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Abstract
Embeddings or vector representations of objects
have been used with remarkable success in vari-
ous machine learning and AI tasks—from dimen-
sionality reduction and data visualization, to vi-
sion and natural language processing. In this work,
we seek probabilistic embeddings that faithfully
represent observed relationships between objects
(e.g., physical distances, preferences). We derive a
novel variational Bayesian variant of multidimen-
sional scaling that (i) provides a posterior distri-
bution over latent points without computationally-
heavy Markov chain Monte Carlo (MCMC) sam-
pling, and (ii) can leverage existing side informa-

tion using sparse Gaussian processes (GPs) to learn
a nonlinear mapping to the embedding. By parti-
tioning entities, our method naturally handles in-
complete side information from multiple domains,
e.g., in product recommendation where ratings are
available, but not all users and items have asso-
ciated profiles. Furthermore, the derived approx-
imate bounds can be used to discover the intrin-
sic dimensionality of the data and limit embedding
complexity. We demonstrate the effectiveness of
our methods empirically on three synthetic prob-
lems and on the real-world tasks of political unfold-
ing analysis and multi-sensor localization.

1 Introduction
Recent achievements in multiple AI domains have been
spearheaded by embeddings discovered by models trained on
data. For example, word representations have been profitably
applied to machine translation [Mikolov et al., 2013] and
question-answering [Iyyer et al., 2014]. Embeddings of other
entities (e.g., robots, products, and people) are also used to
great effect in domains such as sensor localization [Shang et

al., 2003], recommender systems [Salakhutdinov and Mnih,
2008], and political analysis [Bakker and Poole, 2013].

In many applications, embeddings appear to require sev-
eral properties in order to be useful. One of these properties
is distance preservation—close objects in the original space
should be similarly close in the embedding, and far objects
similarly distant. Intuitively, this requirement arises when

observed distances/similarities have intrinsic meaning (e.g.,
physical distances, preferences, and word counts) indicating
the relationship between entities that we seek to capture.

In this work, we focus on learning probabilistic embed-

dings with this property. Although point-based embeddings
are widely used, probabilistic representations offer distinct
advantages. For example, uncertainty estimates in localiza-
tion are essential for autonomous navigation, and Gaussian
word embeddings can capture concept ambiguity and asym-
metric relationships [Vilnis and McCallum, 2015].

To frame our contribution, we first discuss a general mod-
eling framework—Bayesian Multidimensional Scaling—
that encompasses methods that perform pairwise dis-
tance/similarity matching. As we will see, popular models
such as Probabilistic Matrix Factorization [Salakhutdinov and
Mnih, 2008] and word embedding [Hashimoto et al., 2015]
can be cast as specialized models within this framework.

Under this umbrella structure, we contribute a specific
distance-preserving MDS model that (i) produces probabilis-
tic embeddings under a log-normal likelihood, (ii) utilizes
multiple, noisy distance measurements to derive more accu-
rate representations, and (iii) can leverage side information.
The last feature is particularly significant since side informa-
tion is available in many domains, e.g., in political surveys,
candidates are associated with news articles. However, this
extra information is typically unavailable for all points (e.g.,
survey respondents are anonymized) and may have a non-
trivial relationship to the embedding. Our model naturally
handles such situations by using sparse GPs [Titsias, 2009] on
point subsets to induce correlations and learn nonlinear map-
pings that can project new points to the embedding. These
mappings enable “out-of-sample” predictions, e.g., for cold-
start recommendations where ratings are not yet available.

To perform inference, we derive efficient approximate vari-
ational lower-bounds that allow us to (i) obtain posteriors
missing from maximum a posteriori (MAP) solutions, and (ii)
perform intrinsic dimensionality selection to limit embedding
complexity. Empirical results on synthetic datasets and two
real-world tasks demonstrate that our method produces use-
ful embeddings and learns mappings at reasonable cost. In
particular, our model was able to project political candidates
absent from survey data to a coherent layout using side in-
formation (Wikipedia entries), and in a localization task, to
pin-point new sensors quickly using beacon signals.
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1.1 Multidimensional Scaling: A Brief Review
MDS encompasses a range of techniques that constrain em-
beddings to have pair-wise distances as close as possible
to the data space. MDS has had a rich history, from its
early beginnings in 1930s psychometrics at Chicago and
Princeton [Shepard, 1980] to recent probabilistic incarnations
[Bakker and Poole, 2013]. What is now known as classical
metric MDS was developed by [Torgerson, 1952], and has
since been extended to handle non-metric spaces and non-
linear projections, yielding techniques such as Sammon map-
ping [Sammon, 1969], Isomap [Tenenbaum et al., 2000] and
SNE [Hinton and Roweis, 2002]. MDS has become a signif-
icant research area and we refer interested readers to [Borg
and Groenen, 2005] for a more comprehensive treatment.

In brief, the essence of MDS lies in the minimization of
loss functions (historically called stress or strain), defined on
pairwise distances d

ij

. The loss function and distances can be
varied to induce different lower-dimensional representations.
In classical metric MDS (CMDS), the distances are Euclidean
d

ij

= kx
i

� x

j

k for data elements x

i

2 X with the loss
function being the residual sum of squares:

LCMDS =

X

i,j

(d

ij

� kz
i

� z

j

k)2 (1)

where z
i

2 Z are the embedded points. Note that solving this
minimization problem is equivalent to performing principal
components analysis (PCA); the minimum configuration is
the eigen-decomposition of the Gram matrix XX

>.
In Sammon mapping, the distances remain Euclidean but

the loss function is altered:

LSammon =
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i<j
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k)2
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which causes small distances to be emphasized. In Isomap,
the canonical stress function is used but the d

ij

’s are geodesic
distances, which are estimated using the shortest-path dis-
tances on a neighborhood graph where each point x

i

is con-
nected to its k nearest neighbors.

2 Probabilistic Bayesian MDS Framework
Classic MDS methods, while effective, do not provide prob-
abilistic embeddings, but as will see, can be extended with
the Bayesian framework. Recently, [Bakker and Poole, 2013]
presented a Bayesian metric MDS model with MCMC infer-
ence. We take this approach one-step further and discuss how
this perspective relates to a broader class of models.

From a probabilistic viewpoint, our primary problem is
finding latent coordinates z

i

2 Z given observed relation-
ships between entities, D = {o

k

= (i

k

, j

k

, d

k

)}. Each ob-
servation o

k

comprises point labels, i
k

and j

k

, and the mea-
surement d

k

. Unlike the classical MDS setting, we do not as-
sume access to the data space (i.e., node features from which
the distances are computed). Furthermore, the dataset need
not contain all pairs and there can be multiple (noisy) obser-
vations for any two points. Conventionally, we work with
distances, but the measurement d

k

can also reflect attrac-
tion/similarity.

Let N = |D| and to simplify notation, we drop the k sub-
script from the point labels. Adopting the Bayesian paradigm
and assuming independent observational noise,

p(Z|D) / p(D|Z)p(Z) =

NY
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where we see the main elements comprise the likelihood
p(d

k

|f
k

), the pairwise function f

z

(z

i

, z

j

), and prior p(Z).
Applying this Bayesian MDS framework to a particular do-
main requires specification of these three ingredients, which
control the qualitative and quantitative aspects of the embed-
ding, and leads to contrasting models. For example,

• A Gaussian likelihood p(d
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) =

Q
N

k=1 N (d

k

|ˆz
k

,�

2
n

)
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), and a Euclidean dis-
tance link function, f
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k defines
a probabilistic version of classical metric MDS;

• If the measurements d

k

are ratings and we change
the Gaussian model above slightly by letting
f

z

(z
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, z
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) = z

>
i

z

j

(a similarity function), we re-
cover the popular Probabilistic Matrix Factorization
(PMF) model [Salakhutdinov and Mnih, 2008] for
collaborative filtering;

• A negative binomial likelihood, p(d

k

|z
k

) =Q
N

k=1 NegBin(d

k

|✓, ✓f�1
k

) with link function
f

z

= exp(�kz
i

� z

j

k2/2), specifies co-occurance
metric recovery [Hashimoto et al., 2015], which is
intimately linked to the successful word embedding
method GLoVe [Pennington et al., 2014].

Under the probabilistic MDS framework, we can interpret
the above models to be performing distance/similarity match-
ing under an assumed noise distribution. Moreover, we can
compose new models in this family by selecting an appro-
priate likelihood, pairwise function and priors. If additional
parameters are required, priors (e.g., GPs) can be placed over
these variables. Applying the relevant Bayesian machinery
allows us to perform inference to obtain the latent distribu-
tions, and to control model complexity, which can impact
generalizability and predictive performance.

3 Log-Normal Distance-Preserving MDS
In this section, we specify a Bayesian MDS model that
forms the foundation for our GP-model in Section 4. Sim-
ilar to the above models, we use Gaussian priors p(Z) =Q|Z|

i

N (µ0,�0I). The Gaussian likelihood is popular due
to its tractability, but is inappropriate for distance measure-
ments. Thus, we specify the less conventional, but more real-
istic, log-normal, as advocated by [Bakker and Poole, 2013],

p(d
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and a log Euclidean distance function,

f
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2

log kz
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k2. (4)
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3.1 Variational Inference for Log-Normal MDS
Variational Bayes is a “middle-ground” approach that allows
us to obtain confidence estimates missing from the MAP so-
lution, but at a much lower computational cost compared
to MCMC. It transforms approximate inference into an op-
timization problem, and our goal will be to derive a lower
bound (the objective function to maximize).

Obtaining the lower bound for the log-normal Bayesian
MDS model is challenging due to its expression, which con-
tains nonlinear transformations of random variables. Here,
we provide a step-by-step derivation of an approximate lower
bound and demonstrate practical techniques that should prove
useful in the development of future variational Bayesian
MDS models. To begin, we adopt a mean-field variational
approximation:

q(Z) =

|Z|Y

i

q(z

i

) =

|Z|Y

i

N (µ
i

,⌃

i

). (5)

With the above factorization, the variational lower-bound is:

L1(q) =

Z
q(Z) log

p(D|Z)p(Z)

q(Z)

dZ

=E[log p(D|Z)]� DKL[q(Z)kp(Z)] (6)
We see that L1 consists of two components: the expectation
of the log-likelihood under the variational distribution and the
negative Kullback-Leibler (KL) divergence between the prior
and variational distributions for Z (multivariate normals).

Computing E[log p(D|Z)]: We first simplify the expres-
sion by introducing ˆ

z

k

= z
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where the first two terms on the RHS are readily obtained, but
the third requires additional effort— the unresolved expec-
tation lacks a closed-form expression and typical solutions
involve deriving an analytical approximation, or numerical
estimation. In this work, we derive a second-order Taylor ap-
proximation,

E
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2 log x)

2. To obtain the nec-
essary moments, the key “trick” is to recognize kˆz

k

k2 as
a quadratic form of ˆ

z

k
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y
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is complex, it has a tractable moment generating function
M(t)

[Mathai and Provost, 1992]:
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Figure 1: Comparison between approximate expected value
and numerical expectations (5000 Monte-Carlo samples per
estimate). The approximate expectations (green +’s) fall on
the ideal outcome (solid diagonal black line y = x) with low
mean squared error of 1.26⇥ 10

�4.

where the �
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’s are the eigenvalues of ˆ
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2

k

ˆµ
k

.
The corresponding derivatives of M(t) at t = 0 yield simple
equations for the mean and variance,

E[y
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+Tr(
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and completes our approximation. Numerical experiments
(where ˆ

z

k

was randomly sampled across a wide range of val-
ues) showed the approximation to be fast and to have low-
error (Fig. 1). If higher precision is required, more costly
numerical methods such as quadrature can be applied.

Combining the aforementioned elements and separating
out the constants leads to the objective function L2 ⇡ L1,

L2 = �N

2

log �

2
n

� 1

2�

2
n

NX

k=1

✓
log d

k

� logE[y
k

]

2

◆2

+

V[y
k

]

2E[y
k

]

2
(2 log d

k

� logE[y
k

] + 1)� DKL + const (11)

Maximizing L2 (or equivalently, minimizing �L2) using an
off-the-shelf optimizer gives us the variational posterior over
the latent coordinates Z, and can also be used to estimate the
intrinsic dimensionality of the embedding (demonstrated in
the experiments). For large distance datasets or on-line set-
tings, L2 can be optimized using stochastic gradient ascent.

4 Using Side Information with Sparse GPs
At this point, our variational Bayesian MDS (VBMDS)
model represents each point as an individual distribution,
which may prove troublesome for large datasets. It also lacks
a mapping function—given new data points, we would have
to re-optimize L2 to obtain the latent coordinates. In this sec-
tion, we extend our model using sparse GPs that can leverage
on any existing side information to learn a non-linear map-
ping of points to latent coordinates. This enhancement can
also lead to a more compact model, since some points are
presented indirectly.

Consider that Z is split into two mutually exclusive sets,
Z = Z

p [ Z

x. Without loss of generality, assume that only
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points in z

x

i

2 Z

x possess side information x

i

2 X 1. Em-
ploying the variational inducing input scheme proposed by
[Titsias, 2009] and [Hensman et al., 2013], we introduce a
set of r inducing variables U = {u1, . . .ur

} (one for each
embedding dimension), and specify new priors,
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i,j=1. The inducing inputs introduce conditional
independencies between the latent function variables. As be-
fore, we use a mean-field variational approximation,
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where p(Z|U) inside the logarithm cancels out. The sparse
GPs are assumed independent across the latent dimensions,
which facilitates the derivation of the lower bound, and we
have new variational parameters parameters m

l

and S

l

as-
sociated with the inducing variables (in addition to any GP
kernel hyperparameters).

Again, the principal challenge is in computing the expec-
tation of the likelihood, E[p(D|Zp
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)]. Fortunately, we can
re-use the derivations in the previous section, except that we
now compute the moments E[y
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] with respect to
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and similarly for the variances. Case 1 arises when both
points are in Z

p and thus, the moments are those presented
in the previous section, i.e., eqns. (9) and (10).

Case 2: Here, both points have side information and are
represented by the GPs. Starting from (9),
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1Extensions to more than two subsets (e.g., when points come
from multiple domains) is straightforward, but we restrict our de-
scription to a two-subset model for expositional simplicity.
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As in the previous section, the moments of the quadratic form
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The first moment is substituted into (17) to give,
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Turning our attention to the variance and using same reason-
ing as above (with some algebraic manipulation),
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Cases 3 and 4: The third and fourth cases arise when the
points come from each set Zx and Z

p, and can be treated
similarly. We build upon Case 2 by noting that
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In the case that ˆz
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= z
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, the signs in the mean are
flipped, ˆ�
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. The above equations for ˆ�
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) can be plugged into (20) and (21)
derived in Case 2 to give the required central moments of y
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.
To complete L4 ⇡ L3, we replace the moments E[y

k

] and
V[y

k

] in L2 (11), depending on the cases encountered (16).
This extended model, the VBMDS-GP, completely general-
izes the VBMDS since either set Zx and Z

p can be empty.
Distinct from L2, there are no separate distributions for ele-
ments of Zx. Instead, the latent coordinates are represented
indirectly using the sparse GPs, which enables prediction of
latent coordinates using side information.

4.1 Relationship to other models
The VBMDS-GP builds upon a wide body of work and finds
connections to a variety of models that also perform distance
matching. For example, it is related to Neuroscale [Lowe and
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Figure 2: 2D-lattice embeddings obtained by individual dis-
tributions (top) and using the sparse GPs (middle). The point
variances were initially large, reflecting the embedding im-
preciseness, but gradually decreased with more observations.
(bottom) Both scores improved with the number of samples
across the three noise levels, and the maximum L4 value
matched the intrinsic dimensionality of the data r = 2.

Tipping, 1997], that optimizes a RBF network using MDS
stress. But unlike Neuroscale, the VBMDS-GP is probabilis-
tic in nature, giving uncertainties over latent coordinates.

As previously mentioned, our Bayesian MDS framework
is related to PMF, which has a variational version [Lim and
Teh, 2007]. Similar to the VBMDS-GP, Kernel Probabilistic
Matrix Factorization (KPMF) [Zhou et al., 2012], assumes
a GP prior over the columns of the matrices (latent dimen-
sions), which permits for the inclusion of side information.
In addition to the difference in the likelihood and choice of
f

z

, KPMF uses MAP inference, whilst we provide a varia-
tional solution with a sparse GP model. Our model is also
related to probabilistic generative dimensionality-reduction
models such as GPLVM [Lawrence, 2005]. Modern vari-
ational GPLVM variants also use sparse GPs [Titsias and
Lawrence, 2010] but attempt to find probabilistic embed-
dings that reproduce high-dimensional observed features (or
matrices)—the GPLVM mapping is in the opposite direction
Z ! X compared to VBMDS-GP, and does not use side in-
formation, nor constrain distances unless back constraints are
applied [Lawrence and Quinonero-Candela, 2006].

5 Experiments
In this section, we present empirical results, beginning with
synthetic datasets to validate the approach, followed by two
applications in political unfolding analysis and multi-sensor
localization. VBMDS-GP source code is available at https:
//github.com/haroldsoh/vbmds.

5.1 Embeddings with Noisy Distances
In this first experiment, we validated our model by examining
the embeddings generated given noisy distance observations.
We used the 2D-lattice (5⇥5 grid), 3D-lattice (5⇥5⇥5 grid)
and Oilflow (100 points, 12 dimensions) datasets. The 2D
and 3D lattices are simple “toy” datasets with a well-defined
shape—which simplified visual comparison—while Oilflow
is a widely-used benchmark. The distances were corrupted

Data- Comp. Time (s) k-NN Error
set VBMDS MCMC VBMDS MCMC
1968 254.74 4371.42 0.231 0.261
2004 222.07 4888.60 0.085 0.075

Liberal Conservative Liberal Conservative

Figure 3: Political unfolding VBMDS-GP configurations for
the 1968 (left) and 2004 (right) elections are visually similar
to MCMC; the political figures are lined up along their main
political philosophies and surrounded by their respective vot-
ers. (Bottom table) 10-NN errors are comparable to MCMC,
but with up to a 22-fold speedup.

with three log-normal noise levels corresponding to one, two
and three times the standard deviation of the inter-point dis-
tance distribution. As quantitative measures, we use Trust-
worthiness and Continuity scores [Venna and Kaski, 2006].

Fig. 2 shows sample embeddings for the 2D-lattice un-
der moderately high noise as more observations were pro-
vided. Note the high embedding uncertainty when N = 1,
suggesting the embedding is imprecise and inaccurate. As N
increased, embedding uncertainty decreased and the layout
became more accurate, as reflected in the higher Trustworthi-
ness and Continuity scores. Very similar plots were obtained
for 3D-lattice and Oilflow (data not shown due to space con-
straints). If no artificial noise is introduced on the Oilflow
dataset, the scores obtained by VBMDS-GP (99.92, 99.94)
are better than variational-GPLVM (99.72, 99.86), indicating
the effect of distance preservation as an objective. Lastly, the
highest values for L4 correspond to the true intrinsic dimen-
sionality of the datasets; two and three for the 2D and 3D
lattices respectively, and three/four for oilflow, in agreement
with previous studies [Titsias and Lawrence, 2010]. This re-
sult motivates its use in selecting embedding complexity.

5.2 Political Unfolding Analysis
Next, we applied VBMDS-GP to political unfolding where
there are two sets of points—one set of respondents and one
set of stimuli (political figures)—with distance information
only available between inter-set points. We used thermome-
ter datasets—subjective preferences on a scale from zero to
a hundred—for the 1968 (20,076 observations) and 2004
(15,644 observations) US elections.

The configurations obtained (Fig. 3) are visually simi-
lar to those obtained via slice-sampling [Bakker and Poole,
2013]; the candidates spread along a main axis of their po-
litical philosophies, with liberals on one end and conserva-
tives on the other. The uncertainties give us additional in-
dications of the “spread” along these axes. The optimized
L4 values indicated the datasets are best described by two
dimensional embeddings. As a quantitative comparison, the
nearest-neighbor errors for the respondents (vote choices) are
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t-SNE VBMDS-GP

  1-NN Error: 0.105
10-NN Error: 0.071

  1-NN Error: 0.114
10-NN Error: 0.073

Figure 4: VBMDS-GP achieved good cluster separation, with
slightly lower k-NN errors compared to the t-SNE embed-
ding, which was more visually symmetrical.

J. Bush

Trump

Cruz

Ashcroft

CheneyMcCain
Sanders

Obama
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H.Clinton
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Liberal Conservative

Powell

Reagan
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Figure 5: Projected individuals to the embedding with the
VBMDS-GP model using side information (BoW features
from Wikipedia entries). Respondents size indicate (scaled-
up) variances. Portraits shown for political figures not in the
2004 survey and have no associated thermometer data. The
projections are coherent with the overall mapping structure.

similar (error ⇡ 1� 3%), but MCMC (a C program provided
by the authors) required more than 70 mins, while VBMDS-
GP took only 3-4 minutes (10,000 iterations in MATLAB).

To investigate cluster separation, we transformed the dis-
tances into probabilities via exp(�d

ij

/�

2
p

) with �

2
p

= 30 for
comparison to t-SNE [Van der Maaten and Hinton, 2008].
Under this transformation, both methods produced compara-
ble embeddings (Fig. 4); t-SNE’s embedding was visually
more symmetrical, but VBMDS-GP achieved lower k-NN er-
rors. Unlike t-SNE, VBMDS-GP also produced point uncer-
tainties, which when used to compute the 1-NN error (via
expected distance) gave a lower error of 0.098.

We constructed side information for each political figure
consisting of PCA-reduced Bag-of-Words (BoW) features
from Wikipedia entries, and used the VBMDS-GP to embed
politicians that were not included in the 2004 survey. Al-
though simple BoW features may only weakly indicate opin-
ions on key issues, Fig. 5 shows the resultant embedding to be
remarkably coherent: President Obama and Senator Sanders
are close to their liberal base, while Jeb Bush, Senator Cruz,
and Donald Trump are projected to the conservative region.

5.3 Multi-sensor Localization
The problem of multi-sensor localization arises in health-
care/environment monitoring where wireless ad-hoc sensor
networks are deployed in a target areas without GPS (that can
be too power-hungry, and perform poorly indoors). We ap-
plied VBMDS-GP to the Cricket dataset [Moore et al., 2004],
which comprises range readings from real-world Crickets—
hardware platforms with ultrasonic transmitter and receivers.
We used the ranging dataset as provided (5 clusters with miss-
ing and repeated distance readings) but filtered-out clearly er-

Figure 6: Localized positions of nodes. Beacons are shown
as stars and the original sensor nodes shown as magenta dots.

roneous readings, leaving a total of 35,312 distances. For side
information, eight beacon nodes were associated with a sig-
nal propagation model s

bi

= log

A

b

(1000+d

bi

)↵b

where A
b

is the
raw signal strength for beacon b, d

bi

is the distance between
the nodes, and ↵

b

is the decay. These parameters were varied
across the beacons and assumed unknown.

The localization error achieved by VBMDS-GP was 3.1 cm
(no sparsity) and 3.19 cm (GPs using 20 inducing inputs),
compared to 6.73 cm using robust quadrilaterals [Moore et

al., 2004] and 6.63 cm for MDS-MAP [Shang et al., 2003].
Combining all the clusters and training with VBMDS-GP
leads to a lower error of 2.21 cm, which we posit was due
to the elimination of the cluster stitching which tends to in-
crease error [Whitehouse and Culler, 2006]. To further eval-
uate the learnt mapping, we localized ⇡ 68k nodes in the tar-
get area only using the beacon features (Fig. 6). The average
error was 3.47 cm; near the original sensor nodes, the error
< 3 cm, with greater error and predictive uncertainty further
away from the inducing inputs. The time required to localize
all 68k nodes was 2.52s (3.7⇥10

�5s per prediction). As such,
the VBMDS-GP can be used for new or mobile nodes; once
a mapping is obtained, precise localization with uncertainty
estimation can be performed at low computational cost.

6 Summary and Conclusion
This paper presented a computationally efficient variational
Bayesian MDS model that leverages upon side information
and produces distance-preserving probabilistic embeddings.
In the political unfolding task, VBMDS-GP produced em-
beddings comparable to MCMC at a fraction of the compu-
tational cost, and projected novel political candidates coher-
ently to the embedding using only side information. Positive
results were also observed for the localization task where the
VBMDS-GP errors were half that of competing methods.

Given appropriate distance data, VBMDS-GP is applicable
to a variety of tasks with side information, e.g., collaborative
filtering with product description and user profiles, social net-
work visualization with node attributes, and document/image
clustering with meta-data. In general, we expect VBMDS-GP
to perform well when the distance observations (plus discrep-
ancy due to dimensionality difference) are approximately log-
normal. As future work, alternative likelihoods can be used
within the Bayesian MDS framework to better suit other do-
mains and to induce embeddings of different flavors.
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