,
after the m

th iteration, as m ! 1,

�(↵

(m)
gj ) ! 0, �(�

(m)
gj ) ! 0

and
�(�

(m)
gj )� �(↵(m)

gj ) ! 1.

Similarly �(m)
gj � �

(m�1)
gj ! 0 and µ

(m)
gj � µ

(m�1)
gj ! 0 as

m ! 1. Thus after iteration m, �(m)
gj ! 0 as m ! 1.

Summary of Results. The deviation (due to repeated Resam-
ple Z steps) from an initial asymptotically unbiased estimate
and subsequent loss of information depends on the initial val-
ues of Z. For a continuous feature, the deviation along the
dimension is less if the initial values range over the entire
domain of Z. More interestingly, it turns out that for the dis-
crete case the deviation is less if the highest and lowest order
statistics of Z along the particular dimension are close to each
other, that is, when the number of levels in the discrete feature
is less. The analysis implies that EGMCM works well when
all features are continuous or when there is mixed data with
ordinal features that do not have many levels. In the presence
of discrete valued features, the number of iterations should be
increased to obtain better estimates.

5 Experiments

We compare the performance of our algorithm, EGMCM,
with that of SCENIC and CoupledMC. Previous experiments
(in [Plant, 2012] and [Wang et al., 2015] respectively) have
shown that SCENIC outperforms K-Means-Mixed and IN-
CONCO; and CoupledMC outperforms K-Means-Mixed, K-
Prototype, mixture and SpectralCAT. In addition, we use
GMM, with ‘binarized’ categorical features as a baseline.
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Performance Metrics. To evaluate the performance of clus-
tering algorithms we use Adjusted Rand Index (ARI) [Hubert
and Arabie, 1985] (range [�1, 1]) and Adjusted Mutual Infor-
mation (AMI) [Vinh et al., 2010] (range [0, 1]), higher values
indicate better clustering in both metrics.

5.1 Simulations

We simulate both numerical, with only continuous valued
features, and mixed datasets with dependencies.

Numerical Mixed
Setting n p n/p n p n/p

I 100 200 0.5 100 400 0.25
II 500 200 1.5 500 1000 0.5
III 100 20 5 500 400 1.25
IV 100 10 10 1000 400 2.5
V 100 5 20 100 20 5
VI 500 20 25 100 10 10
VII 500 10 50 500 40 12.5
VIII 1000 20 50 500 20 25
IX 500 5 100 1000 20 50
X 1000 5 200 1000 10 100

Table 1: Simulation settings for numerical data (left) and mixed
data (right) with varying n: number of observations, p: dimension.

Numerical Data. The number of clusters is chosen to be G =

2. The ratio of the number of the two cluster sizes is 1:1. Each
data point in the first cluster is a product of a sample from a
Multivariate Normal distribution (MVN(0, Ip/2) where Ip is
a p ⇥ p Identity matrix) and a sample from a F distribution
(F(df1 = p/2, df2 = p/2)). Each data point in the second
cluster is a product of a sample from a Multivariate Normal
distribution (MVN(2,�) where � is a matrix with (i, j)

th

element 0.9|i�j|) and a sample from a Uniform distribution
(Unif(0, 1)). We use 10 simulation settings and simulate 25
datasets for each setting as shown in table 1.
Mixed Data. We first generate two clusters, each with n/2

p/2–dimensional observations with discrete data. This data
is concatenated with p/2–dimensional numerical data (as
above) to obtain an n ⇥ p dataset. Discrete data in the two
clusters is sampled from 4 different 20–category multinomial
distributions Pi (i = 1, 2, 3, 4) that are generated in such way
that in each distribution one or two of the 20 classes are as-
signed a large probability, and the rest are assigned very small
probability. The large probability class(es) vary from one dis-
tribution to another. Let xk

ij (ykij) denote the i–th observation
of the j–th feature in the k–th cluster of the numerical (dis-
crete) data. Dependencies between the numerical and discrete
data are imposed by the following two rules. If x1

ij < 0 then
sample y1ij from P1, else from P2. If x2

ij < 0 then sample y2ij
from P3, else from P4. We use 10 simulation settings and 25
datasets are generated for each setting, as shown in table 1.

Results

Variations in n and p. Each value in the plots shown below
is the average obtained over 25 runs. To avoid visual clutter,
we do not plot standard error bars. We find that the variance
of the algorithms across the runs were low and not significant.

Figure 1 shows the AMI of all four algorithms over 10
different simulation settings for numerical (left) and mixed

Figure 1: (Above) Average Adjusted Mutual Information (AMI),
(Below) Average Adjusted Rand Index (ARI) of algorithms
EGMCM, CoupledMC, SCENIC and GMM on Numerical data
(left) and Mixed data (right) in ten different simulation settings.

(right) data. As expected, GMM performs well on numeri-
cal data but not on mixed data while CoupledMC does rea-
sonably well with mixed data. The performance of SCENIC
is comparable to that of CoupledMC and GMM. In 2 out of
the 10 settings for mixed data, it outperforms all other algo-
rithms. Our algorithm EGMCM consistently outperforms all
three algorithms for numerical data. For mixed data, it is the
best in 6 out of 10 settings. Similar performance of all four
algorithms is observed with respect to ARI in figure 1. Algo-
rithm EGMCM has the highest ARI among the four methods
in the case of numerical data and in 8 out of 10 settings for
mixed data. In numerical data, the improvement is higher for
simulations III-X (large n/p), lower for simulations I, II, indi-
cating that the method seems to work better with large n/p (in
accordance with our theoretical analysis). In mixed data, the
improvement over GMM is high in all cases but with more
improvement in settings with large n/p.
Variations in G. We study the performance of the algorithms
when the number of clusters, G, is varied for a single simu-
lation setting: n = 500, p = 20. For mixed data, we use 20

numerical and 20 discrete features. Each value in the plots is
the average obtained over 25 runs. Figure 2 show the AMI of
all four algorithms with increasing number of clusters. The
performance of all the four methods drop with increase in G.
But EGMCM is consistently better than the rest for all val-
ues of G. In figure 2 we also see that the performance of
EGMCM is better than the other algorithms, however the in-
crease in ARI is not much except for G = 2 in the numerical
case. In general, for numerical data, all four algorithms do not
perform well with increasing number of clusters. On mixed
data, EGMCM remains better than the other three algorithms.

5.2 Experiments on UCI Benchmark Datasets

We compare the performance of our algorithm on 10 bench-
mark datasets obtained from the UCI repository [Bache and
Lichman, 2013]. Results, in table 3, show that EGMCM per-
forms significantly better (p-value 0.001) than the other algo-
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Figure 2: (Above) Average Adjusted Mutual Information (AMI),
(Below) Average Adjusted Rand Index (ARI) of algorithms
EGMCM, CoupledMC, SCENIC and GMM on Numerical data
(left) and Mixed data (right) with varying number of clusters G.

rithms (at 1% significance level; using Friedman–post-hoc-
Nemenyi test [Demšar, 2006]).

Data Name n pnum pcat G
A Contraceptive Method Choice 1473 2 7 3
B Heart Disease (Switzerland)* 303 5 8 2
C Heart Disease (VA)* 303 5 8 5

D Breast Cancer Wisconsin
Prognostic* 286 33 0 2

E Haberman’s Survival* 306 3 0 2
F Wine Quality 178 13 0 3
G Parkinsons Telemonitoring 197 22 0 2
H Climate Model Simulation Crashes 540 18 0 2
I QSAR Bio–degradation 1055 32 9 2
J Wholesale Customers 440 0 6 3

Table 2: Details of datasets from UCI repository used in our ex-
periments. n: number of observations, pnum: number of numerical
features, pcat: number of discrete features, G: number of clusters.
Asterisk: dataset contains missing values.

6 Discussion

We present a new clustering algorithm, EGMCM, that, using
Gaussian mixture copulas (GMCM), can model a wide range
of dependencies beyond those captured by meta–Gaussian
distributions. We give the first semiparametric method to
estimate the parameters of GMCM that can fit continuous,
ordinal and binary data. We theoretically analyze the con-
ditions required to obtain consistent and unbiased parame-
ter estimates that, to our knowledge, is the first such anal-
ysis of an ERL approach. We empirically demonstrate that
EGMCM outperforms state-of-the-art correlation clustering
methods for mixed data. A limitation of EGMCM is that it is
uninterpretable with nominal data.

EGMCM is more scalable than other dependency cluster-
ing methods for mixed data such as SCENIC and coupledMC.
Processing of nominal data contributes to the computational
expense of other correlation clustering methods but their run-

Data Metric EGMCM CoupledMC SCENIC GMM

A AMI 0.06 0.02 0.25 0
ARI 0.01 0.04 0.22 0

B AMI 0.24 0.03 0 0
ARI 0.26 0.18 0 0

C AMI 0.23 0.02 0 0
ARI 0.12 0.02 0 0.02

D AMI 0.24 0.01 0 0.01
ARI 0.14 0.08 0.02 0

E AMI 0.01 0 0 0.06

ARI 0.02 0.01 0.01 0.1

F AMI 0.7 0.34 0.01 0.17
ARI 0.56 0.29 0 0.91

G AMI 0.12 0.21 0 0
ARI 0.15 0.36 0.04 0.01

H AMI 0.11 0.01 0 0
ARI 0.11 0.01 0.01 0

I AMI 0.15 0.03 0.09 0
ARI 0.23 0 0.02 0

J AMI 0.37 0 0.02 0.03
ARI 0.39 0.02 0.02 0.1

Table 3: Clustering performance of algorithms EGMCM, Cou-
pledMC, SCENIC and GMM; UCI datasets details in table 2. Best
results for each dataset (highest AMI, ARI) in bold.

time remains higher even when restricted to only ordinal and
continuous data due to the expense of finding dependencies.

The time complexity of EGMCM may be further improved
using better sampling techniques such as those in [Kalaitzis
and Silva, 2013]) and constrained covariance structures like
Parsimonious Gaussian Mixture Model families [McNicholas
and Murphy, 2008].

Our experiments have focussed on classification accuracy
when the number of clusters is known. If unknown, the
number of clusters can be inferred, for example, using the
Bayesian Information Criterion that was found to be effec-
tive in the parameter estimation method for GMCM in [Bhat-
tacharya and Rajan, 2014] for continuous data.

In our theoretical analysis we derive the conditions that en-
sure that the deviation in the mean, �(m)

gj in the mth iteration,
from the initial unbiased EM estimate, tends to zero for large
m. The value of �(m)

gj for small m depends on the choice
of initial values and variance in the original dataset. If suit-
able conditions for �(m)

gj to be close to zero can be found for
small m, then a low deviation from the original unbiased es-
timate of the mean can be maintained, which in turn ensures
consistent and asymptotically unbiased final estimates. This
follows from the fact that, if the maximum likelihood esti-
mate of the mean lies in a small neighbourhood of the initial
consistent and asymptotically unbiased estimate, then under
certain regularity conditions, the estimate itself is also con-
sistent and asymptotically unbiased [Huber, 1967]. Finding
such conditions for small m remains an open problem.

The ERL function is equivalent to the distribution of the
ranks for continuous data. For discrete data, the distribution
of the ranks depends on the univariate marginals. By ignor-
ing the marginal parameters, ERL loses information in the
case of discrete marginals. It would be useful to have a pre-
cise characterization of this loss compared to the full like-
lihood involving marginal parameters. Preliminary work in
this direction is in [Gu and Ghosal, 2009; Murray et al., 2013;
Hoff et al., 2014], only for the Gaussian copula.
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