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Abstract
As a definitive investment guideline for institutions
and individuals, Markowitz’s modern portfolio the-
ory is ubiquitous in financial industry. However,
its noticeably poor out-of-sample performance due
to the inaccurate estimation of parameters evokes
unremitting efforts of investigating effective reme-
dies. One common retrofit that blends portfo-
lios from disparate investment perspectives has re-
ceived growing attention. While even a naive port-
folio blending strategy can be empirically success-
ful, how to effectually and robustly blend portfo-
lios to generate stable performance improvement
remains less explored. In this paper, we present
a novel online algorithm that leverages Thompson
sampling into the sequential decision-making pro-
cess for portfolio blending. By modeling blend-
ing coefficients as probabilities of choosing ba-
sis portfolios and utilizing Bayes decision rules
to update the corresponding distribution functions,
our algorithm sequentially determines the optimal
coefficients to blend multiple portfolios that em-
body different criteria of investment and market
views. Compared with competitive trading strate-
gies across various benchmarks, our method shows
superiority through standard evaluation metrics.

1 Introduction
The modern portfolio theory framework pioneered
by [Markowitz, 1952] has been instrumental in devel-
oping and understanding financial markets and investment
decision making. Thus far its mean-variance paradigm
remains the pervasive formulation of portfolio choice
problems in both academia and industry [Brandt, 2010;
Kolm et al., 2014]. Its increasing popularity among pension
funds, mutual funds and 401(k) plans has called for thor-
ough understanding and careful implementing. Generally,
the mean-variance framework formalizes the concept of
return-risk tradeoff that investors should consider return
and risk together to determine the allocation of funds
among investment alternatives. In particular, it suggests
that among available portfolios that achieve a particular
return objective, investors should invest the portfolio with

the smallest variance. All other portfolios are “inefficient” in
terms of having a higher variance representing a higher risk.
However, due to the hurdle of accurately estimating involved
parameters, the mean-variance portfolio often performs
poorly in out-of-sample settings [Broadie, 1993].

On the other hand, the concept of blending portfolios aris-
ing from different investment perspectives to construct a new
portfolio can be traced back to the ingenious two-fund sepa-
ration theorem by [Tobin, 1958]. In the mean-variance frame-
work, the two-fund separation theorem states that the effi-
cient portfolio can be considered as a linear combination of
two portfolios. Given the unsatisfactory out-of-sample per-
formance of the mean-variance portfolio, the two-fund sepa-
ration theorem naturally brings us the opportunity of blend-
ing portfolios to achieve better performance than the mean-
variance portfolio and other heuristic strategies. However, as
the pivotal drivers of performance, blending coefficients that
characterize the combination of portfolios demands a system-
atic and comprehensive way to determine.

Meanwhile, the massive amounts of data in the financial
industry spark the use of advanced data analysis tools to im-
plement online portfolio strategies. As machine learning al-
gorithms have shown extreme efficiency in the automated
process of large datasets, over years researchers have made
significant efforts of designing real time data stream based
portfolio strategies [Blum and Kalai, 1999; Cover and Or-
dentlich, 1996; Borodin et al., 2004; Agarwal et al., 2006;
Li and Hoi, 2012; Shen et al., 2014; Shen and Wang, 2015].
Illustration over a wide range of online portfolio strategies
may be found in the survey by [Li and Hoi, 2014], and the
references therein.

In this paper, we address the conundrum of appropriately
determining blending coefficients of portfolios in an online
setting by a machine learning algorithm. We believe that it
is a step in the development of exploiting machine learning
algorithms for portfolio choice problems. In particular, we
first construct three basis portfolios in finance prepared for
blending and formulate the portfolio blending problem into
a Thompson sampling problem. Then we model blending
coefficients as probabilities of choosing basis portfolios and
rest on Bayes decision rules to update the distribution charac-
terizing those probabilities. With two sets of different basis
portfolios, we design two blended portfolios accordingly. To
justify their performance from various angles, we employ a
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suite of standard finance metrics consisting of Sharpe ratios,
volatility, and maximum drawdowns. Our extensive empir-
ical studies and comparisons of the two blended portfolios
with seven competing strategies over five real-world market
datasets conspicuously illustrate the superiority of the pro-
posed Thompson sampling based blending algorithm.

2 Background and Related Work
In this section, we briefly discuss two topics, i.e., Thompson
sampling and portfolio blending. The former covers a short
history, the current advance, and the formulation in a ban-
dit setting of Thompson sampling; the latter comprises of the
discussion about the two-fund theorem with shrinkage rules
and representative work.

2.1 Thompson Sampling
As a heuristic solution to the well-known exploration-
exploitation problem, Thompson sampling was first induced
by [Thompson, 1933] in the early 1930’s. Surprisingly, un-
like other probability matching methods, such as Bayes de-
cision rules, Thompson sampling remained unpopular for an
extremely long time in the research community. Recently,
Thompson sampling has been revisited by many researchers
and successfully applied to various machine learning prob-
lems, such as reinforcement learning [Granmo, 2010], on-
line advertising [Graepel et al., 2010] and Markov decision
processes [Strens, 2000]. In particular, for multi-armed ban-
dit learning problems, a recent empirical study shows that
Thompson sampling is a highly promising strategy of ad-
dressing the exploration-exploitation tradeoff [Chapelle and
Li, 2011]. Despite of its simplicity, Thompson sampling
achieves comparable performance with competing methods
such as upper confidence bound (UCB) and ✏-greedy meth-
ods. In addition, although in contrast with UCB [Auer et al.,
2002] Thompson sampling lacks strong theoretical guaran-
tees on the regret, recent studies have shown that it converges
asymptoticly in the bandit learning context [Granmo, 2010;
Agrawal and Goyal, 2012; Gopalan et al., 2014]. Also, the
role of risk in bandit learning has started to be acknowledged
and studied [Sani et al., 2012; Shen et al., 2015]. We briefly
describe the Thompson sampling algorithm below.

Consider a set of actions A and a reward r. In each
round, a player chooses an action ↵ 2 A and then re-
ceives the corresponding reward r 2 R following a prob-
ability distribution that depends on the issued action. The
player attempts to determine a policy that can generate
an action set {↵1, . . . ,↵k, . . . ,↵m} that creates the max-
imum cumulative reward after playing m rounds. In a
Bayesian setting, the set of past observations D that con-
sists of {(↵1, r1), . . . , (↵k, rk)} is modeled as a paramet-
ric likelihood function P(r|↵,✓) with a set of parameters
✓. By assuming a prior distribution P(✓) on those pa-
rameters, the posterior distribution is given by P(✓|D) /Q

k P(rk|↵k,✓)P(✓). Denoting by ✓⇤ the set of unknown
true parameters, the optimal action at time tk is deter-
mined by maximizing the expected reward, i.e., ↵⇤

k =

argmax↵k
E(rk|↵k,✓

⇤
). However, since ✓⇤ is unknown, by

randomly selecting an action according to its probability of

being optimal, the action is chosen with probability:
Z

I
⇥
E(rk|↵k,✓) = max

↵0
k

E(rk|↵0
k,✓)

⇤
P(✓|D)d✓, (1)

where I is the indicator function. The implementation
of Thompson sampling strategy can be realized by sam-
plings, which is straightforward in many applications includ-
ing multi-armed bandit problems. Briefly, in each round, the
set of parameters ✓ is sampled from the posterior P(✓|D)

and the action ↵k are chosen to maximize E(rk|↵k,✓). A
detailed description of Thompson sampling research may be
found in [Russo and Van Roy, 2014].

2.2 Portfolio Blending
Although blending portfolios to construct a better performing
portfolio sounds naive, the observed empirical results have
demonstrated its superiority [DeMiguel et al., 2009]. Theo-
retically, the portfolio structure induced by Tobin’s two-fund
theorem implies that the two-fund theorem falls under the
rubric of applying shrinkage directly to the portfolio weights.
Since shrinkage estimators mitigate estimation error by intro-
ducing bias, the approach of blending portfolios provides a
pathway to improving the mean-variance portfolio.

While the effectiveness of blending disparate portfolios
varies by virtue of the specified shrinking target, they can of-
ten outperform the mean-variance portfolio and other heuris-
tic portfolios [Meucci, 2009]. In particular, [Kan and Zhou,
2007] propose a three-fund blending portfolio to further im-
prove the models based on Bayes-Stein shrinkage estima-
tors [Jorion, 1986]. They include the third fund as to di-
minish the adverse impact of estimation error in terms of
hedging the estimation risk embedded in the first two funds.
[Tu and Zhou, 2011] consider optimally blending the equally-
weighted portfolio with the mean-variance portfolio or with
their early proposed three-fund blending portfolio. They
calibrate the blending coefficients under the assumption of
independent and identically distributed (i.i.d.) normal re-
turns by maximizing investors’ expected utility. Their re-
sults show that their four-fund blending portfolio outperforms
the mean-variance portfolio but not always performs as well
as the equally-weighted portfolio. Recently, [DeMiguel et
al., 2013] attack the similar problem as [Tu and Zhou, 2011]
by testing more economic criteria for coefficient calibration.
Their results show the variance minimization criterion is most
robust. Furthermore, among numerous approaches to improv-
ing the performance of the mean-variance portfolio, many of
them essentially share the concept of portfolio blending in
different forms [Jorion, 1986; Ledoit and Wolf, 2008]. A
more comprehensive review of those variants of the mean-
variance portfolio may be referred to [Kolm et al., 2014].

3 Methodology
In this section, we first introduce the notations and finance
terms used in this paper. Then we discuss three basis portfo-
lios for blending, formulate the problem of portfolio blending
into a Bernoulli bandit problem, and calibrate the blending
coefficients by Thompson sampling. Finally, we summarize
the proposed algorithm.
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3.1 Notations
In a self-financing, discrete-time and finite-horizon invest-
ment environment, we denote a series of trading periods as
tk = k�t, k = 0, . . . ,m, where �t represents one week
or one month, depending on the rebalance interval. For sim-
plicity, we use k for short as the index to indicate the trading
period at time tk hereafter. From time tk�1 to tk the gross re-
turn vector of n risky assets accessible to investors is denoted
as Rk = (Rk,1, . . . , Rk,i, . . . , Rk,n)

>. The gross return Rk,i

for the i-th asset is computed as Rk,i = Sk,i/Sk�1,i, where
Sk,i and Sk�1,i represent the prices of the i-th asset at time
tk and tk�1, respectively.

Denote by !k = (!k,1, . . . ,!k,i, . . . ,!k,n)
> the vector

of the portfolio weights reflecting the investment decision at
time tk. The i-th element of !k specifies the invested percent-
age of wealth in the i-th asset. We assume the sum of all the
portfolio weights equals one, i.e., !>

k 1 =

Pn
i=1 !k,i = 1,

where 1 is a column vector with ones as its entities. If
!k,i > 0, it indicates that investors take a long position of the
i-th asset. In contrast, !k,i < 0 indicates a short sale of the
i-th asset, where investors liquidate the borrowed i-th asset
to invest other assets. If the price of the borrowed asset re-
bounds, investors will suffer from a loss. The maximum loss
for a long position will be the total amount of invested wealth
and the maximum loss of a short sale position could be infin-
ity theoretically. Given gross returns and portfolio weights,
we can compute the realized portfolio before-cost net return
µk from time tk�1 to tk as µk = R>

k !k � 1.

3.2 Basis Portfolios
In our study, we focus on three basis portfolios for blend-
ing, i.e., the equally-weighted, the value-weighted and the
minimum-variance portfolios. Those portfolios are standard
in finance and easy to compute from data.

Equally-weighted portfolio (EW): EW simply ignores
all data information and distributes the investment equally
among all the assets:

!EW
k =

1

n
1. (2)

Value-weighted portfolio (VW): As a passive market
mimicking strategy, VW is calculated by:

!VW
k =

!k�1 �Rk�1

!>
k�1Rk�1

, (3)

where � denotes the Hadamard product of two vectors. VW
assigns a weight to each asset equal to its market capitaliza-
tion divided by the total market capitalization of all the assets
at each rebalancing time.

Minimum-variance portfolio (MV): Denote by ⌃k the
covariance matrix of the n asset returns Rk at time tk. MV
as a variant of the mean-variance portfolio is computed by:

!MV
k = argmin

!>
k 1=1

!>
k ⌃k!k =

⌃�1
k 1

1>⌃�1
k 1

. (4)

3.3 Portfolio Blending with Thompson Sampling
After obtaining the weights of basis portfolios, we take a
linear combination to construct the blending portfolios. In

particular, we blend the equally-weighted and the minimum-
variance portfolios as:

!EM
k = �k!

MV
k + (1� �k)!

EW
k , (5)

and blend the value-weighted and the minimum-variance
portfolios as:

!VM
k = �k!

MV
k + (1� �k)!

VW
k , (6)

where 0  �k  1 is the blending coefficient acting as the
main driver of the performance after determining the basis
portfolios. Intuitively, given a dynamic trading environment,
an optimal blending should perform at least as well as any
individual strategy. In this paper, we make the sequential de-
cision on the blending coefficient �k by applying Thompson
sampling to a Bernoulli bandit problem, as discussed below.

First, we consider the blending coefficient �k as the proba-
bility of choosing the minimum-variance portfolio !MV

k . In-
tuitively, the blending portfolio can be read as the expecta-
tion of different portfolios if the blending coefficients are the
corresponding probabilities of choosing those portfolios. If
basis portfolios are constructed according to different pro-
jections of future market conditions, the blending coefficient
�k acting as a probability captures the market view of in-
vestors. For example, if investors lack information to cre-
ate sophisticated strategies, they may rely more on EW, i.e.,
put more weight on !EW

k . Next, we assume the probability
of choosing MV follows a Beta distribution with parame-
ters a and b, i.e., �k ⇠ Beta(a, b). The Beta distribution
with the support (0, 1) has the probability density function
as f(x; a, b) / xa�1

(1 � x)b�1 with parameters a > 0 and
b > 0 and the mean a/(a + b). Given the probability den-
sity function f(x; a, b), the higher the a and b the tighter is
the concentration around its mean. The Beta distribution is
advantageous for Bernoulli rewards because if the prior is a
Beta(a, b) distribution, after observing a Bernoulli test, the
posterior distribution is Beta(a + 1, b) or Beta(a, b + 1), de-
pending upon whether the test offers a success or a failure.
In the limit of a ! 1, investors will be certain to select this
portfolio; in contrast, if b ! 1 investors will surely not in-
vest in this portfolio.

Further, to design our Bernoulli test, we set up a bench-
mark blending portfolio with its blending coefficient equal to
the mean of the Beta(a, b) distribution i.e., ¯�k = a/(a + b).
Therefore, the corresponding benchmark portfolios are:

¯!EM (VM)
k =

¯�k!
MV
k + (1� ¯�k)!

EW (VW)
k , (7)

where we use !EW (VW)
k for short to represent the portfolio

weight vector !EW
k or !VW

k . We then sample one ˜�k from
the Beta(a, b) distribution and construct the testing blending
portfolios as:

˜!EM (VM)
k =

˜�k!
MV
k + (1� ˜�k)!

EW (VW)
k . (8)

After observing the gross return yield by the rebalancing, we
call it a success or a failure based on:

8
>>><

>>>:

Success R>
k !̃

EM (VM)
k > R>

k !̄
EM (VM)
k and �̃k > �̄k

Success R>
k !̃

EM (VM)
k < R>

k !̄
EM (VM)
k and �̃k < �̄k

Failure R>
k !̃

EM (VM)
k > R>

k !̄
EM (VM)
k and �̃k < �̄k

Failure R>
k !̃

EM (VM)
k < R>

k !̄
EM (VM)
k and �̃k > �̄k

. (9)
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Algorithm 1 Portfolio Blending via Thompson Sampling
1: Inputs: m, n, R�⌧+1, . . . ,Rm, ⌧
2: for k = 1 ! m do
3: Compute the equally-weighted portfolio !EW

k ;
4: Compute the value-weighted portfolio !VW

k by (3);
5: Estimate the covariance matrix of asset returns ⌃k

by {Rk�⌧ , . . . ,Rk�1} and compute the minimum-
variance portfolio !MV

k by (4);
6: Initialize the Beta distribution by a = 1 and b = 1;
7: for j = 1 ! ⌧ do
8: Compute the benchmark blending coefficient ¯�j ;
9: Construct the benchmark portfolio ¯!EM (VM)

j by (7);
10: Sample one ˜�j from the Beta(a, b) distribution;
11: Construct the testing portfolio ˜!EM (VM)

j by (8);
12: Compare the testing and benchmark portfolios ac-

cording to (9) by using Rj�⌧ ;
13: Update a and b:
14: if Success then
15: a = a+ 1;
16: else
17: b = b+ 1;
18: Compute the optimal blending coefficient �⇤k by (10);
19: Construct the proposed TS-EM portfolio and the TS-

VM portfolio !TS-EM (TS-VM)
k by (11);

20: Output:
The series of portfolios !TS-EM (TS-VM)

k and the portfolio
before-coast net returns µTS-EM (TS-VM)

k for k = 1, . . . ,m.

Specifically, if R>
k ˜!EM (VM)

k > R>
k ¯!EM (VM)

k and ˜�k > ¯�k
or R>

k ˜!EM (VM)
k < R>

k ¯!EM (VM)
k and ˜�k < ¯�k, we call it a

success because investors have made a wise decision about
the overweight or the underweight on MV. Otherwise, we call
it a failure because investors have made an inadvisable bet on
the weight. A success suggests updating the parameters such
that in the next round of rebalance investors should have a
higher probability of choosing MV, and vice versa.1

Furthermore, similar to the steps in [Agrawal and Goyal,
2012], we apply Thompson sampling to implementing the
distribution updating step. We start with the initial prior as
Beta(1, 1) and ⌧ periods of historical data. Given no infor-
mation about the performance of portfolios, Beta(1, 1), i.e., a
standard uniform distribution, is reasonable to investors. At
each rebalance time, investors construct the aforementioned
Bernoulli test, observe a success or a failure thereafter, and
correspondingly update the posterior distribution. After the
training period with ⌧ rebalances, the algorithm ends up with
the updated distribution as Beta(1+a⌧ , 1+ b⌧ ), by assuming
investors have encountered a⌧ successes and b⌧ failures.

Finally, we determine the blending coefficient as the mean
of the most updated distribution as:

�⇤k =

(1 + a⌧ )

(1 + a⌧ + 1 + b⌧ )
. (10)

Namely, the proposed Thompson sampling based equally-
weighted and minimum-variance blending portfolio (TS-

1If R>
k !̃

EM (VM)
k = R>

k !̄
EM (VM)
k , we do not update the parame-

ters; if �̃k = �̄k, we simply re-sample from the Beta distribution.

EM) and the value-weighted and minimum-variance blending
portfolio (TS-VM) read:

!TS-EM (TS-VM)
k = �⇤k!

MV
k + (1� �⇤k)!

EW (VW)
k . (11)

Accordingly, the realized portfolio before-cost net return µk

from time tk�1 to tk will be

µTS-EM (TS-VM)
k = R>

k !
TS-EM (TS-VM)
k � 1. (12)

On the one hand, while surpassing either EW or MV has been
shown arduous, the proposed TS-EM portfolio aims to per-
form at least as well as EW and MV via the new blending
algorithm. On the other hand, by incorporating market trend
information in VW and risk control mechanism in MV, the
proposed TS-VM portfolio attempts to exploit the interplay of
VW and MV, thereby constructing a superior blending port-
folio. In addition, we estimate the covariance matrix ⌃k by a
factor model [Fan et al., 2008] based on the historical data in
sliding windows with the size of ⌧ training data. Algorithm 1
succinctly summarizes the detailed procedure of constructing
these two blending portfolios.

4 Experiments
In this section, we perform empirical studies to evaluate the
proposed portfolio blending algorithm. We first describe the
experimental settings, including a brief introduction of the
testing benchmarks and the evaluation metrics. Then we
will report the results and compare with seven state-of-the-
art competing portfolio strategies.

4.1 Data
To fairly appraise the new method, following [DeMiguel et
al., 2009; Shen et al., 2014] in our experiments we choose five
datasets from two distinct classes of benchmarks that repre-
sent both academic standards and real-world market datasets.

Fama and French datasets (FF) [Fama and French,
1992]: As standard evaluation protocols and oft-adopted
testbeds in the finance community, the FF datasets are con-
structed portfolios of broad financial segments of the U.S.
stock market. The datasets at the monthly frequency span-
ning a period of forty years have an extensive coverage to as-
set classes. Real-world market datasets [Shen et al., 2015]:
The real-world datasets including ETF139 and EQ181 are
crawled from Yahoo! Finance on a weekly basis from 2008 to
2012. The ETF139 dataset consists of 139 exchange-traded
funds that are traded like stocks in the U.S. market. Not only
do they offer investors more flexibility and channels to the
market, but also they have the advantages on taxes and inter-
ests of the investment over mutual funds. The EQ181 dataset
contains individual equities from the large-cap segment of the
Russell 200 index that covers 63% of total market capitaliza-
tion. After removing those stocks with missing historical data
from the start of our testing periods, we finally collect a total
of 181 U.S. stocks to form the EQ181 dataset.

We summarize those two groups of benchmarks in Table 1.
They essentially embody different perspectives for perfor-
mance assessment. On the one hand, the FF25, FF48 and
FF100 datasets underline the long-term performance since
the forty-year spanning would introduce limited selection

1986



Table 1: Summary of the testing datasets
# Dataset Frequency Time Period m n Description

1. FF25 Monthly 07/01/1963 - 12/31/2004 498 25 Twenty-five portfolios of firms sorted by size and book-to-market
2. FF48 Monthly 07/01/1963 - 12/31/2004 498 48 Forty-eight industry portfolios representing the U.S. stock market
3. FF100 Monthly 07/01/1963 - 12/31/2004 498 100 One hundred portfolios of firms sorted by size and book-to-market
4. ETF139 Weekly 01/01/2008 - 10/30/2012 252 139 One hundred and thirty-nine exchange-traded funds
5. EQ181 Weekly 01/01/2008 - 10/30/2012 252 181 One hundred and eighty-one U.S. large-cap equities

bias and performance manipulation. On the other hand, the
ETF139 and EQ181 datasets emphasize the robustness with
respect to the higher trading frequency and the vicissitude
market environment after the recent financial crisis in 2007.

4.2 Competing Portfolios
To comprehensively evaluate the performance of the two pro-
posed portfolios, we consider seven state-of-the-art compet-
ing portfolios: (a) Equally-weighted portfolio (EW): EW in
equation (2) has been shown to outperform 14 sophisticated
models across seven empirical datasets as well as one simu-
lated dataset at monthly frequency of 2000 years [DeMiguel
et al., 2009]. Thus, EW is commonly suggested to serve
as the first obvious but challenging benchmark in portfolio
research. (b) Value-weighted portfolio (VW): While VW
in equation (3) forms a passive portfolio, most active mu-
tual fund managers have the difficulty of outperforming pas-
sive benchmarks such as the market even before netting out
fees [Fama and French, 2010]. (c) Minimum-variance port-
folio (MV): MV in equation (4) has consistently shown ro-
bust performance in different market conditions [Jagannathan
and Ma, 2003]. (d) Two-fund portfolio by [Tu and Zhou,
2011] (TZT): TZT blends the traditional mean-variance and
the EW portfolios to achieve both estimation error reduc-
tion and wealth growth. (e) Three-fund portfolio by [Kan
and Zhou, 2007] (KZT): KZT encompasses the risk-free, the
mean-variance and MV portfolios to diminish the inherent
estimation error in the mean-variance portfolio by blending
its alike variant. (f) Four-fund portfolio by [Tu and Zhou,
2011] (TZF): TZF is formed by mixing the KZT and the EW
portfolios. Their study shows it performs comparably with
EW in some special cases and better in general. (g) On-
line moving average reversion based portfolio by [Li and
Hoi, 2012] (MAR): MAR developed by machine learning re-
searchers has been shown to outperform 12 portfolio strate-
gies across five datasets.

In sum, the first three strategies, i.e., EW, VW and MV,
have been the common baselines for portfolio research in fi-
nance. They have been broadly adopted as the touchstones of
portfolio performance. They also represent the special cases
of blending with fixed blending coefficients. The next three
portfolios, i.e., TZT, KZT and TZF, are well recognized as
important portfolio blending strategies so far. They reflect
the up-to-date efforts of researchers on portfolio blending.

4.3 Performance Metrics
We employ the “rolling-horizon” settings suggested in
[DeMiguel et al., 2009]. Specifically, the sliding windows

with the size of ⌧ = 120 months or ⌧ = 200 weeks of
training data are used to construct portfolios for the subse-
quent month or week.2 We compute the out-of-sample per-
formance of the portfolios by the following standard criteria
in finance [Brandt, 2010]: (i) Sharpe ratios; (ii) volatility, and
(iii) maximum drawdowns. In addition, we incorporate the
information of the turnover of each strategy through deduct-
ing the return by a proportional transaction cost [Broadie and
Shen, 2016]. We set a cost factor c equal to 50 basis points
per transaction to obviate inflated return from large turnovers,
as suggested in [DeMiguel et al., 2009].

First, the Sharpe ratio (SR), which measures the reward-to-
risk ratio of a portfolio strategy, is computed as the portfolio
return normalized by its standard deviation:

SR =

µ̂

�̂
, (13)

where the mean of portfolio after-cost net return µ̂ and the
corresponding standard deviation �̂ are computed as

µ̂ =

1

m

mX

k=1

µ̃k and �̂ =

vuut 1

m

mX

k=1

(µ̃k � µ̂)2, (14)

where µ̃k = µk(1 � ck!k+ � !kk1) denotes the after-cost
net return from time tk�1 to tk, !k+ represents the portfolio
weight vector before rebalancing at tk+1 and k · k1 denotes
l1-norm. SR heightens the significance of gauging portfolio
performance with the dual consideration of risk and return.

Second, the volatility is a quantitative risk measure of in-
vestment. The calculation of the portfolio volatility relates
to the standard deviation of returns �̂ by (14). To com-
pare strategies based on different rebalancing frequencies, we
compute the annualized volatility by

p
H�̂ with H the total

number of rebalancing times each year. In our experiments,
we set H = 12 and H = 52 for monthly and weekly rebal-
ances, respectively.

Third, we report the maximum drawdown (MDD) for each
strategy [Magdon-Ismail and Atiya, 2004]. The maximum
drawdown is defined as the maximum drop of the cumulative
wealth from its running maximum over a period of time:

MDD = max

k2[0,m]
(Mk �Wk), (15)

where the drawdown Mk �Wk is defined as the drop of the
wealth from its running maximum Mk:

Mk = max

j2[0,k]
Wj , (16)

2The study in [DeMiguel et al., 2009] shows portfolio perfor-
mance generally does not vary considerably by using longer than
five years of monthly data.
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Table 2: Portfolio performance of strategies
Dataset Metrics TS-EM TS-VM EW VW MV TZT KZT TZF MAR

FF25 SR (%) 33.84 34.85 26.40 28.53 30.95 28.48 23.86 33.93 17.76
p-value 0.00 0.00 1.00 0.02 0.03 0.00 0.30 0.00 0.01
Vol (%) 13.75 13.75 17.60 17.49 13.37 18.15 19.43 16.42 16.97
MDD (%) 35.95 35.83 38.03 37.80 39.51 45.52 57.30 42.37 40.10

FF48 SR (%) 27.75 27.39 23.98 23.37 24.14 16.75 15.16 25.81 21.55
p-value 0.00 0.00 1.00 0.27 0.84 0.33 0.86 0.00 0.74
Vol (%) 13.51 13.58 16.87 16.76 13.96 23.14 18.43 15.62 15.48
MDD (%) 36.08 35.84 42.07 41.53 38.45 51.65 56.13 39.94 41.04

FF100 SR (%) 36.70 37.90 26.75 29.76 37.60 10.10 37.48 26.80 20.49
p-value 0.00 0.00 1.00 0.01 0.00 0.00 0.00 0.00 0.02
Vol (%) 13.72 13.75 18.29 18.10 13.73 26.81 13.34 18.22 17.70
MDD (%) 36.13 36.04 37.38 37.03 37.51 59.88 36.78 37.34 38.33

ETF139 SR (%) 10.79 10.58 10.32 10.51 3.52 -30.58 -4.64 10.36 8.36
p-value 0.05 0.05 1.00 0.44 0.48 0.05 0.80 0.00 0.76
Vol (%) 10.53 10.38 18.17 18.03 3.24 53.72 4.18 17.60 16.59
MDD (%) 6.51 6.53 11.45 11.33 2.67 74.52 4.39 11.03 10.09

EQ181 SR (%) 15.64 15.39 13.09 13.44 10.80 -16.30 8.34 13.11 11.75
p-value 0.00 0.01 1.00 0.42 0.63 0.64 0.45 0.00 0.72
Vol (%) 9.81 9.81 15.43 15.29 8.80 83.65 9.01 15.43 14.49
MDD (%) 4.80 4.80 9.24 9.17 7.35 82.85 8.78 9.22 8.99

where the after-cost cumulative wealth Wk is computed by
Wk =

Qk
j=1 !

>
j µ̃j . Since large drawdowns inevitably lead

to fund redemptions, MDD has been the top-one risk measure
for money management professionals.

To further quantify the statistical significance of the dif-
ference in SR between two comparing portfolios, we also
report the p-values under the corresponding SR results. To
compute the p-values for the case of non-i.i.d. returns, we
adopt the studentized circular block bootstrapping methodol-
ogy in [Ledoit and Wolf, 2008]. In particular, we set the EW
portfolio as the benchmark with 1000 bootstrap resamples,
95% significance level, and a block with the size of 5.

4.4 Results
Table 2 presents the overall performance of the compared
nine portfolios across the tested five benchmarks. In partic-
ular, we report the Sharpe ratios, the volatility and the max-
imum drawdowns for all portfolios to comprehensively eval-
uate performance with the emphasis on the tradeoff between
return and risk. In most testing cases, the two proposed blend-
ing portfolios clearly outperform both the challenging base-
lines circulated in financial research, i.e., EW and VW, and
representative blending strategies, i.e, TZT, KZT and TZF.
We observe that the new portfolios consistently produce the
highest risk-adjust return across all the benchmarks with sta-
tistical significance. In addition, they often yield lower invest-
ment risks than the other three compared blending strategies,
reflected by the smaller volatility and maximum drawdowns.
Even in some cases, our blending portfolios generate lower
risk than the MV strategy whose sole objective is investment
risk minimization. Those observations echo with the intrinsic
design of our algorithm in calibrating blending coefficients
for portfolios with moderate risk according to portfolio gross
return. Further, the proposed strategies demonstrate statisti-
cally significant better performance with a noticeable effect
size than their basis portfolios in risk and return evaluation
metrics. As the performance of the blending portfolios stems
from the tradeoff between the gains from the blending coef-

ficient and the losses from the estimation errors in estimating
that additional parameter, we interpret those positive findings
in performance as the evidence supporting the new algorithm.

In summary, our blending strategies formed by two sets
of basis portfolios have embedded careful risk control mech-
anism and market dynamics. Therefore, in most of testing
cases our methods can generate superior performance, i.e.,
higher risk-adjusted returns, lower volatility and drawdown
risks, and outperform individual basis portfolios as well as
other representative blending portfolios.

5 Conclusions and Discussions
In this paper, we develop a machine learning algorithm of
viably blending portfolios from different investment prin-
ciples to generate robust and high-quality portfolio strate-
gies. Through casting the question of determining blending
coefficients into a Bernoulli bandit problem, we implement
Thompson sampling to obtain optimal blending portfolios.
Two blended portfolios with different basis portfolios consis-
tently outperform seven highly competitive strategies across
five datasets. Our results not only address the “1/n” port-
folio challenge [DeMiguel et al., 2009] but also demonstrate
the insights of adapting portfolio strategies to accommodate
parameter estimation errors. In our future work, we will ex-
tend the current blending algorithm for multiple portfolios by
Dirichlet distribution [Silverthorn and Miikkulainen, 2010].
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