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Abstract

The word embedding vectors obtained from neural
word embedding methods, such as vLBL models
and SkipGram, have become an important funda-
mental resource for tackling a wide variety of tasks
in the artificial intelligence field. This paper fo-
cuses on the fact that the model size of high-quality
embedding vectors is relatively large, i.e., more
than 1GB. We propose a learning framework that
can provide a set of ‘compact’ embedding vectors
for the purpose of enhancing ‘usability’ in actual
applications. Our proposed method incorporates
parameter sharing constraints into the optimization
problem. These additional constraints force the em-
bedding vectors to share parameter values, which
significantly shrinks model size. We investigate the
trade-off between quality and model size of em-
bedding vectors for several linguistic benchmark
datasets, and show that our method can signifi-
cantly reduce the model size while maintaining the
task performance of conventional methods.

1 Introduction

Machine readable representations that embed word mean-
ings are important tools for tackling natural language un-
derstanding by computers. Many researchers have tried to
preserve the word meaning into vector space models. The
basic idea for constructing a vector space model is taken
from the intuition that similar words tend to appear in similar
contexts [Miller and Charles, 1991]. Within this traditional
framework, recently developed new methodologies, which
are inspired by neural network language models, such as
vector log-bilinear language (vLBL) models, SkipGram and
continuous bag-of-words (CBoW), have successfully been
proven to capture high quality syntactic and semantic rela-
tionships in a vector space [Mnih and Kavukcuoglu, 2013;
Mikolov et al., 2013a; 2013b]. Moreover, the ‘word embed-
ding vectors’ obtained from these methods are now being ap-
plied to many tasks, such as syntactic and semantic parsing
of text, sentiment analysis, machine translation, and question
answering, in many different ways. For example, embed-
ding vectors are incorporated as additional features for train-
ing machine leaning-based models, i.e., [Turian et al., 2010;
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Guo et al., 2014], and as initialization parameters of neu-
ral network-based methods, i.e., [Hinton and Salakhutdinov,
2012; Chen and Manning, 2014; Liu et al., 2014]. As demon-
strated in the above previous studies, word embedding vectors
can significantly improve task performance. Moreover, stud-
ies in compositional semantics area reveal that the calcula-
tions underlying embedding vectors such as addition and in-
ner product can be seen as good approximations of composed
word meaning and evaluating the similarity between words,
respectively. The obtained word embedding vectors have now
become an important fundamental resource for tackling many
applications in the Al field.

According to this background, improvements in neural
word embedding methods will strongly support the advance-
ment of Al research. Among many directions for various
improvements, this paper focuses on the fact that the model
size of a set of high-quality embedding vectors in mem-
ory space is mostly large, i.e., more than 1GB. In fact, the
model size of the freely-available pre-trained embedding vec-
tors trained by CBoW with approximately 100 billion words
from the Google News data (GN100B) exceeds 3GB!, while
that trained by GloVe [Pennington et al., 2014] with approx-
imately 840 billion words of Common Crawl data occupies
2.5GB2. Model sizes are so large that the application of em-
bedding vectors becomes problematic, particularly on limited
memory devices, such as mobile devices. Thus, this paper
tackles this issue, and proposes a method that can provide
‘compact’ sets of embedding vectors for the purpose of en-
hancing ‘usability’ in actual application.

The basic idea of our proposal is to incorporate parameter-
sharing constraints into the optimization problem. These ad-
ditional constraints force the embedding vectors to share pa-
rameter values, which significantly shrinks model size. This
paper also proposes an efficient learning algorithm based on
dual decomposition and ADMM techniques [Boyd et al.,
2011] for optimizing the optimization problem with our pa-
rameter sharing constraints.

2 Neural Word Embedding Method

At first, we define the following terms to reducing misunder-
standing.

"https://code.google.com/archive/p/word2vec/
“http://nlp.stanford.edu/projects/glove/



Definition 1 (neural word embedding method). One of the
simplest neural language models, it consists of only ‘input’
and ‘output’ embedding layers.

Examples of neural word embedding methods are Skip-
Gram, CBoW and the family of vLBL models.

Definition 2 (word embedding vector). Vectors generated by
any neural word embedding method.

2.1 Model definition

Let U/ and V be two sets of predefined vocabularies of pos-
sible input and output words, respectively. In this paper, the
absolute value of set, i.e., || and |V, denotes the number of
instances in the corresponding set. Generally, a neural word
embedding method assigns a D-dimensional vector to each
word in I/ and V.

Definition 3 (input and output embedding vector [Suzuki and
Nagata, 2015]). This paper refers to a vector assigned to a
word in U as an ‘input embedding vector’, and that assigned
to aword in'V as an ‘output embedding vector’.

Let e; represent the i-th input embedding vector, and o;
represent the j-th output embedding vector. In the rest of
this paper, notation ‘¢’ is always used as the index of input
embedding vectors, and ‘j’ as the index of output embedding
vectors for convenience, where 1 <4 < [U|and 1 < 5 < |V].

This paper mainly follows the vLBL model defini-
tion [Mnih and Kavukcuoglu, 2013]°. This is because this
definition covers several famous models, such as SkipGram,
continuous bag-of-words (CBow) [Mikolov et al., 2013al,
and GloVe [Pennington et al., 2014]. Let W be context win-
dow size before and after the word in the target position. If we
set W = b, the five words before and after the target position
become the context (input) words of the word in the target
position. Let z represent the distance between appearance of
the ¢-th input word and the j-th output word in training data.
Let r, denote a scaling (or decay) factor with respect to dis-
tance z. Suppose that single training data H in D consists of
series of indices of input words with distance (¢, z), and an
index of output word. Namely, H = (Z, j), where Z is a list
of (i, z), that are extracted within the context window. Then,
the likelihood of the appearance of the j-th output word given
the input words within W in D is estimated by the following
form of the vLBL model®:

Sy = ( Z rzei> 10 where H = (IJJ) (1)
(

i,2)€T

This model becomes identical to CBoW if we set , constant
regardless of distance z, such as r, =1 for all z.

Moreover, the SkipGram model emerges if all Z consist of
just one instance:

sy=e;-05, where{ = (Z,j)andZ = (i,1). (2)

2.2 Optimization problem for embedding
Let E and O represent lists of all input and output embed-
ding vectors, respectively. Namely, E = (ei)ﬁ‘l and O =

3To simplify the discussion, we ignore bias terms in this paper.
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(oj)l-v:‘l“. D represents training data. Given the above, em-

bedd]mg vectors are obtained by solving the following form
of minimization problem:

(E,O) =argmin {¥(E,O | D)}, 3)
E

)

where U represents an objective function, and E and O are
lists of solution vectors.

For example, the objective function ¥ of ‘SkipGram with
negative sampling (SGNS)’ can be written as follows:

V(E,O[D)=) L(su)+ Y Ll-sw) (4

HED H' €D’

where L(x) represents a logistic loss function, namely,
L(z) = log(1 + exp(—)), and sy is that shown in Eq. (2).
Moreover, D’ denotes the explicit representation of negative
sampling data. To simplify the discussion, we assume that D’
is automatically generated based on the distribution of D as
described in the original paper [Mikolov et al., 2013b]. Note
that ‘CBoW with negative sampling’ also takes the same form
as Eq. (4) except for the definition of s, which is Eq. (1) in-
stead of Eq. (2).

3 Embedding with Parameter Space Sharing

This section explains our proposed method. The main pur-
pose of our method is to obtain a ‘compact’ set of embedding
vectors in order to significantly reduce the model size and
thus support real-world applications.

3.1 Preparation

To explain the details of our method, we introduce a few def-
initions and assumptions used through this paper.

Definition 4 (vector concatenation operator ®). Let v be
n-dimensional vector v. = (v1,....v,), and W be m-
dimensional vector w = (wi,...,wy,). Then, we define
© as an operator that concatenates two vectors. Namely,
v O w = X, where x is (n + m)-dimensional vector x =
(U1, Uy Wy ey W)

We also use a big operator @1]73:1 vy, which is a short nota-
tion of concatenating multiple vectors from b = 1to b = B,

thatis, vi O vo ©--- O vp = 65:1 (3

Definition 5 (Block-splitting sub-vector). Ife; = @le €i.bs
we refer to e, , for all (i, b) as ‘block-splitting sub-vectors’ of
e;, where e; ;, denotes the b-th block of the i-th input embed-
ding vector.

Assumption 6. Our method assumes that all embedding vec-
tors are equally split into B-blocks of C-dimensional block-
splitting sub-vectors. Therefore, the relation D = B x C
always holds.

]
i=1
(eh e 7e\1/{|) = (el)'lfi‘l
>This is similar to the notation of set union Ule Ay = A1 U
Ai---UAp C A when A, for all b are the subsets of A.

“The notation (e;),~, is a short notation of a list of vectors



In other word, we assume that all block-splitting sub-
vectors have dimension of C'. For example, we get D = 256,
C = 8 and B = 32 if we split an embedding vector, whose
dimension is 256, into 32-blocks of 8-dimensional block-
splitting sub-vectors.

Definition 7 (reference vector). We define special vectors
for explaining our parameter sharing approach as ‘refer-
ence vectors for parameter sharing’, or ‘reference vectors’
for short, to distinguish them from other vectors.

Assumption 8. The dimension of the reference vectors is de-
termined in accordance with that of the block-splitting sub-
vectors of embedding vectors. More precisely, the dimension
of the reference vectors is C' if the dimension of the block-
splitting sub-vectors is defined as C.

3.2 Basicidea

To simplify the discussion, this section explains our idea for
just input embedding vector e;.

The basic idea of our method is as follows. First, we intro-
duce and assign a limited number of reference vectors to each
block of block-splitting vectors. For example, the number of
reference vectors becomes K x B if we assign K reference
vectors to each block. Let py, ;; denote the k-th reference vec-
tor assigned to the b-th block, and P, = (pp )% ;. Simi-
larly, P denotes a list of all the reference vectors assigned to
all the blocks, that is, P = (Pb)f:l. Then, in our method,
we add the constraints that every block-splitting sub-vector
e; ;, matches one of the reference vectors in Pj during the
parameter estimation of embedding vectors. This also means
that we force every embedding vector to be represented by
the concatenation (combination) of the reference vectors. As
a result, we can significantly reduce the model size since em-
bedding vectors can be restored from just a set of reference
vectors with selection information.

3.3 Memory requirement

Neural word embedding methods like SkipGram and CBoW
generate |U{| input embedding vectors, each has dimension of
D. Therefore, we need || x D x F-binary digits (‘bits’ for
short) to store the complete embedding vectors in memory (or
storage), where F' denotes the bits required to represent a real
value in the computer, i.e., F'= 64 in the case of double pre-
cision floating-point. Hereafter, we assume the use of single
precision floating-point F' = 32 following it adoption by the
famous word2vec implementation.

As we described, all reference vectors have dimension of
C, and the number of reference vectors is predefined as KxB.
Thus, C x K x B x F-bits are required to store the reference
vectors in memory. Next, we need [log K |-bits to represent
the selection of reference vectors, namely, one of the integers
from 1 to K. Thus, Bx [log K |-bits are required to represent
a single embedding vector, and thus, || X B x [log K |-bits
to represent all input embedding vectors. Finally, our method
requires |U| x B x [log K'| + C x K x B x F-bits in total.

Table 1 shows model sizes obtained in typical settings.
Note that our method also considers output embedding vec-
tors as well as input embedding vectors.

Table 1: Comparison of obtained model size between a con-
ventional method and proposed method in typical settings.
typical conventional method: (|U| + |V|) x D x F-bits
V[] DI F

[U] total (MB)
400,000 | 400,000|256 |32 781MB
400,000 | 400,000 51232 1,565MB

2,000,000 | 2,000,000 | 256 |32 || 3,906MB
2,000,000 | 2,000,000 | 512 |32|| 7,813MB

proposed method: (|U| + |V|)x Bx [log K|+ Cx K x B x F-bits
B D| K| F

U] V] total (MB)
400,000 | 400,000 | 64| 4|256|256|32 49MB
400,000 | 400,000 | 128 | 4512|256 |32 98MB

2,000,000 | 2,000,000 | 64| 4|256|256|32 244MB
2,000,000 | 2,000,000 | 128 | 4|512|256 |32 489MB

3.4 Formulation

Following the assignment of py j for input embedding vec-
tor, let qp . denote the k-th reference vector assigned to the
b-th block of the output embedding vector. Moreover, similar
to P, and P, we define Q, = (qux)5_; and Q = (Qp)f;.
Then, we define the following minimization problem for ob-
taining embedding vectors with the parameter sharing prop-
erty:

(E,O) = argmin { ¥(E, O|D)}

€;p € Py V(Z, b)v Ojp € Qb V(], b)v

where e; = @le ejp Viand o; = @sz1 0 V.
The difference between Eqs. (3) and (5) is obvious: our

proposed optimization problem shown in Eq. (5) has addi-
tional (parameter sharing) constraints.

. ®)
subject to

Definition 9 (parameter sharing constraint). The constraints
shown in Eq. (5), namely e;, € Py, and o;;, € Qy are re-
ferred to as parameter sharing constraints in this paper. The
meaning of constraint € € P is that vector e must take values
equivalent to one of the vectors in P. That is, 3k e = pg,
where P = {py, }_,.

Our proposed method does not rely on the form of the loss
function ¥(E, O|D) if the loss function is valid for neural
word embedding. We assume that the loss function in Eq. (5)
is one of those used in the conventional neural embedding
methods, i.e., Eq. (1).

3.5 Optimization algorithm

We have several possible approaches for optimizing Eq. (5).
This paper introduces an efficient algorithm based on the dual
decomposition technique.

At first, we introduce vector representations of auxiliary
variables u; and v;. Similar to E and O, U and V denote
U= (ui),lizl1 and V = (vj)ljill, respectively. Based on the
dual decomposition technique [Everett, 19631, we reformu-
late Eq. (5) by incorporating equivalence constraints, e; = u;
for all 7 and o; = v; for all j, into the optimization problem
to detach e; and o, from the ‘parameter sharing constraints’:

(BE,0)= argmin {V(E,O0|D)}
E,0,U,V,P,Q 6)
subjectto  e; =w;, Vi, w;, € Py V(i,b (

)
oj =v;, Vi, vj» € QpV(j,b),
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where w; = Op_, w;p Vi and v; = Op, v, Vj. Note
that Egs. (5) and (6) are basically equivalent problems.

Then, to relax the equivalence conditions e; = u; and o; =
v,;, we apply an augmented Lagrangian method [Hestenes,
1969; Powell, 1969]. The optimization problem in Eq. (6)
can be transformed into the following form:

arg min
E,O.U,V.P,Q
subjectto  wu;; € Py, V(4,b),

{@(E,O,U,V,A,B;D)}} ™
Vj,b S Qb V(], b)7
Objective function P takes the following form:

(D(E’ 07 U7 V7 A'7 B; D) = W(E7 O|D)

+g Z - > 2ol
Z Hﬂ]”2a

where o; and 3; represent Lagrange multipliers (or dual vari-
ables), and A = (az)‘ | and B = {1

1
ei—ui—l—fai
P

1
—Vj+ ﬂ]

el . Moreover, p is
a tunable parameter to control the strengt of constraint satis-
faction during parameter estimation, where p > 0.

Unfortunately, the joint optimization of Eq. (8) over all
parameter sets is a hard problem. Thus, we leverage the
‘alternating direction method of multiplier (ADMM)’ algo-
rithm [Gabay and Mercier, 1976; Boyd et al., 2011], as it pro-
vides an efficient optimization framework to solve problems
in dual decomposition form like Eq. (8). The notable char-
acteristic of ADMM is that it virtually decomposes the orig-
inal optimization problem into several sub-problems, whose
optimization variables are a (disjoint) subset of the original
optimization variables. It sequentially and iteratively solves
the sub-problems over the selected variable set while holding
the other variables fixed. Detailed derivation for the general
case can be found in [Boyd et al., 2011]. Fig. 1 shows our
sequential and iterative parameter update procedure derived
from the ADMM framework as applied to Eq. (8).

Stepl: If we discard all the terms that are independent
from original optimization variables E and O, the objective
function ® in Eq. (8) can be rewritten as follows:

P P
B3 lles—ell+5 > llo; = of 3,
i J

12)
where €] = u; — %ai and 0;- =v;— %53% Obviously, the
minimization problem in Eq. (9) with ®; in Eq. (12) can
be viewed as a conventional neural word embedding method
with ‘shifted’ Lo-norm regularizers. Therefore, this opti-
mization problem can be solved by gradient-based algorithms
widely used in conventional neural word embedding meth-
ods, such as SGD or its variants.

Step2: If we discard all the terms that are independent from
auxiliary variables U, V, P and Q, we can further separate
the sub-problem into two distinct parts (U, P) and (V, Q).
Thus, the objective functions ®, 7 and @5 v in Eq. (10) can

&, =U(E,0|D) +
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Step1: Find the minimizer of Eq. (7) using only ‘original opti-
mization variables’, E and O, while holding all the other vari-
ables, U, V, P, Q, A and B in Eq. (7), fixed.

(E,0) = ar%rgin {®.(E,0|D)} ©)
Step2: Find the minimizer of Eq. (7) using only ‘auxiliary vari-
ables’, U V, P and Q, with the parameter sharing constraints
while holding all other variables, E, O, A and B, fixed:

U = argmin {®2,u(U)} st uip € Py V(i,b),

U,P
N ’ 10
V =argmin {®2v(V)} st v, € Qs V(j,b), (19)

v.Q

Step3: Perform one step of gradient ascent procedure for the
dual variables A and B while holding all other variables, E, O,
U, V, P and Q, fixed:

A = argmax {@37A(A
A

B)}
1)

)} and B= arg max { @3 B (
B

Figure 1: Our sequential and iterative parameter update pro-
cedure derived from the ADMM framework.

be written as follows:

”ZZHM s
P ZZ ijb VJb”z?

where u;b =ep+ ;Oti,b and Vj,b =0, + ;ﬁj,b, respec-
tively. Note that Y, [[u} — w;||3 =, >, lul, —

o, y(U

(13)
Oy v(V

. 12
u; |3 ;|3
We can further transform objective functions ®, vy and
®, v in Eq. (13) by combining the parameter sharing con-
straints into the objective function. Finally, we obtain the fol-
lowing objective functions:

”Zme{Hum [
”Zme{rm a3}

as the replacements of ®, uy and P,y that include their
constraints. Interestingly, both equations shown in Eq. (14)
match the form of the objective function used as a standard
k-means clustering problem. We can easily obtain a local
optimum (or stationary point) by simply applying a standard
k-means clustering algorithm.

Step3: In the ADMM framework, dual variables are gen-
erally updated by one step of gradient ascent to tighten the
constraints e; =u; and o; =vj, that is,

di =y + {(e,- — ui) V’L,

Bj =B; +&(oj —v;) Vj,
where & represents the learning rate of the gradient ascent
method.

I

(14)

/

15)

4 Experiments

We followed the experimental settings used in a series of
neural word embedding papers. First, our training data was



Table 2: Benchmark datasets used in our experiments.
abbr. [ size | OOV [ reference
Word Similarity estimation (WordSim)

MEN 3,000 0 [ [Bruni et al., 2014]
MTurk 287 2 | [Radinsky et al., 2011]
RARE 2,034 313 | [Luong et al., 2013]
SLex 998 1 | [Hill et al., 2014]
SCWS 2,003 24 | [Huang er al., 2012]
WSR 252 14 | [Agirre et al., 2009]
WSS 203 7 | [Agirre et al., 2009]
Word Analogy estimation (Analogy)

GSEM 8,869 0 | [Mikolov et al., 2013a]
GSYN | 10,675 0 | [Mikolov et al., 2013al
MSYN 8,000 0 | [Mikolov et al., 2013c]

Sentence Completion (SentComp)
MSC | 1,040 [ 36 | [Zweig and Burges, 2011]

Table 3: Hyper-parameters selected in our experiments and
their candidate parameter sets.

hyper-parameter selected value | candidate param. set
context window (W) 5 {2,3,5,10}
sub (t) t 1077 (dirty) {0,107}

cds (o) t 3/4 {3/4,1}
post-process T e+o {e,0,e + 0}
initial learning rate (1) 0.025 {0.01,0.025,0.05}
# of neg. sampling (k) 5 {1,5,10}

# of iterations (1) 10 {1,2,5,10, 15}

taken from a Wikipedia dump (Aug. 2014). We used the
hyperwords tool® for data preparation [Levy et al., 2015].
Finally, we obtained approximately 1.6 billion tokens of
training data D. We selected 400,000 most frequent words
in the training data as vocabularies of input and output words
(|U| = |V| = 400, 000).

Table 2 summarizes the benchmark datasets used in our ex-
periments. We prepared three types of linguistic benchmark
tasks: word similarity (WordSim), word analogy (Analogy),
and sentence completion (SentComp). The ‘OOV’ column
represents the number of words (problems) in each bench-
mark data that were out of vocabulary relative to our training
data. Thus, these numbers also indicate the number of prob-
lems that are impossible to solve correctly in our experiments.

4.1 Methods for comparing in our experiments

We selected SGNS as the baseline method since this is one of
the most famous methods and is known to work well in many
situations [Levy et al., 2015]. We used the word2vec imple-
mentation but modified the code to save the context vectors
as well as the word vectors’. Many tunable hyper-parameters
were set based on the recommended default values or sug-
gested values explained in [Levy et al., 2015]. Table 3 sum-
marizes the hyper-parameters used consistently in all our ex-
periments unless otherwise noted (See [Levy et al., 2015] for
details of T in Table 3). Moreover, we selected £ =0.01, and
p=1.0 for hyper-parameters of our proposed method.

Shttps://bitbucket.org/omerlevy/hyperwords
https://code.google.com/p/word2vec/ (trunc42)
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Table 4: Impact of dimension, D, for both performance and
model size: (average performance of ten runs)

method dimension | model size || WordSim | Analogy | SentComp
SGNS D =1024| 3125MB 65.6 64.4 34.1
D = 512| 1563MB 66.1 64.4 34.3
D = 256/ 78IMB 64.0 63.5 327
D= 128 391MB 57.2 61.8 32.1
D= 64| 195MB 444 59.5 30.1
D= 32 98MB 28.1 55.7 27.8

Table 5: Summary of our experimental results (average per-
formance of ten runs); bold-type: better than ‘the worst per-
formance in ten runs’ of SGNS. {GN100B shows the results
of using a set of freely available pre-trained embedding vec-
tors as briefly described in Sec. 1. Note that the learning con-
figuration of GN100B is entirely different from SGSN and
PS-SGNS. Thus, GN100B results are shown just for refer-
ence in confirming that our results are empirically valid.

parameter(s) for model | Word- | Ana-| Sent-

method reducing model size size|| Sim| logy|Comp
SGNS (bestin ten runs) | 1565MB| 67.2| 64.7| 35.9
(D =512) (worstintenruns) | 1565MB| 65.1| 64.2| 33.6
SGNS 16bit  quant.| 781MB|| 65.2| 62.2| 28.7
(D =512) 8bit  quant.| 391MB|| 58.8| 56.4| 25.0
w/ quant. 4bit quant.| 195MB|| 48.5| 57.1| 24.9
post-proc. 2bit quant.| 98MB|| 47.4]| 56.7| 26.1
SGNS K =256, B=256| 196MB| 67.0| 64.5| 34.4
w/ block- K= 16, B=256| 98MB| 64.4|64.0| 33.7
wise K =256, B= 64| 50MB]| 544|623 335
k-means K= 16, B= 64| 24MB| 36.2| 583| 29.9
post-proc. K= 16, B= 32| 12MB]|| 19.2| 51.9| 25.5
PS-SGNS K =256, B=256| 196MB| 67.1| 64.5| 35.3
(proposed K= 16, B=256| 98MB| 65.5| 64.6| 34.0
method) K =256, B= 64| 50MB| 59.0/ 64.0| 33.5
K= 16, B= 64| 24MB| 37.8|585| 31.0

K= 16, B= 32| I12MB| 24.1|539| 278

TGN100B (default:float 32bit) [3433MB || 73.6| 65.5| 38.0
w/ quant. 16bit quant. | 1716MB || 63.2| 60.5| 27.1
post-proc. 8bit quant.| 858MB|| 30.5| 52.0| 234
4bit  quant.| 429MB 9.3| 42.4] 219

For a fair evaluation, we also examined two naive methods
that can reduce the model size of embedding vectors.

1. m-bit quantization: After obtaining the embedding
vectors, we calculate the minimum and maximum val-
ues of every coordinate independently, and then evenly
quantize the interval between minimum and maximum
values into 2""-bins.

2. block-wise k-means clustering®: We applied k-means
clustering with exactly the same setting as the procedure
of Step2 shown in Eq. (14).

These two methods can be categorized as post-processing for
model size reduction.

8Note that simple vector-wise k-means clustering does not work
for the purpose of model size reduction.



Table 6: Detailed Results of Table 5; (average performance of ten runs)

parameters for model WordSim Analogy SentComp

method reducing model size size || MEN |MTurK |[RARE|SLex |SCWS |WSR|WSS ||GSEM|GSYN |MSYN|| dev.| test
SGNS  (default:float 32bit) [I565MB|| 77.1| 69.5| 48.4| 65.7| 39.2| 66.0| 78.7|| 79.7| 63.7| 51.0||35.6] 33.0
PS-SGNS K =256, B=256 | 196MB|| 77.2| 69.7| 485| 66.0| 39.1| 65.7| 79.1|| 80.6| 64.8| 51.6(|36.3| 34.2
K= 16, B= 64 24MB|| 71.1| 63.4| 41.3| 61.7| 31.6| 59.6| 73.7|| 48.4| 37.6/ 23.0/[29.6] 32.3
TGNI00B (default:float 32bit) [3433MB]] 78.2] 68.5] 53.4] 66.6] 44.2] 63.5] 77.2]] 73.1] 74.0[ 73.6[[37.1] 3838

4.2 Task performance vs. model size

It is worth emphasizing here that our proposed method, which
we refer to as ‘PS-SGNS’, is not intended to improve task
performance. Our goal for PS-SGNS is to reduce the model
size as much as possible while maintaining the task perfor-
mance of the baseline method, SGNS.

Baseline results with different model size (dimension)

We first evaluated the impact of dimension D since it deeply
affect to both performance and model size of our baseline
method, SGNS. Table 4 shows the results. In our setting,
D =512 provided the best results. Thus, we selected ‘SGNS
with D=>512’ as the base setting of our method, PS-SGNS.

Comparison with original SGNS

Table 5 summarizes our main results. Moreover, Table 6
shows results of individual benchmark datasets. PS-SGNS
with ‘K = 16,B = 256’ had successfully reduces the
model size nearly 16-fold compared to SGNS while generally
matching SGNS task performance. In addition, the model
size of PS-SGNS with ‘K = 16, B = 64’ was just 24MB, ap-
proximately 65 times smaller than that of original SGNS. In-
terestingly, the proposal still offered acceptable performance
for WordSim and SentComp. Therefore, the embedding vec-
tors obtained from PS-SGNS will be highly effective in appli-
cations running on limited memory devices. Analogy, on the
other hand, seems to be very sensitive to model compaction.
However, we emphasize that PS-SGNS provided significantly
better results than all the baseline methods.

In addition, we note that our method easily manage CBoW
and similar word embedding method instead of SGNS as a
baseline method. We omit to show PS-CBoW results since
the tendency and relation of CBoW and PS-CBoW were es-
sentially the same as SGNS and PS-SGNS.

Comparison with SGNS with block-wise k-means

SGNS with the block-wise k-means post-processing method
can be seen as a form of PS-SGNS. This is because SGNS
with block-wise k-means post-processing essentially matches
a single iteration of the ADMM-based algorithm shown in
Fig. 1. Thus, comparing these two results roughly demon-
strates the effectiveness of our method in terms of perform-
ing multiple iterations of ADMM updates. Obviously, mul-
tiple iterations significantly improved task performance. In
addition, it is hard to prove that the proposed ADMM-based
algorithm will converge to certain stationary point. This is
because the original SGNS optimization problem is already
a non-convex optimization problem. Therefore, these results
provide empirical evidence that our ADMM-based algorithm
has ability to find better solution by the iterative parameter
update procedure.

5 Related Work

Several papers have recently attempted to reduce the model
size of neural networks in deep learning settings (NN/DL),
i.e., [Droniou and Sigaud, 2013; Chen et al., 2015; Gupta
et al., 2015; Courbariaux et al., 2015]. The motivation and
purpose of our method are exactly the same as those studies.
However, the methods developed for NN/DL cannot be di-
rectly or straightforwardly used in word embedding methods
(like SGNS) in most cases.

The first simple reason is that the target of most methods
for NNis is to reduce the information of transformation matri-
ces U in the transformation function o = f(Ue + b) since
this part is generally the largest component of NNs. How-
ever, embedding methods like SGNS have no transformation
matrices, U, in their models, namely, v = e - o. In addition,
we emphasize that the problem for reducing the embedding
vectors is much harder than that for NNs since the model ca-
pacity is already very limited. Moreover, the required proper-
ties are different. A simple example is provided by Analogy
task. The embedding vectors are required to preserve the re-
lation of angles and distances among all embedding vectors
in the vector space. This basically is a very hard requirement.
Based on these two reasons, our proposed method, PS-SGNS,
seems to be much complicated compared to the methods used
in NN/DL listed above.

Our ADMM-based algorithm essentially is an extension
of our previous study [Suzuki and Nagata, 2014]. However,
there is an essential difference between them. The method
introduced in this paper is realized by the fact that each di-
mension of embedding vectors has no interpretable meaning,
and thus, exchangeable.

6 Conclusion

This paper proposed a novel neural word embedding method
that incorporates parameter sharing constraints during em-
bedding vector learning. The embedding vectors obtained
from our method strictly share the parameters in a certain
predefined limited space. As a result, our method only needs
to remember the set of shared parameters and selection in-
formation for recovering completely all embedding vectors;
our approach can significantly reduce the model size. This
paper also introduced an efficient learning algorithm based
on the ADMM framework for solving the optimization prob-
lem with our parameter sharing constraints. Our experiments
showed that SGNS with our parameter sharing constraints,
which we call PS-SGNS, successfully reduced the model size
by more than one order of magnitude while matching the task
performance of the original SGNS.
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