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Abstract

In this paper, we propose a novel method to im-
prove object recognition accuracies of convolu-
tional neural networks (CNNs) by embedding the
proposed Min-Max objective into a high layer of
the models during the training process. The Min-
Max objective explicitly enforces the learned object
feature maps to have the minimum compactness for
each object manifold and the maximum margin be-
tween different object manifolds. The Min-Max
objective can be universally applied to different
CNN models with negligible additional computa-
tion cost. Experiments with shallow and deep mod-
els on four benchmark datasets including CIFAR-
10, CIFAR-100, SVHN and MNIST demonstrate
that CNN models trained with the Min-Max ob-
jective achieve remarkable performance improve-
ments compared to the corresponding baseline
models.

1 Introduction

Recent years have witnessed the bloom of convolutional
neural networks (CNNs) in many computer vision and
pattern recognition applications, including object recog-
nition [Krizhevsky er al., 2012], object detection [Gir-
shick er al., 2014], semantic segmentation [Girshick et al.,
20141, object tracking [Wang and Yeung, 2013], image re-
trieval [Horster and Lienhart, 2008], etc. These great suc-
cesses can be attributed to the following three main fac-
tors: (1) the rapid progress of modern computing technolo-
gies represented by GPGPUs and CPU clusters has allowed
researchers to dramatically increase the scale and complex-
ity of neural networks, and to train and run them within
a reasonable time frame, (2) the availability of large-scale
datasets with millions of labeled training samples has made
it possible to train deep CNNs without a severe overfit-
ting, and (3) the introduction of many training strategies,
such as different types of activation functions [Krizhevsky
et al., 2012; Goodfellow et al., 2013b; He et al., 2015b;
Jin et al., 2015], different types of pooling [He et al., 2014;
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Gong et al., 2014], dropout [Srivastava er al., 2014], dropcon-
nect [Wan et al., 2013], pre-training [Dahl er al., 2012], batch
normalization [loffe and Szegedy, 2015], etc, has helped
to generate better deep network models from the BP-based
training process.

We argue that the strategies to improve object recogni-
tion accuracies by developing deeper, more complex network
structures and employing ultra large scale training data are
unsustainable, and are approaching their limits. This is be-
cause very deep models, such as GoogLeNet [Szegedy et al.,
2015], BN-Inception [Ioffe and Szegedy, 2015], ResNet [He
et al., 2015a] not only become very difficult to train and use,
but also require large-scale CPU/GPU clusters and complex
distributed computing platforms. These requirements are out
of reach of many research groups with limited research bud-
gets, as well as many real applications. If this trend continues,
research and development in this field will soon become the
privilege of a handful of large Internet companies.

The crux of object recognition is the invariant features.
When an object undergoes identity-preserving image trans-
formations, such as shift in position, change in illumination,
shape, viewing angle, etc, the feature vector describing the
object also changes accordingly. If we project these fea-
ture vectors into a high dimensional feature space (with the
same dimension as that of the feature vectors), they form a
low dimensional manifold in the space. The invariance is ac-
complished when each manifold belonging to a specific ob-
ject category becomes compact, and the margin between two
manifolds becomes large.

Based on the above observations, in this paper, we propose
a novel objective, called Min-Max objective, to improve ob-
ject recognition accuracies of CNN models. The Min-Max
objective enforces the following properties for the features
learned by a CNN model: (1) each object manifold is as
compact as possible, and (2) the margin between two dif-
ferent object manifolds is as large as possible. The margin
between two manifolds is defined as the Euclidian distance
between the nearest neighbors of the two manifolds. In prin-
ciple, the proposed Min-Max objective is independent of any
CNN structures, and can be applied to any layers of a CNN
model. Our experimental evaluations show that applying the
Min-Max objective to the top layer is most effective for im-
proving the model’s object recognition accuracies.

To summarize, The main contributions of this paper are as
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follows:

e We propose the Min-Max objective to enforce the com-
pactness of each manifold and the large margin between
different manifolds for object features learned by a CNN
model.

o Rather than directly modulating model weights and con-
necting structures as in typical deep learning algorithms,
in our framework, the Min-Max objective directly mod-
ulates learned feature maps of the layer to which the
Min-Max objective is applied.

o Experiments with different CNN models on four bench-
mark datasets demonstrate that CNN models trained
with the Min-Max objective achieve remarkable per-
formance improvements compared to the corresponding
baseline models.

The remaining of this paper is organized as follows: Sec-
tion 2 reviews related works. Section 3 describes our method,
including the general framework, the formulation of the Min-
Max objective and its detailed implementation. Section 4
presents the experimental evaluations and analysis. Section 5
provides discussions about the proposed method, and Sec-
tion 6 concludes our work.

2 Related Work

Methods to improve object recognition accuracies of CNNs
can be broadly divided into the following three categories: (1)
increasing the model complexity, (2) increasing the training
samples, and (3) improving training strategies. This section
reviews representative works for each category.

Increasing the model complexity includes adding either the
network depth or the number of feature maps in each layer.

Increasing the number of training samples often leads to
improvement of recognition accuracies. Data augmenta-
tion [Krizhevsky er al., 2012] is a low cost way of enlarging
training samples by using label-preserving transformations,
such as cropping and random horizontal flipping of patches,
random scaling and rotation, etc. Another way to utilize
more samples is to apply unsupervised learning [Wang and
Gupta, 2015]. In practise, performance improvement by sim-
ply adding more training samples will gradually saturate. For
example, it is reported that increasing the number of train-
ing samples from 1M to 14M from the ImageNet dataset only
improved the image classification accuracy by 1%'.

There are also methods that aim to improve training of
CNN models to enhance performances. For instance, dif-
ferent types of activation functions, such as ReLU, LReLU,
PReLU, APL, maxout, SReLU, etc, have been used to han-
dle the gradient exploding and vanishing effect in BP algo-
rithm. The dropout [Srivastava et al., 2014] and dropcon-
nect [Wan et al., 2013] are proven to be effective at prevent-
ing neural networks from overfitting. Spatial pyramid pool-
ing [He et al., 2014] is used to eliminate the requirement that
input images must be a fixed-size (e.g., 224 x 224) for CNN
with fully connected layers. Batch normalization proposed
by Ioffe and Szegedy [2015] can be used to accelerate deep
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network training by reducing internal covariate shift. Lin et
al. [2014] proposed the Network-In-Network (NIN) structure
in which the convolution operation was substituted by a mi-
cro multi-layer perceptron (MLP) that slides over the input
feature maps in a similar manner to the conventional convo-
lution operation. The technique can be regarded as applying
an additional 1 x 1 convolutional layer followed by ReLLU
activation, and therefore can be easily integrated into the cur-
rent CNN pipelines. The Deeply-Supervised Nets (DSN) pro-
posed by Lee et al. [2014] used a classifier, such as SVM
or soft-max, at each layer during training to minimize both
the final output classification error and the prediction error at
each hidden layer.

3 The Proposed Method

3.1 General Framework

Let {X;, ¢;};_, be the set of input training data, where X
denotes the i raw input data, ¢; € {1,2,--- ,C} denotes the
corresponding ground-truth label, C is the number of classes,
and n is the number of training samples. The goal of training
CNN is to learn filter weights and biases that minimize the
classification error from the output layer. A recursive function
for an M -layer CNN model can be defined as follows:

XM = fW ) 5 XD | pim)y (1)

i=12 mm=12- M; X" =X;, (2

where, W (™) denotes the filter weights of the m‘" layer to
be learned, b("™) refers to the corresponding biases, * de-
notes the convolution operation, f(-) is an element-wise non-

linear activation function such as ReLU, and Xgm) repre-
sents the feature maps generated at layer m for sample X;.
The total parameters of the CNN model can be denoted as
W ={WO ... W) p0) ... b} for simplicity.

As described in Section 1, we aim to improve object recog-
nition accuracies of a CNN model by embedding the Min-
Max objective into certain layer of the model during the train-
ing process. Embedding this objective into the k** layer is
equivalent to using the following cost function to train the
model:

I - (k)
n\l}\llanZi:lE(W,X“cl)+)\E(X e, (3

where ¢(W, X, ¢;) is the classification error for sample X,
L(X™® c) denotes the Min-Max objective. The input to it
includes X'(*) = {ng), ey X%k)} which denotes the set of
produced feature maps at layer k for all the training samples,
and ¢ = {¢;}7_; which is the set of corresponding labels.
Parameter A controls the balance between the classification
error and the Min-Max objective.

Note that X'(¥) depends on W) ... W) Hence di-
rectly constraining X' (¥) will modulate the filter weights from
17 to k" layers (i.e. W) ... 'W(k)) by feedback propa-
gation during the training phase.



3.2 Min-Max Objective
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expansion of ng). The goal of the proposed Min-Max objec-
tive is to enforce both the compactness of each object man-
ifold, and the max margin between different manifolds. In-
spired by the Marginal Fisher Analysis research from [Yan et
al., 2007], we construct an intrinsic and a penalty graph to
characterize the within-manifold compactness and the mar-
gin between the different manifolds, respectively, as shown
in Figure 1. The intrinsic graph shows the node adjacency
relationships for all the object manifolds, where each node is
connected to its kj-nearest neighbors within the same man-
ifold. Meanwhile, the penalty graph shows the between-
manifold marginal node adjacency relationships, where the
marginal node pairs from different manifolds are connected.
The marginal node pairs of the ¢ (c € {1,2,--- ,C}) man-
ifold are the ko-nearest node pairs between manifold ¢ and
other manifolds.

Then, from the intrinsic graph, the within-manifold com-
pactness can be characterized as:

, ngk )}, we denote by x; the column

n I
=3 Gl =, 4)
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Gz‘j _{ 0, else, ' ' )

where Gg) refers to element (7, j) of the intrinsic graph ad-

jacency matrix G (1) (GEJI'))an, and 7y, () indicates the
index set of the k1 -nearest neighbors of x; in the same mani-
fold as x;.

From the penalty graph, the between-manifold margin can
be characterized as:

" P
L= Gy k=l ©
Py _ [ 1, if(i,7) € Cry(ci) or (4, 7) € Cry(cj)
Gij { 0, else, ™

where Ggf) denotes element (i, j) of the penalty graph ad-

jacency matrix G(P) = (Ggf))nxn, Ck, (c) is a set of index
pairs that are the ko-nearest pairs among the set {(¢,j)|¢ €
Te,J ¢ mc}, and 7. denotes the index set of the samples be-
longing to the ¢*"* manifold.

Based on the above descriptions, We propose the Min-Max
objective which can be expressed as:

L=1L—Ls. ®)

Obviously, minimizing the Min-Max objective is equivalent
to enforcing the learned features to form compact object man-
ifolds and large margins between different manifolds simulta-
neously. The objective results in the following cost function:

min L(W) = >

In the next subsection, we will derive the optimization al-
gorithm for Eq. (9).
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Figure 1: The adjacency relationships of (a) within-manifold
intrinsic graph and (b) between-manifold penalty graph for
the case of two manifolds. For clarity, the left intrinsic graph
only includes the edges for one sample in each manifold.

3.3 Implementation

We use the back-propagation method to train the CNN model,
which is carried out using mini-batch. Therefore, we need to
calculate the gradients of the cost function with respect to the
features of the corresponding layers.

Let G = (Gij)nxn = GY) — G(P) then the Min-Max
objective can be written as:

L= Gylxi—x|* =2t (HEHT),  (10)

where H [x1, - ,%xp], ¥ D-G, D
diag(d117 e adnn)’ dii = Z;L:Lj7gi Gl]» Z = 17 27 e, N,
i.e. W is the Laplacian matrix of G, and ¢r(-) denotes the
trace of a matrix.

The gradients of £ with respect to x; is

oL
axi o

QH(W + W) ;) =4HT . (11)
where, ¥, ;) denotes the i*" column of matrix .

To further improve the effectiveness of the proposed Min-
Max objective, we also consider using the Kkernel trick to

define the adjacency matrix, that is, Gg-) and Gz(f) can be
defined as: ' '

llx; =112
G’EI): 67672‘7 leETkl(j) OrjETkl(i),
/ 0, else,
(12)
kg =x510 L. .o
GZ(;D) = € o2 ) (17]) € CkQ(Ci)7 (7’7]) € <k2(cj)
0, else.
(13)
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Then, the gradients po for the kernel version of the Min-Max
objective can be derived as follows.

oL
=4H(P + ®). ;) . 14
%, (P + D)., (14)
where, ® denotes the Laplacian matrix of V. = (V;;)nxn.,
Vi = =S8 — x>

The total gradient with respect to x; is simply the combi-
nation of the gradient from the conventional CNN model and
the above gradient from the Min-Max objective.



Table 1: Comparison results for the CIFAR-10 dataset.

Method No. of Param.  Test Error(%)
Quick-CNN 0.145M 23.47
Quick-CNN-+Min-Max 0.145M 18.06
Quick-CNN+kMin-Max 0.145M 17.59

Table 2: Comparison results for the CIFAR-100 dataset.

Method No. of Param.  Test Error(%)
Quick-CNN 0.15M 55.87
Quick-CNN+Min-Max 0.15M 51.38
Quick-CNN+kMin-Max 0.15M 50.83

4 Experiments and Analysis

4.1 Opverall Settings

To evaluate the effectiveness of the proposed Min-Max ob-
jective for improving object recognition accuracies of CNN
models, we conduct experimental evaluations using shallow
and deep models, respectively. Since our experiments show
that embedding the proposed Min-Max objective to the top
layer of a CNN model is most effective for improving its
object recognition performance, in all experiments, we only
embed the Min-Max objective into the top layer of the mod-
els and keep the other parts of networks unchanged. For the
settings of those hyper parameters (such as the learning rate,
weight decay, drop ratio, etc), we follow the published con-
figurations of the original networks. All the models are im-
plemented using the Caffe platform [Jia er al., 2014] from
scratch without pre-training. During the training phase, some
parameters of the Min-Max objective need to be determined.
For simplicity, we set k1 = 5, ks = 10 for all the experi-
ments, and it is possible that better results can be obtained by
tuning k; and ko. o is empirically selected from {0.1, 0.5},
and A € [107¢,1079].

4.2 Datasets

We conduct performance evaluations using four benchmark
datasets, i.e. CIFAR-10, CIFAR-100, MNIST and SVHN.
The reason for choosing these datasets is because they con-
tain a large amount of small images (about 32 x 32 pixels),
so that models can be trained using computers with moder-
ate configurations within reasonable time frames. Because of
this, the four datasets have become very popular choices for
deep network performance evaluations in the computer vision
and pattern recognition research communities.

CIFAR-10 Dataset. The CIFAR-10 dataset [Krizhevsky
and Hinton, 2009] contains 10 classes of natural images,
50,000 for training and 10,000 for testing. Each image is
a 32 x 32 RGB image.

CIFAR-100 Dataset. The CIFAR-100 dataset [Krizhevsky
and Hinton, 2009] is the same in size and format as the
CIFAR-10 dataset, except that it has 100 classes. The number
of images per class is only one tenth of the CIFAR-10 dataset.

MNIST Dataset. The MNIST dataset [LeCun et al., 1998]
consists of hand-written digits 0-9 which are 28 x 28 gray
images. There are 60,000 images for training and 10, 000
images for testing.
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Table 3: Comparison results for the SVHN dataset.

Method No. of Param.  Test Error(%)
Quick-CNN 0.145M 8.92
Quick-CNN+Min-Max 0.145M 5.42
Quick-CNN+kMin-Max 0.145M 4.85

SVHN Dataset. The Street View House Numbers (SVHN)
dataset [Netzer et al., 2011] consists of 630, 420 color images
of 32 x 32 pixels in size, which are divided into the train-
ing set, testing set and an extra set with 73,257, 26,032 and
531,131 images, respectively. Multiple digits may exist in
the same image, and the task of this dataset is to classify the
digit located at the center of an image.

4.3 Experiments with Shallow Model

In this experiment, the CNN “quick” model from the Caffe
package2 (named Quick-CNN) is selected as the baseline
model. This model consists of 3 convolution layers and 1
fully connected layers. Experimental results of test error rates
on the CIFAR-10 test set are shown in Table 1. In this Table,
Min-Max and kMin-Max correspond to the models trained
with the Min-Max objective and the kernel version of the
Min-Max objective respectively. From Table 1 it can be ob-
served that, when no data augmentation is used, compared
with the baseline model, the proposed Min-Max objective and
its kernel version can remarkably reduce the test error rates by
5.41% and 5.88%, respectively.

We also evaluated the Quick-CNN model using the
CIFAR-100 and SVHN datasets. The MNIST dataset can’t
be used to test the model because images in the dataset are
28 x 28 in size, and the model only takes 32 x 32 images as
its input. Table 2 and Table 3 list the respective comparison
results. As can be seen, when no data augmentation is used,
compared with the corresponding baseline model, the pro-
posed Min-Max objective and its kernel version can remark-
ably reduce the test error rates by 4.49%, 5.04% respectively
on CIFAR-100, and by 3.50%, 4.07% respectively on SVHN.
The improvements on SVHN in terms of absolute percentage
are not as large as those on the other two datasets, because the
baseline Quick-CNN model already achieves a single-digit
error rate of 8.92%. However, in terms of relative reductions
of test error rates, the numbers have reached 39% and 46%,
respectively, which are quite significant. These remarkable
performance improvements demonstrate the effectiveness of
the proposed Min-Max objective.

4.4 Experiments with Deep Model

Next, we apply the proposed Min-Max objective to the well-
known NIN models [Lin et al., 2014]. NIN consists of 9 con-
volution layers and no fully connected layer. Indeed, it is a
very deep model, with 6 more convolution layers than that
of the Quick-CNN model. Four benchmark datasets are used
in the evaluation, including CIFAR-10, CIFAR-100, MNIST
and SVHN.

The CIFAR-10 and CIFAR-100 datasets are preprocessed
by the global contrast normalization and ZCA whitening as

’The model is available from Caffe package [Jia et al., 2014]



Table 4: Comparison results for the CIFAR-10 dataset.

Method No. of Param.  Test Error(%)
No Data Augmentation
Stochastic Pooling —— 15.13
CNN + Spearmint —— 14.98
Maxout Networks > 5M 11.68
Prob. Maxout >5M 11.35
NIN [Lin er al., 2014] 0.97TM 10.41
DSN 0.97TM 9.78
NIN (Our baseline) 0.97TM 10.20
NIN+Min-Max 0.97TM 9.25
NIN+kMin-Max 0.97M 8.94
With Data Augmentation

CNN + Spearmint —— 9.50
Prob. Maxout >5M 9.39
Maxout Networks > 5M 9.38
DroptConnect —— 9.32
NIN [Lin er al., 2014] 0.97TM 8.81
DSN 0.97TM 8.22
NIN (Our baseline) 0.97M 8.72
NIN+Min-Max 0.97TM 7.46
NIN+kMin-Max 0.97TM 7.06

Table 5: Comparison results for the CIFAR-100 dataset.

Method No. of Param.  Test Error(%)
Learned Pooling —— 43.71
Stochastic Pooling —— 42.51
Maxout Networks > 5M 38.57
Prob. Maxout >5M 38.14
Tree based priors —— 36.85
NIN [Lin e al., 2014] 0.98M 35.68
DSN 0.98M 34.57
NIN (Our baseline) 0.98M 35.50
NIN+Min-Max 0.98M 33.58
NIN-+kMin-Max 0.98M 33.12

in [Lin et al., 2014; Lee et al., 2014]. To be consistent with
the previous works, for CIFAR-10, we also augmented the
training data by zero-padding 4 pixels on each side, then
corner-cropping and random horizontal flipping. In the test
phase, no model averaging was applied, and we only cropped
the center of a test sample for evaluation. No data whiten-
ing or data augmentation was applied for the MNIST dataset.
For SVHN, we followed the training and testing protocols
in [Lin et al., 2014; Lee et al., 2014], i.e., 400 samples per
class selected from the training set and 200 samples per class
from the extra set were used for validation, while the remain-
ing 598, 388 images of the training and the extra sets were
used for training. The validation set was only used for tuning
hyper-parameters and was not used for training the model.
Preprocessing of the dataset again follows [Lin et al., 2014;
Lee et al., 2014], and no data augmentation was used.

Table 4, 5, 6 and 7 show the evaluation results on the
four benchmark datasets, respectively, in terms of test er-
ror rates. For fairness, for the baseline NIN model, we
list the test results from both the original paper [Lin et
al., 2014] and our own experiments. In these tables, we
also include the evaluation results of some representative
methods, including Stochastic Pooling [Zeiler and Fergus,
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Table 6: Comparison results for the MNIST dataset.

Method No. of Param.  Test Error(%)
Multi-stage Architecture —— 0.53
Stochastic Pooling —— 0.47
NIN [Lin et al., 2014] 0.35M 0.47
Maxout Networks 0.42M 0.47
DSN 0.35M 0.39
NIN (Our baseline) 0.35M 0.47
NIN+Min-Max 0.35M 0.32
NIN+kMin-Max 0.35M 0.30

Table 7: Comparison results for the SVHN dataset.

Method No. of Param.  Test Error(%)
Stochastic Pooling —— 2.80
Maxout Networks >b5M 2.47
Prob. Maxout > 5M 2.39
NIN [Lin et al., 2014] 1.98M 2.35
Multi-digit Recognition >5M 2.16
DropConnect - 1.94
DSN 1.98M 1.92
NIN (Our baseline) 1.98M 2.55
NIN+Min-Max 1.98M 1.92
NIN+kMin-Max 1.98M 1.83

2013], CNN + Spearmint [Snoek et al., 2012], Maxout Net-
works [Goodfellow et al., 2013b], Prob. Maxout [Sprin-
genberg and Riedmiller, 2014], DroptConnect [Wan et al.,
2013], Learned Pooling [Malinowski and Fritz, 2013], Tree
based priors [Srivastava and Salakhutdinov, 2013], Multi-
stage Architecture [Jarrett et al., 20091, Multi-digit Recogni-
tion [Goodfellow et al., 2013a], and DSN [Lee et al., 2014],
which is the state-of-the-art model on these four datasets. It
is worth mentioning that DSN is also based on the NIN struc-
ture with layer-wise supervisions.

From these tables, we can see that our proposed Min-Max
objective achieves the best performance against all the com-
pared methods. The evaluation results shown in the four ta-
bles can be summarized as follows.

e Compared with the corresponding baseline models, the
proposed Min-Max objective and its kernel version can
remarkably reduce the test error rates on the four bench-
mark datasets.

On CIFAR-100, the improvement is most significant:
NIN+kMin-Max achieved 33.12% test error rate which
is 2.38% better than the baseline NIN model, and 1.45%
better than the state-of-the-art DSN model.

Although the test error rates are almost saturated on the
MNIST and SVHN datasets, the models trained by the
proposed Min-Max objectives still achieved noticeable
improvements on the two datasets compared to the base-
line NIN model and the state-of-the-art DSN model. In
terms of relative reductions of test error rates, compared
with the corresponding baseline models, the numbers
have reached 36% and 28% respectively on these two
datasets, which are significant.

These results once again substantiate the effectiveness of the
proposed Min-Max objective.



4.5 Visualization

To get more insights of the proposed Min-Max objective, we
visualize the top layer (i.e. the embedded layer) features ob-
tained from two distinct models on the CIFAR-10 test set.
The Quick-CNN and NIN models are selected as the respec-
tive baseline models. Figure 2 and Figure 3 show the feature
visualizations for the two models respectively. It is clearly
seen that, in both cases, the proposed Min-Max objective can
help making the learned features with better within-manifold
compactness and between-manifold separability as compared
to the corresponding baseline models.

(b)

Figure 2: Feature visualization of the CIFARI1O test set by
t-SNE [Van der Maaten and Hinton, 2008], using (a) Quick-
CNN; (b) Quick-CNN+kMin-Max. A point denotes a test
sample, and different colors represent different classes (The
PCA produce quite similar visualization results to t-SNE).

(b)

Figure 3: Feature visualization of the CIFAR-10 test set by t-
SNE, using (a) NIN; (b) NIN+kMin-Max (The PCA produce
quite similar visualization results to t-SNE).

4.6 Additional Computational Cost Analysis

CNN model is trained via stochastic gradient descent (SGD),
where in each iteration the gradients can only be calculated
from a mini-batch of training samples. In our method, during
training phase, the additional computational cost is to calcu-
late the gradients of the Min-Max objective with respect to the
features of the embedded layer. According to Section 3.3, the
gradients have the closed-form computational formula, which
make the additional computation cost very low based on a
mini-batch. In practise, the additional computational cost
is negligible compared to that of the corresponding baseline
CNN model.

Table 8: The effect of embedded position of the Min-Max ob-
jective on the performance on CIFAR-10 dataset with Quick-
CNN model (i.e. Quick-CNN+Min-Max). conmv# denotes a
convolutional layer, fc denotes the fully connected layer.
Embedded Layer convl comv2  conv3 fec
Test Error(%) 20.09 19.32 18.58 18.06

5 Discussions

To investigate the effect of the embedded position of the
Min-Max objective on the performance, we conducted exper-
iments with Quick-CNN on the CIFAR-10 dataset by embed-
ding the Min-Max objective into different layers of the model,
and the results of test error rates are shown in Table 8. We
can clearly see that the higher the embedded layer, the better
the performance. Interestingly, this concurs with the object
recognition mechanism of the ventral stream in the human
visual cortex. In recent years, research studies in the fields of
physiology, biology, neuroscience, etc [DiCarlo er al., 2012]
have revealed that the human ventral stream consists of lay-
ered structures, where the lower layers strive to extract useful
patterns or features that can well represent various types of
objects/scenes in the natural environment, while higher lay-
ers serve to gradually increase the invariance degree of the
low-level features to achieve accurate object/scene recogni-
tions. These research discoveries suggest to us that it is more
effective and appropriate to embed the invariance objectives
into higher rather than lower layers of a deep CNN model.
In the experiments, we also found that, for a given embedded
layer, as long as the order of magnitude of )\ is appropriate,
the performance of our method does not change much, and
the higher the embedded layer, the higher the order of magni-
tude of the optimal .

Moreover, it is clear from Figure 2(a) and 3(a) that through
many layers of nonlinear transformations, a deeper network
is able to learn good invariant features that can sufficiently
separate objects of different classes in a high dimensional
feature space. In contrast, features learned by a shallower
network are not powerful enough to appropriately “untangle”
those different object classes. This explains why the proposed
Min-Max objectives are more effective for improving object
recognition accuracies when applied to shallower networks.

6 Conclusion

In this paper, we propose a novel and general framework to
improve the performance of CNN by embedding the pro-
posed Min-Max objective into the training procedure. The
Min-Max objective can explicitly enforce the learned ob-
ject feature maps with better within-manifold compactness
and between-manifold separability, and can be universally
applied to different CNN models. Experiments with shal-
low and deep models on four benchmark datasets including
CIFAR-10, CIFAR-100, SVHN and MNIST demonstrate that
CNN models trained with the Min-Max objective achieve re-
markable performance improvements compared to the corre-
sponding baseline models. Experimental results substantiate
the effectiveness of the proposed method.
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