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Abstract

Heterogeneity of features and lack of correspon-
dence between data points of different domains are
the two primary challenges while performing fea-
ture transfer. In this paper, we present a novel su-
pervised domain adaptation algorithm (SHDA-RF)
that learns the mapping between heterogeneous
features of different dimensions. Our algorithm
uses the shared label distributions present across
the domains as pivots for learning a sparse fea-
ture transformation. The shared label distributions
and the relationship between the feature spaces and
the label distributions are estimated in a supervised
manner using random forests. We conduct exten-
sive experiments on three diverse datasets of vary-
ing dimensions and sparsity to verify the superi-
ority of the proposed approach over other baseline
and state of the art transfer approaches.

1

The key to success of many supervised learning algorithms
is the availability of abundant labeled training data. How-
ever, for many real-world problems, collecting labeled data
is often very expensive and cumbersome. Transfer learning
algorithms help to overcome the scarcity of labeled data in
a domain (often referred to as the target domain) by util-
ising information about the task, and data from single or
multiple auxiliary domains (referred to as source domains).
Transfer learning approaches have found success in many
applications including activity recognition [Hu et al., 2011;
Cook et al., 2013c], sentiment classification [Zhou et al.,
2014], document analysis and indoor localization [Pan and
Yang, 2010].

A popular setting for performing transfer is when the
source and the target domains are represented by the same
set of features. The goal in this setting is to minimise the dif-
ferences in the data distribution of the source and target do-
mains. However, for applications such as sentiment analysis
across different languages [Pan, 2010], and activity recogni-
tion across different domains [Cook et al., 2013b], the source
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and target data are represented using heterogeneous features
of different dimensions that may or may not overlap. Transfer
learning for such heterogeneous domains can be performed
by first bridging the gap between the features characterising
the different domains. This is the principle behind feature-
based transfer learning approaches.

The feature-based transfer approach proposed in this pa-
per is motivated by the application of activity recognition in
a smart home. Smart home based activity recognition deals
with learning the daily activities of smart home resident(s),
captured through a series of sensor observations. Transfer
learning algorithms can be used to overcome the scarcity of
labeled data of a new target smart home by utilising the la-
beled data of other source smart homes. However, different
layouts and types of sensors deployed at different places lead
to heterogeneous feature spaces [Hu and Yang, 2011] neces-
sitating transfer methodologies. Figure 1 illustrates the layout
and sensor locations for three smart homes from the CASAS
datasets [Cook et al., 2013c] used in this paper. Given only
a few labeled instances in the target we leverage the common
labels in the source and target domains to derive the relation-
ship between the corresponding feature spaces. The key as-
sumption of our algorithm is that features in both source and
target domains that characterise data partitions with similar
label distribution, must be related to each other. The shared
label distributions across the two domains act as the pivot for
learning the mapping between the feature spaces. The gen-
erated sparse mapping represents a target feature as a linear
combination of source features. This mapping is estimated
without assuming any correspondence between source and
target data points.

1.1 Problem Definition

Let {Xs,Ys}i2; and {X7,Y7}}_, represent the set of la-
beled instances in the source domain S and target domain 7°
respectively, where m > n. xg € R? is a source data
point with yg € ) the corresponding class label. Similarly,
xp € RI7 is a target data point and y € ) is its associated
label. The features that describe xg and xp are completely
different and d° #* dT. However, we assume that the source
and target domains share a common label space. Let the num-
ber of shared labels be k. Our goal is to learn a mapping
f : R%s — RI" such that the data from the source domain
can be mapped to the target domain. This mapped source data
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Figure 1: Layouts of the three CASAS smart homes that differ in terms the layout, and count of the sensors deployed. The

black squares represent the location of sensors.

can then be used in conjunction with the target data to learn
the hypothesis h : R¥” — ).

1.2 Contributions
The contributions of this paper can be summarised as follows:

1. The proposed algorithm yields a heterogeneous feature-
space class-invariant mapping, assuming no correspon-
dence between the data-points of the domains that share
no overlapping features.

2. Our algorithm does not require the computation of an
optimal code matrix for error correcting output code,
which is a challenging task, that is a requirement for
the current supervised state of the art feature transfer al-
gorithm [Zhou et al., 2014]. The proposed algorithm
utilises naturally occurring label distributions at leaf
nodes of a decision tree model as pivots to generate the
mapping Pg € R¥s>dr,

3. The experiments conducted on diverse datasets indicate
the effectiveness of the algorithm even if very few la-
beled instances are available in the target domain.

2 Related Work

Bridging features across heterogeneous spaces for domain
adaptation is a challenging problem. The approaches for het-
erogeneous domain adaptation can be broadly split into two
categories based on the type of mapping learned, namely,
Feature Remapping and Latent Space Transformation.
Feature Remapping approaches determine the transforma-
tion for converting source features to target features or vice-
versa. It can in turn be of two types: one in which there is
an explicit correspondence between the individual features of
source and target domain such as the i*” source feature be-
ing mapped to the j*" target feature, and second in which a
source or target feature is represented as a combination (of-
ten linear) of features from the other domain. Approaches for
one-to-one source to target feature remapping have used ge-
netic algorithms and other greedy methods to obtain an op-
timal mapping, using classification accuracy as the perfor-
mance measure [Feuz and Cook, 2014]. Alternate approaches
rely on domain independent features known as pivots that can
be utilised to align the feature spaces [Blitzer et al., 2006;
He et al., 2014]. These approaches partition the features of a
domain into independent and dependent sets. The domain
independent features are present across different domains,
while the dependent features are specific to a domain. The
goal is to learn the mapping between the dependent features

by using the independent features. Spectral clustering algo-
rithm can be used to obtain the feature-clusters from the co-
aligned bipartite graph of domain independent and dependent
features that acts as the common subspace [Pan, 2010]. In the
absence of explicit domain independent features, statistical
properties of domain specific features can be used to derive
meta features to bridge the domains [Feuz, 2014]. A recent
work on feature remapping for feature transfer constructs a
class-invariant sparse transformation matrix by mapping the
weight vectors of SVM classifier trained on labeled data from
the domains [Zhou et al., 2014]. Synthetically generated er-
ror correcting output codes (ECOC) are used to train the SVM
model so as to estimate accurate transformations. We com-
pare the performance of our algorithm against this supervised
heterogeneous feature remapping approach (SHFR-ECOC).

Latent Space Transformation approaches determine trans-
formations to project the data of different domains onto a
common latent space. Specifically, these approaches compute
two projection matrices Ps and Pr for source and target do-
mains respectively, such that the difference between the pro-
jected source space Bg : Ps X Xg and projected target space
Br : Prx X is minimised while trying to preserve the char-
acteristics of the original feature spaces. Approaches in this
category can be summarised as unsupervised Eigen transfer
frameworks. Manifold alignment based approaches [Wang
and Mahadevan, 2009] determine the transformed space by
making the manifold assumption, where the mapping brings
data distributions of the domains closer to each other while
preserving the local geometric structure and maximising the
alignment. However, these approaches only work for data
that exhibit strong manifold property and therefore are not
applicable to other scenarios. Heterogeneous spectral map-
ping (HeMap) [Shi and Yu, 2012] optimises the difference in
the latent space in a general setting by learning two transfor-
mation matrices using spectral embedding without using any
label information. The algorithm implicitly tries to discover
the correspondence between the data points of source and tar-
get domain through an optimisation framework. Often, in sit-
uations where there is no explicit data correspondences, the
recovered transformations are noisy. Since these approaches
directly estimate the projected data, estimating the projection
for out-of-sample data is a challenging problem. We com-
pare the performance of our algorithm against the HeMap ap-
proaches that compute linear and non-linear transformations.

In the context of smart home activity recognition, heteroge-
neous layouts can be manually unified by defining a common
meta-feature space that is shared by all smart apartments.
These meta-features can be manually specified by a domain
expert or can be derived from structural, temporal, spatial or
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Figure 2: Illustration of the relationship between the features of the two domains based on a single pivot label distribution.

functional similarities of original features [Rashidi and Cook,
2010]. A manual mapping is not optimal and a poor map-
ping can drastically hinder the recognition performance of the
model. The proposed algorithm intends to exploit label space
distributions of data partitions to identify a mapping across
the domains for addressing the problem of heterogeneous do-
main adaptation.

3 Proposed Methodology

The task of determining ‘common’ features between hetero-
geneous source and target feature spaces for knowledge trans-
fer is a challenging problem [Li ez al., 2014]. Our novel so-
lution to this problem leverages the common label informa-
tion between the source and target domains as the pivot for
knowledge transfer. The proposed algorithm determines the
mapping Ps between source and target features based on the
estimate of the contribution of the features towards creating
data partitions having similar label distributions.

3.1 Estimating Pivots Across the Domains

The first step in our proposed approach is to derive the piv-
ots that are used to construct the bridge across heterogeneous
feature spaces. We define the pivots in terms of the shared
labels between the source and target domains. In the sim-
plest scenario each shared label is a pivot. When the num-
ber of shared labels between the domains is small, learning
the feature mapping is a challenging problem [Zhou et al.,
2014]. The SHFR ECOC approach overcomes this limita-
tion by using synthetically generated error-correcting output
codes (ECOC) for representing each shared label. It is desir-
able that the class labels are independent as the relationships
between the different labels are not effectively captured due
to the randomness of the ECOC generation process [Rajan
and Ghosh, 2004]. Thus selecting the optimal code matrix is
a challenging problem for SHFR ECOC. Our approach over-
comes this limitation by relying on naturally occurring label
distributions in the complex data space.

To arrive at these label distributions, our approach looks at
the leaf nodes of a decision tree modeled on the dataset. A
decision tree follows a greedy strategy to recursively parti-
tion the data based on some feature value test. A leaf node
in a decision tree holds a distribution L of class labels that is
associated with a set of data partition. A path in a decision
tree from the root to a leaf node contains a sequence of fea-
tures chosen as split functions. The candidate split at a node
involves a locally optimal partitioning based on some metric
like Gini Impurity, Information Gain or Gain Ratio.
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To ensure a sufficient number of pivotal label distributions
for learning the mapping between the domains, we train a
random forest, which also helps to reduce overfitting. Every
tree in the forest is constructed using a random subset of fea-
tures [Breiman, 2001]. Our algorithm first constructs n, and
n, trees from S and T respectively. Every path in a decision
tree leading to a partition of data is associated with a certain
label distribution. Label distributions that appear both in the
source and target random forest models are the pivots that are
used for bridging the two domains.

3.2 Estimating Feature Relationships W and W

The next step in the algorithm computes the relationship ma-
trices Wg and W between the domain dependent features
and the shared pivots. Since our pivots are label distributions,
we define this relationship as the contribution of the domain
dependent features towards creating the pivot label distribu-
tion. This relationship can be easily extracted from the deci-
sion tree structure. The boundary of the data partition at the
leaf node can be identified with the feature splits along the
path to the leaf node from the root of the tree.

A simple approach to compute Wg and Wy would be to
give equal importance to all the features that were used as
split nodes in the path. Thus for a path, the i" entry in the
corresponding feature relationship vector would contain the
frequency of the i feature getting selected as a split node.
Another approach would be to give higher priority to a feature
used at parent node compared to the features chosen as split
nodes at its descendants. For every path, each entry in the
feature contribution vector is given by "¢ (1/2)"() where
v(i) denotes the decision tree depth at which the split was
made and c represents the frequency of the feature being used
as a candidate split in the path.

In practice, it is common to have duplicate label distribu-
tions at leaf nodes, i.e., different data partitions correspond-
ing to the same label distribution. The feature contribution
vectors for these data partitions are averaged. Thus at the
end of this process, for each shared pivotal label distribution
between S and T, we also have the domain dependent fea-
ture relationships to these pivots. Based on the similar source
and target class label distributions, the estimated feature con-
tribution matrices Wg € RNrXds and Wy € RNpX4T gre
mapped to yield the source projection matrix Pg, where IV,
is the number of pivots. This process is illustrated in Figure
2. The advantage with using a random forest model is that
the pivots and the relationship between the domain dependent
features and pivots across source and target can be estimated
from a single model reducing the complexity of the transfer
approach.



Algorithm 1 Supervised HDA via Random Forests (SHDA-
RF)

Input: Source data: S € R™*?s and Target data: T € RY X7
Output: Ps € Ris*dr
1. Build a random forest with n, trees from source features Xs.
2. For every path from the root to a leaf node in a tree, the con-
tribution of a feature is estimated as W (zg(v)) = W(zs(v)) +
(1/2)” where v denotes the level at which the feature z € Xg
was selected as a candidate split. The corresponding label distri-
bution L is acquired from the leaf node.
3. Similarly construct the target features contribution matrix Wrp
using n; trees created from T.
4. Remove duplicates from Ls and L. For every duplicate entry
in Lg and L7, the corresponding feature vector entries in W and
W are averaged.
5. Return the corresponding Ws and W for the identical class
label distributions.
6. The mapping Ps can be obtained by running LASSO dr times
on obtained Ws and Wr from Step 5.

Table 1: Summary of CASAS-HH datasets.

Dataset Feature count | Activity count
hh102 43 29
hh113 48 30
hh118 44 32

3.3 Deriving the Feature Transformation

The last step in our algorithm derives a sparse transformation
Pg between the two domains. Our objective is to represent
each target feature as a linear combination of a small set of
source features. The Least Absolute Shrinkage and Selection
Operator (LASSO) is used to learn Pg from Wg and Wr. It
is defined as:

N. d

] 1 P T
min - — > | Wz~ WsPs |3+ X || Ps, Il

Ps Np i=1 i

s.t. Ps, >0

The first part of the optimisation problem minimises the dif-
ference between the projected source feature contribution ma-
trix Pg X Wg and target feature contribution matrix Wr. The
second part is the L regularisation term to obtain a sparse
transformation matrix. The regularisation parameter A con-
trols the size of this subset. There are d7 minimisation prob-
lems that are solved using Least Angle Regression (LARS)
[Hastie et al., 2001].

The proposed methodology is summarised in Algorithm
1. Once the mapping Ps € R9s*97 is obtained, the tar-
get model is retrained along with the projected source data
(S x Pg). The SHFR-ECOC approach does not retrain the
model after finding the transformation. It uses the source
model to predict the class labels of transformed target in-
stances. In contrast, our approach utilizes the benefits of ran-
domization and implicit feature selection of RF to retrain the
model attuned for target domain.
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4 Experiments

We compare the performance of the proposed algorithm
against other baseline classifiers and approaches that perform
transfer. Random forests (BRF) and SVM that uses ECOC
(SVM ECOC) were chosen as the baseline classifiers. Trans-
fer approaches include SHFR ECOC [Zhou er al., 2014] and
HeMAP (linear and non-linear) [Shi and Yu, 2012]. The num-
ber of trees in the random forest was set to 100. The number
of bagged features for learning in a tree in the forest was set
to v/d + 5, where d is the total number of features.

The parameters for the SVM model with RBF kernel were
fine-tuned using grid search. Based on cross validation ex-
periments, the length of ECOC was set to 35, beyond which
the performance plateaued. We choose three diverse datasets,
varying in the size and sparsity of the features, for investigat-
ing the performance of the different algorithms.

The CASAS dataset [Cook et al., 2013a] is a collection of
smart home datasets that are widely used for investigating ac-
tivity recognition algorithms. We use the horizon house (HH)
datasets from this collection, which are records of sensor data
from single resident smart homes. Sensor data from one smart
home serves as the source and another acts as the target. A
sliding window of 20 sensor events is used to build the fea-
ture vector that consists of counts of sensor events within the
sliding window, along with temporal features such as time
of the day and day of the week [Cook and Krishnan, 2015;
Feuz, 2014]. The feature vector is annotated with the activ-
ity label associated with the last sensor event in the sliding
window. The number of features and activity labels in each
dataset are presented in Table 1. The feature values of the sen-
sors in close vicinity appear to be mutually related. This mo-
tivates learning a sparse feature mapping instead of a dense
mapping. The target training set consists of approximately
7000 samples that preserve the original class distribution. 16
such random subsets are used for evaluating the performance
of the different algorithms.

The 20 Newsgroups [Lang, 1995] text collection is a
sparse dataset of approximately 19000 documents belonging
to 20 classes that follow a label hierarchy. The transfer ex-
periments were performed on two datasets each containing
the subcategories falling under rec and talk, and rec and sci
respectively. There are a total of 8 classes in each dataset
with a vocabulary spanning over 26000 words. We consid-
ered only the first 10000 features that contributed the most
towards the classification task. For each dataset, two transfer
settings were created. In the first setting, the source and target
consisted of random and mutually exclusive partition of 5000
features. Target training data is created by randomly selecting
10 samples per class. In the second setting, the roles of the
source and target dataset were reversed. Since the baseline
SVM ECOC model was unable to handle the high dimen-
sional features, PCA was performed while preserving 75%
variance on the TF-IDF feature values. Dimensionality re-
duction is not performed as a pre-processing step for the other
approaches. The predefined test partitions of the dataset are
used for testing the approaches.

The Statlog (Landsat Satellite) [Lichman, 2013] image
dataset comprises of 6 classes and 36 real-valued features. It



Table 2: Performance comparison is depicted in terms of mean error(%). Statistically significant SHDA-RF results against BRF
and SHFR-RF are highlighted in bold and indicated by * respectively.

CASAS HH datasets
Baseline Results Transfer Results
S—T BRF SVM- SHFR- HeMap HeMap FA SHFR-RF SHDA-RF
ECOC ECOC Linear Non-Linear

hh102—hh113 | 30.49+2.58 | 47.144+1.00 39.224+1.63 51.06+1.53 52.9740.97 34.71£1.55 28.68+1.14 27.93+2.54
hh102—hh118 | 28.6+1.07 57.74+1.84 43.52+1.18 59.6+0.89 61.8+0.87 37.7+£2.38 27.894+0.95 | 26.97+1.15*
hh113—hh102 | 28.44+1.54 | 37.5441.60 38.70+1.50 41.414+1.92 43.47+2.53 38.64+2.68 25.974+1.69 25.97+1.00
hh113—hh118 | 21.6+0.45 54.97+1.13 36.7+1.41 58.4+1.26 63+1.39 31+£2.7 19.474+1.07 | 18.38+1.29*
hh118—hh102 | 29.6£1.86 39.994+1.59 39.28+1.88 4340.99 45.74+0.9 37.442.67 29.5441.88 | 27.83+2.64*
hh118—hh113 | 23.5+1.21 36.3+0.67 32.35+1.1 40.34+0.72 41.440.53 31+7.38 21.6940.68 21.54+1.47

20 Newsgroups dataset
Baseline results Transfer Results
S—>T BRF SVM-ECOC | SHFR-ECOC HeMap HeMap SHFR-RF SHDA-RF
(PCA) (PCA) Linear Non-Linear
rec v/s sci

F1:F5000—F5001:F10000 51.914+2.3 50.4944.1 48.01+3.5 63.6+£3.62 63.2244.1 46.61+1.36 40.06+2.9*

F5001:F10000—F1:F5000 68.414+3.6 67.09+4.0 60.2346.6 73.1+£3.9 72.8+4.6 58.1242.13 56.81+4.1*
rec v/s talk

F1:F5000—F5001:F10000 55.79+1.1 56.12+1.6 51.554+2.5 66.2+3.9 66.0+£3.55 49.99+0.12 48.82+3.3*

F5001:F10000—F1:F5000 68.63+2.4 66.1643.8 52.9243.1 70.4443.0 70.2+ 6.11 44.67+0.23 35.51+5.2%
Satellite Statlog dataset
S—T BRF SVM ECOC | SHFR-ECOC HeMap- HeMap SHFR-RF SHDA-RF
Linear Non-Linear

F1:F18—F19:F36 19.304+0.9 21.45+1.3 22.2042.13 33.314+5.8 33.184+5.1 19.42+1.65 18.58+1.6

F19:F36—F1:F18 20.05+1.00 21.50+1.67 22.45+1.1 31.5746.1 32.16%£4.2 19.73+1.45 | 18.66+0.78*

Table 3: Performance of SVM and SHFR ECOC models on
original features of 20 Newsgroups dataset.

Table 4: Performance of HeMap (Linear and Non-Linear) on
20 Newsgroups dataset without explicit correspondence be-

consists of 4435 examples in the training set and 2000 exam-
ples in the test set. The 36 features were split randomly into
two equal groups for creating the source and target domains.
To evaluate different algorithms, we used multiple sets of 10
labeled samples per class to create target training data.

5 Results and Discussion

The performance of different classifiers on the datasets is re-
ported in Table 2. The common observation across all the
datasets is the superior performance of baseline random forest
(BRF) model over other baseline and some transfer learning
approaches. This is another motivation behind adopting ran-
dom forest model for performing transfer. The performance
of the SHDA-RF algorithm on the CASAS-HH dataset is sig-
nificantly better than all the other approaches by about 2-3%
(p-value< 0.05). Among the baseline classifiers, it is evi-
dent that the BRF models perform better than SVM ECOC.
This can be explained by considering that the activity labels in
the dataset are annotated by humans using rule based heuris-
tics. It can be also noted that SHFR ECOC, a transfer strat-
egy based on SVM ECOC, performs better than SVM ECOC

2043

rec v/s sci tween source and target data
S—T SVM ECOC | SHFRECOC rec v/s sci
F1:F5000—F5001:F10000 | 79.48+3.39 87.09+4.1 S—>T HeMap HeMap
F5001:F10000—F1:F5000 | 85.014+3.76 88.22+3.12 Linear Non-Linear
rec v/s talk F1:F5000—F5001:F10000 | 83.75+4.23 93.75+ 4.79
F1:F5000—F5001:F10000 83.1243.6 85.16+4.23 F5001:F10000—F1:F5000 | 85.01+3.76 88.22+3.12
F5001:F10000—F1:F5000 89.55+4.1 86.92+3.75 rec v/s talk
F1:F5000—F5001:F10000 87.5£6.45 86.44+6.52
F5001:F10000—F1:F5000 | 83.75+4.79 85.0+ 7.07

significantly. This suggests that the possibility of knowledge
transfer between the two domains, which is further reinforced
by the performance improvement obtained by SHDA-RF over
BRF model. Another common strategy that is used for per-
forming transfer on activity recognition datasets is by defin-
ing a mapping that aggregates sensors to form layout inde-
pendent functional areas (FA) [van Kasteren er al., 2010] as
an explicit meta-feature space. For example, individual sen-
sors in the ‘bedroom’ are all clubbed together under a single
feature. It can be observed from Table 2 that this approach
performs worse than the BRF model. This suggests poten-
tial loss in information due to aggregation of different sen-
sor events that is critical for differentiating activities happen-
ing in the same functional area. The FA approach, an unsu-
pervised transfer approach, on the other hand performs sig-
nificantly better than other unsupervised transfer approaches
namely HeMAP (linear and non-linear).

On the high dimensional 20 Newsgroups dataset, SHDA-
RF results in superior performance as compared to all the
other approaches. The difference in the performance of
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Figure 3: Availability of labeled target data helps to reduce mean error by learning a better mapping

SHDA-RF and the next best classifier SHFR-ECOC is on
an average 7-8% (p-value< 0.05). Handling high dimen-
sional sparse data with only a few samples available per class
necessitated the use of dimensionality reduction techniques
for SVM ECOC and SHFR ECOC approaches. This can
be observed by comparing the results of the SVM ECOC
and SHFR ECOC models trained and tested on the origi-
nal features (Table 3) and on transformed features (Table 2).
However, the proposed approach does not require such a pre-
processing step and is able to learn well in the original high
dimensional space. The HeMAP approaches attempt to es-
timate a direct mapping between the source and target data.
Learning this mapping in the presence of explicit correspon-
dence between source and target data is easier than in the gen-
eral case. As depicted in Table 4, the performance of HeMap
suffers without explicit correspondence between source and
target data. Even with explicit correspondence between the
data points, the performance of the unsupervised transfer ap-
proaches are not at par with the other techniques. SHDA-RF
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Figure 4: Effect of the number of pivots on the mean error

performs marginally better than BRF on the Statlog dataset.
It is able to significantly outperform the BRF model only in
one out of the two settings. Though the difference in the per-
formances of SVM ECOC and SHFR ECOC is not signifi-
cant, however if considered, it performs better than the SHFR
ECOC transfer model. The smaller margin of improvement
could be attributed to the property of the dataset, which is
dense and real-valued.

Random Forest is used as the final model for comparing the
different transfer mappings. The performance of the transfer
mapping learned from SHFR-ECOC that uses random for-
est as the final model (SHFR-RF) is significantly poorer than
SHDA-RF on the 20 Newsgroups dataset. On the CASAS-
HH datasets, the results are only marginally poorer. Thus

overall the results do seem to suggest that the transfer map-
ping learned through SHDA-REF is better than SHFR-ECOC.

Figure 3 presents the results for BRF and SHDA-RF mod-
els on a few CASAS-HH datasets with increasing target train-
ing data. It can be observed that the mean error for both the
approaches reduces with increase in the number of labeled
target domain data. However, the transfer approach performs
marginally better than the baseline when number of target
training examples is close to 50%.

The SHDA-RF algorithm uses only identical label distri-
butions across the domains as pivots. We conducted experi-
ments to study the effect of increasing the shared label dis-
tributions between the domains by relaxing the similarity be-
tween the distributions. We used Jensen-Shannon divergence
[Lin, 1991] to determine the similarity between two label dis-
tributions. Figure 4 reports the mean error for models with in-
creasing similarity relaxation on three CASAS-HH datasets.
It can be observed that the mean error reduces only till about
90% relaxation beyond which the error increases marginally.

6 Summary and Future Work

In this paper we present a novel supervised heterogeneous do-
main adaptation technique that learns the mapping between
heterogeneous feature spaces of different dimensions. Our
algorithm uses the shared label distributions across the do-
mains as the pivots for learning the feature transformation.
We estimate the pivots using random forest models trained
both on source and a small part of target labeled data. The
experiments conducted on diverse datasets suggest the supe-
riority of the proposed algorithm over other baseline and fea-
ture transfer approaches.

The SHDA-RF algorithm establishes the mapping between
the feature spaces. A natural extension will be to consider in-
stance transfer approaches to reduce the marginal and condi-
tional probability distributions between the target and trans-
formed source data. The proposed algorithm utilises a sin-
gle source domain for knowledge transfer. Another direction
that we would like to explore is how to effectively combine
labeled data from multiple source domains to make an im-
proved final prediction on the target. Finally, variants of ran-
dom forests and sampling techniques can be used to improve
upon on the random forest model that is the foundation of the
SHDA-RF approach.
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