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Abstract
Predictive models are finding an increasing num-
ber of applications in many industries. As a re-
sult, a practical means for trading-off the cost of de-
ploying a model versus its effectiveness is needed.
Our work is motivated by risk prediction problems
in healthcare. Cost-structures in domains such as
healthcare are quite complex, posing a significant
challenge to existing approaches. We propose a
novel framework for designing cost-sensitive struc-
tured regularizers that is suitable for problems with
complex cost dependencies. We draw upon a sur-
prising connection to boolean circuits. In particu-
lar, we represent the problem costs as a multi-layer
boolean circuit, and then use properties of boolean
circuits to define an extended feature vector and a
group regularizer that exactly captures the under-
lying cost structure. The resulting regularizer may
then be combined with a fidelity function to per-
form model prediction, for example. For the chal-
lenging real-world application of risk prediction for
sepsis in intensive care units, the use of our regu-
larizer leads to models that are in harmony with the
underlying cost structure and thus provide an excel-
lent prediction accuracy versus cost tradeoff.

1 Introduction
Many industries (e.g., retail, manufacturing, and medicine)
are recognizing the advantages of using predictive models to
make key decisions. They also understand that the cost of
obtaining input measurements should be balanced with their
effectiveness in prediction when choosing which model to de-
ploy. This is especially challenging when the cost structure
for an application is complicated. As an important example,
consider the cost structure associated with deploying a pre-
dictive model in an Intensive Care Unit (ICU) (see the cost-
dependency graph in Figure 1). In such a setting, the follow-
ing hold: (i) costs may be defined for tests, measurements, or
activities and these costs may be of different types (e.g., the

⇤This project was supported by NSF IIS-1418590 and the Johns
Hopkins University IDIES Seed Funding Initiative.

†Equal contribution.

financial cost of acquiring a blood test versus the staff time
taken to draw blood); (ii) features are obtained using one or
more measurements (e.g., lactate level or creatinine) which in
turn are obtained by ordering a test; (iii) a test may consist of a
single measurement (e.g., lactate level) or a panel of measure-
ments (e.g., CBC panel); (iv) a measurement can be ordered
via multiple tests (e.g., creatinine can be ordered on its own,
as part of a basic or a comprehensive metabolic panel, each
having a different financial cost); (v) multiple features can be
derived from the same measurement (e.g., the heart rate vari-
ability and the heart rate trend can both be derived from the
heart rate trace); and (vi) some features may require multiple
measurements (e.g., shock index is derived from blood pres-
sure and heart rate measurements). These aspects make the
cost structure complicated.

Before expanding upon the challenges involved with ad-
dressing complex cost-structures such as the one above, we
first introduce the mathematical setup for learning predictive
models. This involves data that is formally represented by
sets of pairs {(x

i

, y
i

)}N
i=1 for some integer N , where x

i

2 <n

for some integer n and y
i

2 <, for all 1  i  N . The vector
x
i

denotes the ith input (feature) vector and y
i

the output (la-
bel) associated with the ith input vector x

i

. The goal is then to
predict the unknown output associated with a newly obtained
input vector by using the knowledge one learns from the data
{(x

i

, y
i

)}N
i=1. A popular approach for performing this task is

to build predictive models via empirical regularized-loss min-
imization [Vapnik, 1998]. The problems used take the form

minimize
�2<n

f(�) :=
1

N

NX

i=1

L
�
�; (x

i

, y
i

)
�
+R(�), (1)

where � 2 <n is the parameter vector to be learned, L
is a loss function such as the logistic loss L(�; (x

i

, y
i

)) =

log(1 + expyix
T
i �), and R is a regularizer. The choice of reg-

ularizer amounts to giving preference to certain models, e.g.,
the `1-regularizer R(�) = �k�k1 for some � > 0 prefers
models defined by a sparse vector �. In practice, the regular-
izer should be chosen to reflect the preferred models, which
are often driven by the costs associated with the application.
For example, in compressed sensing, one wishes to find a
sparse solution to a linear system of equations. Thus, the
cost, i.e., the number of nonzeros in a prospective solution,
is harmonious with the `1-regularizer, which promotes sparse
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Figure 1: A portion of the dependency graph for the ICU example.

solutions. Note that in this example, as well as many others,
the costs are directly tied to the feature vectors themselves,
i.e., they occur at the feature level.

How does one design an appropriate regularizer for
problems with a complicated cost structure, such as for the
ICU example above? We address that question in this paper.

Related work. Learning models in the presence of costs
has received significant attention in recent years (e.g., [Xu
et al., 2012; Ji and Carin, 2007; Weiss and Taskar, 2013;
Xu et al., 2013; Raykar et al., 2010]). Existing work has
primarily targeted applications where the cost of computa-
tion is the primary concern, and this cost is elicited at the
feature level. Moreover, much of this work has focused on
optimizing performance when information is acquired incre-
mentally [Ji and Carin, 2007; Xu et al., 2012; Trapeznikov
and Saligrama, 2013; Kanani and Melville, 2008; Kapoor and
Horvitz, 2009]. In [Ji and Carin, 2007], they define the prob-
lem of cost-sensitive classification and use a partially observ-
able Markov decision process to trade-off the cost of acquir-
ing additional measurements with classification performance.
While they apply their method to a medical diagnosis prob-
lem, their costs were approximated at the feature level. In [Xu
et al., 2012], stage-wise regression is used to learn a collec-
tion of regression trees in a manner that ensures that clas-
sifiers built from more trees is more accurate, but more ex-
pensive. For the task of ranking web page documents, they
showed improved speed and accuracy by accounting for fea-
ture costs—simple lookups (e.g., word occurrences) versus
those needing more computation (e.g., a document-specific
BM25 score for measuring relevance to a query). For struc-
tured prediction, [Weiss et al., 2013] proposed a two tier
collection of models of varying costs and a model selector;
for each new test example, their selector adaptively chooses
a model. For vision applications (e.g., articulated pose es-
timation in videos), they showed gains in performance by
adaptively selecting models of varying costs by using a his-
togram of gradient features at a fine (expensive) versus a
coarse (cheap) resolution. These solutions focused on appli-
cations with no dependencies between the costs for the units
reasoned over (i.e. feature or model costs are independent)
and when they are provided upfront. As predictive models

continue to find their way into many important applications,
a means for incorporating rich cost structures is needed.

Returning to our example in healthcare, the challenge of in-
corporating costs arises from the dependencies between fea-
tures, measurements, tests, and required activities. Measure-
ments may be obtained from a singleton test or as part of a test
that yields multiple measurements. Tests may have different
resource costs associated with them, while features may be
derived from more than one measurement. These dependen-
cies between features, measurements and tests yield a com-
plex dependence structure between the features. Moreover,
various costs are specified at different levels of this hierarchy;
therefore, the cost of a feature is not specified upfront, but
rather is dependent on which other features, measurements,
and tests are selected.

Cost imposed via a hierarchical dependency graph is
reminiscent of past works utilizing structured sparsity
penalties (see the survey [Wainwright, 2014] and [Bach et
al., 2012]), especially those using tree-based regularizers
[Kim and Xing, 2010] and penalties with overlapping
groups and hierarchical structure [Zhao et al., 2006;
Bach et al., 2012]. Different from these past works, a
key challenge for our task is that the structure of the
group regularizer is not given and its construction is not
straightforward. We show that cost-dependency graphs
are naturally captured via Boolean circuits—graphs where
nodes share a combination of AND and OR connections
with its parents. Only leaf nodes (i.e. feature nodes) of
this circuit are included in the regularizer while the internal
nodes (e.g., measurements needed to obtain features) induce
dependency between the leaf nodes. The presence of mixed
AND/OR relationships and the non-inclusion of internal
nodes renders our application different from past works.
Other regularizers such as OSCAR [Zhong and Kwok, 2012]
and Laplacian Net [Huang et al., 2011] aim at discovering
group structure when the features are highly correlated.
In our setting, the groups are determined by the structure
of the cost graph, not by the correlations between the features.

Our contributions. We develop a new framework for defin-
ing structured regularizers suitable for problems with com-
plex cost structures by drawing upon a surprising connection
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to boolean circuits. In particular, we represent the problem
costs as a boolean circuit, and then use properties of boolean
circuits to define the exact cost penalty. Based on our ex-
act cost penalty, any standard convex relaxation may be em-
ployed for the purpose of computational efficiency, and here
we choose a standard `1-`1 relaxation. Our new regularizer
may be used within an empirical risk minimization frame-
work to tradeoff cost versus accuracy. We focus on the one-
shot setting (i.e., when all measurements are obtained up-
front), although our regularizer is also applicable in the in-
cremental setting. Since the cost-structure of many real-life
applications may be represented as a boolean circuit, the con-
tribution of our work is substantial.

Our ideas are presented in the context of a challenging
healthcare application—the development of a rapid screen-
ing tool for sepsis [Angus and van der Poll, 2013]—using
data from patients in the ICU [Saeed et al., 2011]. In this
setting, examples of potential users include patients, doctors,
and administration. Our experiments show that our regular-
izer allows for a collection of models that are in harmony with
a user’s cost preferences. Numerical comparisons to a cost-
sensitive `1—a natural competitor to our proposed regularizer
that does not account for the complicated cost structure—
shows that models obtained with our regularizer have a bet-
ter prediction/cost tradeoff. Compared to existing approaches
in predictive modeling where cost preferences are often ac-
counted for post hoc, our scheme provides a new way to ac-
count for complex cost preferences during model selection.

2 Regularizers for complex cost structures
Our scheme is general since it may be applied to any problem
with a cost structure that may be represented as a finite-layer
boolean circuit. However, for clarity of exposition, we first
focus on a particular healthcare application that also serves
as the basis for the numerical results presented.

2.1 An example from the intensive-care unit (ICU)
We formulate a structured regularizer for the cost structure
associated with risk prediction applications for the in-hospital
setting. These include problems such as prediction of those
at risk for death, the likelihood of readmission, and the early
detection of adverse events, e.g., shock and cardiac arrest.

Recall the cost dependency graph for the ICU example in
Figure 1. The features are represented by nodes in layer-1,
and their calculation requires a subset of measurements from
layer 2, i.e., nodes in layer-1 share an AND or OR relation-
ship with those in layer-2. Measurements can be obtained in
a number of ways by performing various tests, which are rep-
resented at layer-3, i.e., nodes in layer-2 similarly share an
AND or OR relationship with those in layer-3. The caregiver
activities are represented at layer-4 and are performed when
a test is needed that requires that action, i.e., layer-3 shares
an AND relationship with layer-4. Every relationship in this
boolean circuit is described using only logical AND and OR
operations. Note that, without loss of generality, we include
fictitious nodes “none-1” and “none-2” in layer-4 so that the
collection of input nodes are in the same layer.

There are three relevant costs: the financial cost of order-
ing a test, the waiting time to obtain a test result, and the
caregivers’ time needed to perform the activities required for
the tests. The ideal regularizer should account for the follow-
ing: (i) obtaining a measurement may cost different amounts
depending on which tests are ordered to obtain it; (ii) features
share costs with other features derived from the same mea-
surement; (iii) a feature may require multiple measurements
so that its cost depends on more than one measurement; and
(iv) caregiver time and financial costs are additive while wait
time is the maximum of the separate wait times.

Our structured regularizer requires the following sets:

F := {f1, · · · , fnf }, M := {m1, · · · ,mnm},
T := {t1, · · · , tnt}, A := {a1, · · · , ana}.

to be the sets of features (layer-1 nodes), measurements
(layer-2 nodes), tests (layer-3 nodes), and caregiver activities
(layer-4 nodes), with n

f

, n
m

, n
t

, and n
a

being the number of
each, respectively. We use f

i

 - m
i

to mean that there is a
directed edge that links node m

j

to node f
i

. Thus, our spe-
cific boolean circuit allow us to interpret f

i

 - m
j

, m
j

 - t
k

,
and t

k

 - a
l

to mean the ith feature requires the jth measure-
ment, the jth measurement can be obtained by performing the
kth test, and the kth test requires the lth activity.

We now define the set valued mappings m(f
i

) := {m
j

:
f
i

 - m
j

}, t(m
j

) := {t
k

: m
j

 - t
k

}, and t(a
l

) := {t
k

:
t
k

 - a
l

}, which represent the set of measurements required
to obtain feature i, the set of tests that produce measurement
j, and the set of tests that require action l. We note that we
have overloaded the definition of the function t above, i.e.,
we have two different definitions for t(m

j

) and t(a
l

). How-
ever, this should not lead to any confusion since the correct
definition is always clear from the context.

Next, we resolve the fact that some features may be
obtained in multiple ways by ordering various combinations
of tests. If this is not considered, the cost of a feature may
be over penalized by our regularizer. To address this issue,
let w

i

denote the numbers of ways feature i can be obtained.
Then, for the ith feature, we define ~f

i

:= [f
i,1, · · · , fi,wi ]

T

and ~�
i

:= [�
i,1, · · · ,�i,wi ]

T so that �
i,p

represents the
parameter associated with ordering feature f

i

in the pth way.
This allows us to define the extended feature and parameter
vectors ~f := [~f1, . . . , ~f

nf ]
T and ~� := [ ~�1, . . . , ~�

nf ]
T .

Modeling financial cost and caregiver time: To model fi-
nancial cost, which is incurred at the test level, for each test t

k

and feature f
i

we define ~n
k,i

:= [n
k,i,1, · · · , nk,i,wi ]

T with

n
k,i,p

:=

⇢
1 if t

k

is used when f
i

is ordered in its pth way,
0 otherwise,

for all 1  k  n
t

, 1  i  n
f

, and 1  p  w
i

. Given a fi-
nancial cost CT

k

of ordering test k and a weighting parameter
�$, the exact structured regularizer for financial cost is

R$
exact

(~�) := �$

ntX

k=1

CT
k

I

 
nfX

i=1

wiX

p=1

I(n
k,i,p

�
i,p

)

!
(2)
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with the indicator function I satisfying I(0) = 0 and I(z) =
1 for all z 6= 0. It follows from (2) that a financial cost for
test t

k

is incurred only when instructed to order some feature
f
i

in the pth way (�
i,p

6= 0), and that pth way requires test
t
k

(n
k,i,p

6= 0). The regularizer (2) is not computationally
friendly, so we instead use the relaxed structured regularizer

R$
relax

(~�) := �$

ntX

k=1

CT
k

���
nf_

i=1

~n
k,i

� ~�
i

���
1

(3)

where we define for a set of vectors {z
i

}n
i=1 and a subset

S = {i1, i2, . . . , ir} ✓ {1, 2, . . . , n} the quantities
n_

i=1

z
i

:= [zT1 . . . zT
n

]T and
_

i2S
z
i

:= [zT
i1
. . . zT

ir
]T .

Note that (3) is a sum of group `1-norms, which is supported
by the software SPAMS.

To model the caregivers time cost in a similar way, we de-
fine ~n

l,i

:= [n
l,i,1, · · · , nl,i,wi ]

T with

n
l,i,p

:=

⇢
1 if a

l

is used when f
i

is ordered in its pth way,
0 otherwise,

for all 1  l  n
a

, 1  i  n
f

, and 1  p  w
i

, where we
have again overloaded notation. The regularizer associated
with caregiver activity time then becomes

Rtime

relax

(~�) := �
time

naX

l=1

CA
l

���
nf_

i=1

~n
l,i

� ~�
i

���
1

(4)

with CA
l

being the time cost associated with the lth activity
and �

time

> 0 a weighting parameter. Overall, our structured
regularizer becomes

R
relax

(~�) := R$
relax

(~�) +Rtime

relax

(~�). (5)

By varying �$ and �
time

we trade-off the financial and care-
giver activity time costs, respectively.
Remark 1 If a scaled-`1-norm was used, the user chooses a
weight for each feature by condensing the complex cost struc-
ture into a single number, necessarily in an ad-hoc way.

Remark 2 Consider the 3-layer boolean circuit where layer-
1 contain the nodes F , layer-2 contain the nodes Z :=
{f

i,p

: 1  i  n
f

and 1  p  w
i

}, and layer-3 con-
tain the nodes A. Moreover, the gate functions at layer-
1 are given, for each f

i

, by g
fi(Z) := OR

1pwi

f
i,p

for all

1  i  n
f

, and the gate functions at layer-2 are given, for
each f

i,p

, by g
fi,p(A) := AND

{l:nl,i,p=1}
a
l

for all 1  i  n
f

and 1  p  w
i

. In particular, only OR gate functions
are used in layer-1 and only AND gate functions are used
in layer-2. Moreover, the properties of this 3-layer gate al-
lows us to conclude that for a given caregiver activity, say a

l

,
we have

���
W

nf

i=1 ~nl,i

� ~�
i

���
1
⌘
���
W

(i,p)2Sl

~�
i,p

���
1

with the

index set S
l

defind as S
l

:= {(i, p) : n
l,i,p

= 1} = {(i, p) :
the output of g

fi,p(·) depends on a
l

}, so that the definition of
our regularizer (4) follows from our knowledge of the 3-layer

boolean circuit. In fact, the only properties of the circuit that
we used were (i) layer-1 was the feature layer; (ii) layer-
3 contained the nodes whose costs we were modeling; (iii)
layer-1 only contained OR gates; and (iv) layer-2 only had
AND gates. This motivates the general case below.

Modeling testing wait time: We use a simpler approach to
address the time needed to obtain test results. Note that the
wait time for a set of test results is the maximum of the wait
times for each individual test (assuming that tests can be or-
dered in parallel). Thus, for a given upper bound, say W , on
the tolerated testing wait time, we only allow tests that have a
wait time less than W to be used. This amounts to selecting a
reduced boolean circuit containing only these allowed tests,
the caregiver actions required to obtain these allowed tests,
measurements that result from the allowed tests, and the fea-
tures that may be calculated from the included measurements.

2.2 Structured regularizer: the general case
We now show how to define our regularizer for any problem
whose cost structure may be represented as a finite r-layer
boolean circuit; Figure 1 is an instance of such a circuit.

An r-layer boolean circuit consists of layers of finitely
many nodes. The lowest layer (layer-1) consists of the set
of output nodes, while the highest layer (layer-r) contains the
input nodes. Additionally, we are given boolean functions—
defined on the basis B = {AND,OR,NOT}—for all nodes.
Formally, each boolean function performs the basic logical
operations from B on one or more logical inputs from the pre-
vious layer, and produces a single logical output value. The
healthcare example in Figure 1 is a 4-layer boolean circuit
with the features corresponding to layer-1, the measurements
to layer-2, the tests to layer-3, and the activities to layer-4.

Let N
i

:= {x
i,1, xi,2, . . . , xi,ni} be the nodes in layer-i for

some n
i

. By removing double negations, and using the laws
of distribution and De Morgan’s laws, the r-layer circuit may
be reduced to a 3-layer boolean circuit in disjunctive normal
form [Pfahringer, 2010; Zeng et al., 2012]. The nodes in the
3-layer circuit are then layer-3: {x

r,1, xr,2, . . . , xr,nr}, layer-
2: {z1, z2, . . . , zm}, and layer-1: {x1,1, x1,2, . . . , x1,n1} for
some m and set {z

i

}m
i=1 of nodes for layer-2. Moreover, the

only logical operations used by the boolean functions g
zi(·)

in layer-2 are AND and NOT operations, while the boolean
functions g

x1,i(·) in layer-1 only use logical OR operations.
(In Remark 2 we showed how a circuit of this form could be
obtained for the healthcare example.) If we define the vectors
~z := [z1, z2, . . . , zm]T and ~� := [�1,�2, . . . ,�m

]T , then we
define our cost-driven structured regularizer as

R
relax

( ~� ) := �

nrX

k=1

C
k

���
_

j2Sk

�
j

���
1

with S
k

:= {j : g
zj (·) depends on the logical value ofx

r,k

}.
When this regularizer is used in model prediction, an op-
timal value for the extended vector ~� is obtained. Using
this vector and the fact that layer-1 only has OR gates, we
know that a node x1,i in layer-1 (i.e., the feature layer for
the healthcare application) has the logical value of 1 (i.e., the
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feature should be computed) if �
j

6= 0 for some j 2 {k :
g
x1,i(·) depends on the logical value of z

k

}.

Remark 3 Although our exact penalty is approximated by an
overlapping group regularizer, what is non-trivial is deter-
mining which features belong to which groups for complex
cost graphs. By relating the cost graph to a Boolean cir-
cuit, we can use properties of Boolean circuits to define an
extended feature set and overlapping structure that is cor-
rect for arbitrary cost graphs. Moreover, this connection al-
lows for the use of widely used off-the-shelf software such as
SymPy to convert an arbitrary graph to the 3-layer circuit in
disjunctive normal form used to define our exact regularizer.

3 Numerical experiments
We focus on early detection of septic shock—an adverse
event resulting from sepsis—since it is the 11th leading cause
of patient mortality in the United States. (Mortality rates
are between 30% and 50% for those who develop septic
shock [Angus et al., 2001].) Although early treatment can re-
duce the patient mortality rate, less than one-third of patients
receive appropriate therapy before onset. Therefore, an early
warning system that accurately predicts a sepsis event allows
for appropriate treatment and a higher quality of patient care.
(See the references in [Ho et al., 2014] for recent work on
sepsis detection; none have tackled the cost of deployment.)
More broadly, this problem is an instance of cost-sensitive
risk prediction for automated triage [Wilson et al., 1981].

We constructed the full cost-graph in collaboration with
domain experts, which resulted in 119 nodes and 294 edges.
(The full list of measurements and tests can be found in Fig-
ure 2.) We combine the logistic-regression function with our
structured regularizer (5) to predict the probability that a pa-
tient will develop septic shock. We use MIMIC-II [Saeed
et al., 2011], a large publicly available dataset of electronic
health records from patients admitted to four different ICUs
at the Beth Israel Deaconess Medical Center over a seven
year period. Using the processing described in [Henry et
al., 2015], 2,291 positive patients and 12,646 negative patient
cases were obtained.

We answer two questions. Does our structured regularizer
lead to diverse models, especially in terms of the various
costs? How well does our new structured regularizer perform
compared to existing available solutions? Natural compar-
isons include regularizers that account for cost but do not
account for the cost-dependence structure, e.g., the `1-norm
regularizer or the cost-sensitive `1-norm. A comparison
with other structured sparsity penalties would also seem
appropriate, but none exist that construct the penalty for
complex cost graphs (see the discussion in the related work
section). We do not include comparisons to stage-wise
alternatives because they are suboptimal to the proposed
cost-sensitive `1-norm, which yields a global optimum.

Experimental setup. We split the individuals into training
(75%) and test (25%) sets. From the training set, we process
the data using a sliding window to extract positive and neg-
ative samples consisting of the features observed at a given
time, and an associated label that is positive if septic shock

was occured within the following 48 hours and negative oth-
erwise. Since the dataset is imbalanced, we subsample the
negative pairs to obtain a balanced training set.

For our test set, we use the learned model to predict the
risk of septic shock at each time point. This gives a trajec-
tory of risk for septic shock over time for each individual.
For a given threshold, an individual is identified as having
shock if their risk trajectory rose above that threshold prior
to shock onset. For this threshold, we calculate: (i) sensitiv-
ity as the fraction of patients who develop septic shock and
are identified as having a high risk of septic shock; (ii) the
false positive rate (FPR) as the fraction of patients who never
develop septic shock but are identified as high risk patients
by our model; and specificity as 1 � FPR. The receiver op-
erating characteristic (ROC) curve and area under that curve
(AUC) are obtained by varying the threshold value, with pa-
tients identified as at-risk if their predicted probability was
above the threshold value. We use 10 bootstrapped samples
to estimate confidence intervals for the AUC.

We used the MEXFISTGRAPH routine in SPAMS to
minimize the sum of the logistic function and our structured
regularizer (5). The maximum allowed iteration limit was set
to 5,000 and the termination tolerance (duality gap) to 10�3.

Model diversity. Three costs were considered: (i) financial
cost associated with ordering a test; (ii) nursing-staff’s time
needed to perform the activities required for the tests; and
(iii) waiting time to obtain a test result. For a chosen maxi-
mum wait time and weighting parameters �$ and �

time

, our
algorithm minimizes the sum of the logistic-regression func-
tion with the regularizer (5), which returns parameters for
a model from which we may compute an associated ROC,
AUC, financial cost, nurse-time, and test result wait time.
By sweeping over a range of values for the maximum al-
lowed wait time, �$, and �

time

, we obtain models with var-
ious costs that reflect preferences for different models. For
our cost-dependency structure, there are three possible maxi-
mum wait times: 50 minutes, 10 minutes, and 0 minutes. For
each of these scenarios, we select values for �$ and �

time

from an equally spaced grid over the interval [10�3, 10�7],
which yields a collection of models at the cost-accuracy fron-
tier. Four models—denoted as M1, M2, M3, and M4—are
represented in Table 1 to illustrate the tradeoff achieved by
our approach.

Model M1 is the most cost-effective. It uses existing mea-
surements that are routinely collected and therefore it neither
incurs a financial cost nor the need for nursing-time to acquire
new measurements. Since no additional tests are required,
the wait time for the model is also zero minutes. The model
achieves a relatively high AUC of 82.79. The set of measure-
ments that were found to be most predictive include: clinical
history (on ventilator, on pacemaker, has cardiovascular com-
plications); vitals (shock index, raw and derived features of
the heart rate, SpO2, FiO2, blood pressure, respiratory rate);
and time since first presentation of systemic inflammatory re-
sponse syndrome (SIRS).

At the other extreme, model M4 has a financial cost of
$170, requires a nurse-time of 30 minutes, and a total test
result wait time of 50 minutes. It requires measurements
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Figure 2: The cost structure (measurements and associated costs) for risk prediction of adverse events in an ICU. Some measure-
ments are made on demand (OD), while the others are routinely collected. The following acronyms are used: basic metabolic
panel (BMP), comprehensive metabolic panel (CMP), and complete blood count (CBC).

attained from numerous additional tests such as the arte-
rial blood gas, comprehensive metabolic panel, hematocrit,
hemoglobin, and urine tests. By using these measurements,
the accuracy increases to an AUC of 87.21, and shows a clin-
ically significant gain in sensitivity compared to model M1.

Models M2 and M3 have cost and performance interme-
diate to models M1 and M4. Also, it is interesting to see
that M2 and M3 achieve similar performance in very dif-
ferent ways. Model M2 selects a urine measurement with a
test result wait time of 10 minutes and 10 minutes of nurse
time, while M3 does not require any nurse time, but needs
50 minutes of wait time to receive test results.

For the specificity level of 0.85, the models vary signifi-
cantly in terms of sensitivity. As expected, model M1 has
the lowest sensitivity value of 0.61, followed by model M3

with a value of 0.65, then model M2 with a value of 0.66, and

finally model M4 with a value of 0.72. Thus, with additional
resources, M4 is significantly better at identifying patients
that eventually did experience septic shock. The added sensi-
tivity is useful for units with vulnerable populations.

In practice, a user can benefit from our structured regular-
izer in at least two ways. First, the user can obtain multiple
predictive models by choosing a diverse set of values for the
weighting parameter values �$ and �

time

. This brute force
approach would provide a diverse landscape of models with
very different cost distributions. A second approach involves
the user making a sequence of decisions. In particular, the
user would adjust the weighting parameter values after the
results using their current values is obtained. Specifically, the
user would adjust the parameter values so as to obtain a new
model that is more aligned with their preferences.
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Table 1: Various costs for different models obtained by using our structured regularizer.

Models M1 M2 M3 M4

Sensitivity at 0.85 specificity 0.61 0.66 0.65 0.72
AUC 82.79± 0.55 84.45± 0.64 84.75± 0.55 87.21± 0.46

Financial Cost $0 $0 $72 $170
Caregiver Time 0 minutes 10 minutes 0 minutes 30 minutes

Result Time 0 minutes 10 minutes 50 minutes 50 minutes
Tests Required routine routine, urine abg, routine abg, cbc, cmp, hct, hemoglobin, routine, urine

Activities Required none urine arterial stick arterial stick, blood draw, urine
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Figure 3: Cost ($) and area under the curve (AUC) for the `1
(L1), scaled-`1 (L1-scaled), and group regularizer (Group).

Comparison with the `1 and scaled `1-norm. Simple reg-
ularizers (e.g., the `1-norm) can not capture the rich struc-
ture of the cost-dependencies in real-world domains such as
healthcare. Figure 3 compares our structured group regular-
izer (Group) to the `1-norm (L1) and a scaled-`1-norm (L1-
scaled). The L1 method is a straightforward implementation
of logistic regression plus `1-norm minimization. The L1-
scaled algorithm combines the logistic function with a scaled-
`1-norm given by R(�) := �kS�k1 for some diagonal scal-
ing matrix S = diag(s1, . . . , sn) and weighting parameter
� > 0. In our tests, we defined s

i

as the maximum of 1 and
the minimum cost required to obtain the ith feature. Although
this choice is reasonable, it is also ad-hoc, which is necessar-
ily true for any choice of the scaling matrix S. This is a con-
sequence of the fact that it takes a complicated cost structure
and represents it by n numbers, which is too simplistic.

Figure 3 compares the tradeoff between financial cost and
AUC values of Group, L1, and L1-scaled. (Similar plots
could be constructed for test result time and nurse time.)
The reported cost of a model is obtained by post-processing,
whereby we sum the costs for the unique set of tests re-
quired. Each point in the plot represents a pair ($,AUC) for

some model. For algorithms L1 and L1-scaled, the points
were obtained by varying the parameter � over the interval
[10�3, 10�7]. For algorithm Group based on the regular-
izer (5), we fixed �

time

= 10�7 and let �$ take on the same
values as � for algorithms L1 and L1-scaled; this placed dif-
ferent levels of emphasis on only the financial cost, which
further illustrates the flexibility of our cost-driven structured
regularizer. For all three algorithms we only use tests that
have a maximum allowed wait time of 50 minutes.

First, observe that algorithm L1 performs the worst. In par-
ticular, the cheapest model recovered by algorithm L1 costs
$129 and had an AUC of approximately 77.5. At that same
price-point, algorithms L1-scaled and Group were able to ob-
tain AUC values of approximately 84.6 and 86.1. This is
not surprising since the `1-regularizer used by algorithm L1
causes the most predictive features to be chosen first, without
any regard to the resulting financial cost. This performance
is not surprising and may be used to motivate algorithm L1-
scaled. In essence, L1-scaled incorporates a rough measure of
the cost for each feature through the choice of s

i

, as described
above. Second, Figure 3 shows that our cost-sensitive regu-
larizer significantly outperforms algorithm L1-scaled. Third,
observe that a (perhaps) surprisingly high AUC value (ap-
proximately 84.5) may be achieved for models without any
financial cost by algorithms L1-scaled and Group. For the
prediction of sepsis, this means that although expensive tests
produce measurements that allow for better prediction accu-
racy, one may still do well without incurring any (additional)
financial costs. This observation should be leveraged when
implementing screening tools or assessing risk stratification.

4 Conclusions and discussion
We designed a structured regularizer that captures the com-
plex cost structure of many applications. The feature, mea-
surement, test, and caregiver activity hierarchy in healthcare
was used as an example, but we showed how our method can
be used anytime the cost structure can be represented as a
finite-layer boolean circuit. By building a regularizer that
was in harmony with user’s application-specific cost prefer-
ences, our experiments produced a diverse collection of mod-
els. Moreover, our cost-sensitive regularizer achieved bet-
ter prediction accuracy for the same (often lower) cost when
compared to `1 or weighted-`1 norms commonly used. We
comment that the design of our regularizer must only be done
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once up-front for each application, and then may be reused to
answer a host of questions, e.g., through model prediction.

Beyond sepsis, our regularizer applies to many prediction
problems in healthcare [Bates et al., 2014] including early de-
tection of other potentially preventable conditions, e.g., pneu-
monia, c-diff, and renal failure [Fuller et al., 2009]. More
broadly, our regularizer is applicable to cost-sensitive predic-
tion problems whose cost-graphs may be represented with
a logical AND and OR structure associated with boolean
circuits. In traffic prediction, for example, features (e.g.,
mean and trend) of the traffic velocity can be computed from
streams acquired from sources (e.g., querying crowdsourced
GPS devices, pneumatic road tubes, piezo-electric sensors,
cameras, and manual counting) at different locations includ-
ing live event streams [Horvitz et al., 2012]. Considerations
for choosing a model include the cost of acquiring and de-
ploying the sensors, the staff time to maintain the sensors,
and the recurring costs of acquiring traffic, weather and live
event streaming data. Depending on the availability and cost
of resources, one may wish to deploy different models in dif-
ferent regions.

Although our cost-sensitive regularizer may be used in
many important applications, it has limitations. Its more ac-
curate modeling of the cost-graph is achieved at the expense
of requiring additional computation to construct. Converting
a general r-layer Boolean circuit to a 3-layer Boolean circuit
has complexity O(sfr), where s is the number of nodes and f
is the fan (the largest number of allowed gate inputs/outputs)
of the circuit. However, most cost-graphs are highly struc-
tured, thus dramatically reducing the computational cost. For
example, constructing the regularizer for the ICU application
took approximately 10 seconds on a MacBook Air laptop (1.8
GHz Intel Core i5 processor with 4GB of RAM). This modest
additional cost is a consequence of the structure of the cost-
graph: most nodes have relatively few connections to nodes
in adjacent layers, and the logical gates mostly contain sim-
ple OR and AND constructs. Since these properties hold for
many cost-graphs in practice, our approach is often practical.
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