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Abstract
While multitask learning has been extensively stud-
ied, most existing methods rely on linear models
(e.g. linear regression, logistic regression), which
may fail in dealing with more general (nonlinear)
problems. In this paper, we present a new ap-
proach that combines dictionary learning with gra-
dient boosting to achieve multitask learning with
general (nonlinear) basis functions. Specifically,
for each task we learn a sparse representation in a
nonlinear dictionary that is shared across the set of
tasks. Each atom of the dictionary is a nonlinear
feature mapping of the original input space, learned
in function space by gradient boosting. The result-
ing model is a hierarchical ensemble where the top
layer of the hierarchy is the task-specific sparse co-
efficients and the bottom layer is the boosted mod-
els common to all tasks. The proposed method
takes the advantages of both dictionary learning
and boosting for multitask learning: knowledge
across tasks can be shared via the dictionary, and
flexibility and generalization performance are guar-
anteed by boosting. More important, this general
framework can be used to adapt any learning al-
gorithm to (nonlinear) multitask learning. Exper-
imental results on both synthetic and benchmark
real-world datasets confirm the effectiveness of the
proposed approach for multitask learning.

1 Introduction
Multitask learning [Caruana, 1997] is a learning paradigm
that aims to improve learning performance across many
tasks by leveraging information and knowledge that is shared
across tasks. It has been demonstrated both theoreti-
cally [Ben-David and Schuller, 2003; Ando and Zhang, 2005;
Maurer et al., 2013] and empirically [Argyriou et al., 2007;
Liu et al., 2009; Kumar and Daumé III, 2012; Hernández-
Lobato et al., 2015] that generalization performance can be
improved by learning multiple tasks jointly, in contrast to
learning each task individually, especially when training sam-
ples for each task are limited and the number of tasks is large.

One key assumption of multitask learning is that the tasks
are related to each other and therefore there is some under-

lying relatedness structure that can be exploited and shared
across tasks. Examples of such structure include the model
parameters lying close to each other [Evgeniou and Pon-
til, 2004] in a low dimensional subspace [Ando and Zhang,
2005], manifold [Agarwal et al., 2010], or sharing similar
sparsity patterns [Liu et al., 2009; Obozinski et al., 2010].

One drawback of most multitask approaches is that they
assume that all the tasks are related to each other. This is re-
strictive in real world applications where the tasks may share
knowledge in a more complicated way. To address this issue,
algorithms have been proposed to model more sophisticated
task relatedness structures. For example, some methods as-
sume that the tasks can be clustered into groups, and that tasks
within each group are similar to each other [Xue et al., 2007;
Jacob et al., 2008; Kang et al., 2011]. Other models
consider the existence of outlier tasks [Chen et al., 2011;
Gong et al., 2012] or hierarchical structure of model pa-
rameters [Zweig and Weinshall, 2013]. Task relatedness has
also been modeled by correlations [Zhang and Yeung, 2010;
Zhang and Schneider, 2010] or tree structures [Kim and Xing,
2010]. Finally, the dictionary learning approach [Kumar
and Daumé III, 2012; Maurer et al., 2013] offers another
method for multitask learning and can model various relat-
edness structures such as disjoint grouping, partial overlap,
and outlier tasks. Its generalization performance has been an-
alyzed in [Maurer et al., 2013; 2014].

However, most existing methods are limited to learning a
linear model of tasks, which restricts their potential for ad-
dressing more complex nonlinear problems. Although some
kernel methods have been proposed for this issue [Yu et
al., 2005; Evgeniou et al., 2005], they usually require well-
defined kernel functions which can be difficult to specify. In
addition, the computational complexity of kernel algorithms
grows cubically with the number of training samples, which
limits their applications on large datasets. There have also
been boosting-based multitask learning algorithms proposed
in [Chapelle et al., 2010; Becker et al., 2013], but both of
these approaches implicitly assume that all the tasks are re-
lated to each other, and fail to capture more sophisticated task
relatedness such as grouped and/or outlier tasks.

In this paper, we propose a generalized dictionary learn-
ing algorithm for multitask learning. The starting point of
our method is similar to the dictionary multitask learning
(DMTL) approach [Kumar and Daumé III, 2012], assuming
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that the model parameters of the tasks lie in a low dimen-
sional subspace spanned by a linear dictionary. We extend
this by constructing a nonlinear mapping defined by a gener-
alized dictionary, which allows us to handle datasets that are
difficult to model by linear algorithms. More specifically, in-
stead of learning a dictionary of basis vectors as in DMTL, we
learn a more generalized dictionary that contains a set of basis
functions in function space. We optimize the set of basis func-
tions using gradient boosting, and call the approach general-
ized dictionary multitask learning with boosting (GDMTLB).
There are several advantages to the GDMTLB: 1. Compared
with DMTL, GDMTLB produces more expressive nonlinear
models to tackle complex problems arising from real world
applications. 2. As a meta-learning algorithm, GDMTLB of-
fers out-of-the-box usability and allows arbitrary learning al-
gorithm to be used for multitask learning. 3. Compared with
other nonlinear multitask learning approaches (e.g., [Chapelle
et al., 2010]), GDMTLB can capture sophisticated task relat-
edness structures by using dictionary learning and sparse cod-
ing. 4. It offers theoretical guarantee of generalization bound,
which gives the insight into the nature of the algorithm.

2 Method
We being this section by formulating the problem and de-
scribing the generalized dictionary learning framework for
multitask learning. We then derive learning algorithms for
specific loss functions and problems, based on the idea of
functional gradient descent [Friedman, 2001; Mason et al.,
2000], leading to our boosted dictionary learning algorithm.

2.1 Problem Formulation
Let {S

1

, . . . ,ST } be T related tasks, where St =

{(xt
1

, yt
1

), . . . (xt
Nt

, ytNt
)} are the d-dimensional training

samples for the t-th task. In the DMTL approach [Kumar
and Daumé III, 2012; Maurer et al., 2013], the objective is to
learn a linear model parameter wt 2 Rd for each task, which
is sparse coded by wt = D�t, where D 2 Rd⇥M is the dictio-
nary shared across the tasks, �t 2 RM is the sparse coefficient
vector for the t-th task, M is the size of dictionary. Formally,
the goal is to minimize the following objective function:

min

D,{�t}
L(D, {�t}) (1)

= min

D,{�t}

TX

t=1

NtX

i=1

`(hD�t, x
t
ii, yti) + µ

TX

t=1

||�t||1 + �R(D),

where h·, ·i is an inner product, `(·, ·) is a loss function, || · ||
1

is the `
1

norm used to encourage sparsity of the coefficients
{�t}, R(·) is the regularization term imposed on dictionary
D to avoid overfitting, and µ and � are the regularization pa-
rameters. It has been proven that given M ⌧ d and M < T ,
the DMTL algorithm can have a lower generalization error
bound than learning T tasks separately [Maurer et al., 2013].

The main drawback of this approach (as well as others
in the literature) is that it only considers linear hypotheses,
which cannot properly deal with nonlinear problems. The
principal contribution in our paper is to propose a more flex-
ible learning framework that can accommodate any existing

algorithm to model nonlinearity in multitask learning scenar-
ios. Specifically, instead of learning a d ⇥ M matrix D, we
consider a generalized dictionary F (·) = [f

1

(·), . . . , fM (·)],
where fm(·),m = 1, . . . ,M can be any hypothesis:

min

F,{�t}
L(F, {�t}) (2)

= min

F,{�t}

TX

t=1

NtX

i=1

`
�hF (xt

i), �ti, yti
�
+ µ

TX

t=1

||�t||1.

Note that we have omitted the regularization term R(F ),
since we later will use the trick of gradient approximation
to avoid overfitting, as detailed in [Friedman, 2001].

The dictionary D in Eq. 1 can be regarded as a linear map-
ping from x 2 Rd to z = D>x 2 RM . The DMTL al-
gorithm can be retrieved as a special case of GDMTLB by
setting F (x) = D>x. In this paper, we focus on the more
general case where the atoms of dictionary F are the set of
nonlinear mappings.

Eq. 2 can be optimized by the alternating optimization ap-
proach [Bezdek and Hathaway, 2003], as detailed in Algo-
rithm 1. More precisely, we alternate between the following
two optimization steps:

Sparse Coding (Line 4 of Algorithm 1)
Given a fixed hypothesis set, Eq. 2 can be decomposed into
T individual `

1

-regularized optimization problems:

�t = argmin

�t

NtX

i=1

`
�hF (xt

i), �ti, yti
�
+ µ||�t||1, (3)

for t = 1, . . . , T , which can be solved efficiently by many
algorithms (e.g., two-metric projection, coordinate descent,
accelerated gradient method).

Generalized Dictionary Learning (Line 6 of Algorithm 1)
The second objective is to learn a dictionary over any hy-
pothesis class, rather than a matrix of linear mapping or some
specific model, which motivates us to perform gradient de-
scent of F in function space. In particular, we treat F as a
set of parameters, and solve Eq. 2 as a sum of component
dictionaries:

F =

KX

k=1

⇢kHk,

where K is the number of weak learners/dictionaries. We
select Hk such that the Frobenius distance between Hk and
the negative gradient of L at F = Fk�1

is minimized:

Hk = argmin

H

�����

������

@L(F, {�t})

@F

�

F=Fk�1

�H

�����

�����
F

, (4)

and ⇢k is the step size chosen by line search:
⇢k = argmin

⇢
L (Fk�1

+ ⇢Hk, {�t}) . (5)

Let ↵t(x) , hF (x), �ti and using chain rule, the gradient
of the loss function ` with respect to F (x) is given by

@`(hF (x), �ti, y)
@F (x)

=

@`(↵t(x), y)

@↵t
· �t. (6)
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Algorithm 1 Generalized Dictionary for Multitask Learning
Input: {S

1

, . . . ,ST }, maxIter, the number of iterations K,
the number of basis hypotheses M , regularization parameter
µ

1: Initialize F
2: while n < maxIter do
3: for t = 1, . . . , T do
4: Solve Eq. 3.
5: end for
6: Learn a generalized dictionary given {�t}. (Detailed in Al-

gorithm 2 and Algorithm 3.)
7: n = n+ 1

8: if converge then
9: break

10: end if
11: end while
Output: Generalized dictionary F , sparse coefficients {�t}.

By choosing different loss functions ` we can obtain different
learning algorithms, suitable for different types of problems.
More important, by using a gradient boosting approach, the
basis functions {fm} of F are decoupled and therefore can
be learned individually and efficiently, as detailed below.

2.2 Exponential Loss for Classification
We first consider an AdaBoost-type [Freund and Schapire,
1997] algorithm, which minimizes the exponential loss
`(hF (x), �i, y) = exp(�yhF (x), �i), where y 2 {�1,+1}.
Given fixed {�t}, the gradient for exponential loss over
{xt

i, y
t
i} at F = Fk�1

is given by

@`(F (xt

i), �t)

@F (xt
i)

�

F=Fk�1

= �yti�t exp
��ytihF (xt

i), �ti
�
.

(7)

Plugging Eq. 7 into Eq. 4 gives

hk,m = argmin

h

TX

t=1

NtX

i=1

�
h(xt

i)� ytiw
t
i�t,m

�
2 (8)

for m = 1, . . . ,M , where wt
i , exp (�ytihFk�1

(xt
i), �ti),

hk,m is the m-th basis function of Hk, �t,m is the m-th en-
try of �t. As we focus on classification problems, we have
h(x) 2 {1,+1}. Therefore, Eq. 8 is equivalent to

hk,m = argmin

h

TX

t=1

NtX

i=1

�t,mwt
i (yti 6= h(xt

i)). (9)

Eq. 9 reveals that the solution of Eq. 4 can be decomposed
into M individual learning problems, and for each we learn a
hypothesis that minimizes the weighted error rate in predict-
ing the label y. In addition, at the k-th iteration, for the m-th
basis function, the weight for a sample {xt

i, y
t
i} is determined

by vti,k,m , �t,mwt
i . As {�t} are sparse vectors, each basis

hypothesis is only trained on the tasks with non-zero coef-
ficients {�t,m}. This is reasonable, since �t,m = 0 means
that the m-th basis function is not involved in predicting the
t-th task, and therefore samples from the t-th task should not
contribute to the training of the m-th base learner. This is

Algorithm 2 AdaBoosted Dictionary Learning
Input: {S

1

, . . . ,ST }, {�t}, the number of iterations K, number of
basis hypothesises M ,
1: Initialize wt

i =
1

N
for t 2 {1, . . . , T}, i 2 {1, . . . , Nt}, where

N =

PT
t=1

Nt.
2: for k = 1, . . . ,K do
3: for m = 1, . . . ,M do
4: for t = 1, . . . , T do
5: vti,k,m = �t,mwt

i for i 2 {1 . . . Nt}
6: end for
7: Normalize vti,k,m
8: hk,m = argminh

PT
t=1

PNt
i=1

vtk,m (yt
i 6= h(xt

i))

9: end for
10: Compute error: ✏k =

PT
t=1

P
yt
i 6=signhHk(x

t
i),�ti w

t
i

11: Compute ⇢k =

1

2

ln

1�✏k
✏k

12: Set wt
i  wt

i · exp(�k (yt
i 6= signhHk(x

t
i), �ti)), followed

by a normalization step.
13: end for
Output: F = [f

1

, . . . , fM ], where fm(x) =
PK

k=1

⇢khk,m(x)

not only computationally efficient but also introduces group-
ing and/or partial overlap effects that enable the algorithm to
selectively share information across tasks, as in [Kumar and
Daumé III, 2012].

To obtain the step size ⇢k, we differentiate Eq. 5 with re-
spect to ⇢k and set it equal to zero. Using some simple calcu-
lation, we determine ⇢k analytically:

⇢k =

1

2

ln

1� ✏k
✏k

,

where ✏k =

PT
t=1

P
yt
i 6=signhHk,�ti w

t
i . The pseudo-code for

dictionary learning for classification is shown in Algorithm 2.

2.3 Squared Loss for Regression
Alternately, we consider a regression problem, applying the
proposed framework with squared loss `(hF (x), �i, y) =

1

2

(hF (x), �i � y)2, where y 2 R. This yields an L2boosting-
type [Bühlmann and Yu, 2003] dictionary learning algorithm.

Given training sample {xt
i, y

t
i}, the loss function with re-

spect to the m-th basis function fm can be reformulated as

`(hF (xt
i), �ti, yti) = �2

t,m`(fm(xt
i), z

t
i), (10)

where zti =

yt
i�hF (xt

i),�ti
�t,m

+ fm(xt
i). Therefore, the original

least square fitting problem can be reformulated as a weighted
least square fitting problem for fm, where the weight is given
by �2

t,m. Differentiating Eq. 10 with respect to fm(xt
i) gives

@`(F (xt
i), �t)

@fm(xt
i)

= �2

t,m
@`(fm(xt

i), z
t
i )

@fm(xt
i)

= �2

t,m(fm(xt
i)� zti ).

(11)

Plugging Eq. 11 into Eq. 4 gives

hk,m = argmin

h

TX

t=1

NtX

i=1

�2

t,m(h(xt
i)� rti,m)

2, (12)
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Algorithm 3 L2Boosted Dictionary Learning
Input: {S

1

, . . . ,ST }, {�t}, the number of iterations K, number of
basis hypothesises M ,

1: Initialize residual: rti,m =

yt
i

�t,m

2: for k = 1, . . . ,K do
3: for m = 1, . . . ,M do
4: hk,m = argminh

PT
t=1

PNt
i=1

�2

t,m(h(xt
i)� rti)

2

5: end for
6: Compute ⇢k using Eq. 14.
7: Update residual: rti  rti �

hdiag(⇢k)Hk(x
t
i),�ti

�t,m

8: end for
Output: F = [f

1

, . . . , fM ], where fm(x) =
PK

k=1

⇢k,mhk,m(x)

where

rti,m = zti � fm(xt
i)|F=Fk�1 =

yti � hFk�1

(xt
i), �ti

�t,m
,

for m = 1, . . . ,M . Again, each basis function of F can
be learned separately by repeated weighted least square fit-
ting of current residuals, where the weights of samples of
the t-th task for the m-th basis function are given by �2

t,m.
For L2Boosting, the step size of Hk is not strictly neces-
sary [Bühlmann and Hothorn, 2007], but it can be beneficial
if we assign different step sizes to each basis function hk,m

(i.e., ⇢k is a vector of step sizes). Differentiating L with re-
spect to ⇢k and setting equal to zero, we have

TX

t=1

NtX

i=1

diag(�t)Hk(x
t
i)H

>
k (xt

i)diag(�t)⇢k (13)

=

TX

t=1

NtX

i=1

diag(�t)Hk(x
t
i)
�
yti � hFk�1

(xt
i), �ti

�
,

which gives

⇢k =

 
TX

t=1

NtX

i=1

diag(�t)Hk(x
t
i)H

>
k (xt

i)diag(�t)

!�1

·

TX

t=1

NtX

i=1

diag(�t)Hk(x
t
i)
�
yti � hFk�1

(xt
i), �ti

�
, (14)

where diag(�t) is a diagonal matrix with the elements of vec-
tor �t on the main diagonal. The boosted dictionary learning
algorithm with squared loss is summarized in Algorithm 3.

2.4 Dictionary Initialization
The dictionary F can be initialized in several ways. For ex-
ample, we can first learn a linear dictionary by DMTL and use
it as a warm start, or randomly select T 0 tasks to train each ba-
sis function. In this work, we consider both approaches and
the better empirical results between the two are reported in
the experimental section.

2.5 Computational Complexity
The computational complexity of GDMTLB depends on the
choice of base learner, as well as the optimization algorithms

used for sparse coding. We assume that the complexity of
training a baser learner is O(⇠(Nm

tr , d)), where Nm
tr is the

number of training samples for the m-th atom of dictionary.
In general Nm

tr  N , since the coefficients {�t} are sparse.
Then, the overall complexity of each dictionary learning step
will be O(KM⇠(N, d)). Note that we have omitted the com-
plexity of testing and weight update step of boosting since
it is usually much smaller than that of training cost. The
sparse coding step requires solving a `

1

regularized mini-
mization problem (i.e., Eq. 3). If we use accelerated gradi-
ent descent [Nesterov, 2004], for each sparse coefficient �t, it
takes O(dNt) to evaluate the function value and its gradient,
and O(d) to project the point back onto `

1

ball. As the con-
vergence rate of this method is quadratic, the computational
complexity of sparse coding step is O(

1p
"
dN), where " is the

error tolerance. Therefore, the overall complexity of each al-
ternating optimization iteration is O(KM⇠(N, d) + 1p

"
dN),

which scales linearly with K and M . Empirically, the entire
GDMTLB algorithm usually stops within ten iterations.

2.6 Theoretical Analysis
The following theorem provides a generalization error bound
for GDMTLB with exponential loss (Algorithm 2) and using
linear functions as base learners.1

Theorem 1. Let G = (G1, . . . , GT
) : Rd ! RT , with

Gt
(x) = hF (x), �ti, be the multitask classifier returned

by GDMTLB with exponential loss, and G be the function
class of G. Let {S

1

, . . . ,ST } be T related tasks, where
St = {(xt

1

, yt
1

), . . . (xt
Nt

, ytNt
)} are the d-dimensional train-

ing samples for the t-th task. For simplicity we assume that
Nt = N, 8t 2 {1, . . . , T}. Given G and a sample {xt, yt}
of the t-th task, define loss function ` : RT ⇥ R ! {0, 1} as
`(G(xt

), yt) = ytGt
(x)0

, where ! is the indicator func-
tion of event !. If the base learners of GDMTLB are linear
functions, and ✏k < 1

2

, 8k 2 {1, . . . ,K}, then for any � > 0

and fixed ⌧ > 0, with probability at least 1��, for all G 2 G,
its generalization error E[`(G)] is bounded by

E[`(G)] 

Az }| {

2

K
KY

k=1

q
✏1�⌧
k (1� ✏k)1+⌧

+3

r
ln(2/�)

2NT

+

Bz }| {

2

⌧NT

vuutM

TX

t=1

NX

i=1

||xt
i||22 +

Cz }| {

8

⌧

vuuut ln(2M)

TP
t=1

�
max

⇣
ˆ

⌃(Xt)

⌘

NT
,

where �
max

⇣
ˆ

⌃(Xt)

⌘
= sup||d||1

PN
i=1

hd, xt
ii.

We have several remarks concerning Theorem 1.
1. From the learning bound, it can be observed that

GDMTLB inherits the benefits from both AdaBoost
and linear dictionary for multitask learning. A is the
upper bound of the margin loss for AdaBoost [Mohri
et al., 2012], while B and C are the upper bound of

1The detailed proof can be found in our online supplementary
materials https://sites.google.com/site/borriewang/.
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the Rademacher complexity of a linear dictionary-based
multitask learning algorithm [Maurer et al., 2014].

2. If the margin loss is small for a relative large ⌧ , small
generalization error is guaranteed. In addition, it can be
proved that, under certain conditions, the upper bound
A is reduced exponentially as a function of number of
iterations K [Mohri et al., 2012], which justifies the ad-
vantage of our boosting approach for multitask learning.
Finally, given a fixed function class, GDMTLB will suc-
ceed if we can design an effective algorithm that per-
forms with error across all tasks through all iterations
(i.e., ✏k are small), since it leads to low margin loss.

3. B and C indicate the benefits of performing multitask
learning using a dictionary learning approach. Note that
C can be dominated by B for N ⌧ d, and compared with
the individual task learning approach, B is lower by a
factor of

p
M/T , which demonstrates the advantage of

multitask dictionary learning in high dimensional spaces
by choosing M < T [Maurer et al., 2014].

3 Experiments
We now evaluate GDMTLB algorithm against several state-
of-the-art algorithms on both synthetic and real-world
datasets. Competitive methods include `

2,1-regularized mul-
titask feature learning (MTFL) [Liu et al., 2009], trace-
norm regularized multitask learning (Trace) [Argyriou et al.,
2007], dictionary multitask learning (DMTL) [Kumar and
Daumé III, 2012], as well as a nonlinear boosted multitask
learning algorithm (MultiBoost) [Chapelle et al., 2010]. In
addition, single task learning (STL) is also used as the base-
line algorithm, where the tasks are learned individually.

In all experiments, the hyper-parameters (e.g., M,µ, differ-
ent dictionary initializations) are selected by cross-validation.
Regression tree is used as the weak learner of GDMTLB for
regression, and logistic regression is used as the weak learner
for classification. Each dataset is evaluated by using 10 ran-
domly generated 50/50 splits of the data between training and
test set, and the average results are reported.

3.1 Synthetic Data
The synthetic dataset consists of 2-dimensional vectors, two
groups of tasks, and 20 tasks per group. For the j-th task
of the i-th group, the samples are generated by yij ⇠ cj ·
(xi>

j wi + xi>
j Pix

i
j) + ✏, where x ⇠ N (0, I), cj ⇠ U(0, 2),

wi ⇠ N (0, 3I), ✏ ⇠ N (0, 1), Pi = Q>
i Qi (each entry of

Qi is sampled from a normal distribution), where N denotes
the Gaussian distribution, U denotes the uniform distribution.
Therefore, the parameters of the tasks within each group are
identical up to a scaling factor. For each task, there are 30

training samples and 30 test samples.
Figures 2(a)-2(c) show the samples in the original feature

space, where we observe that the data cannot be properly fit-
ted by linear regression due to the nonlinearity of the data.
Figures 2(d)-2(f) demonstrate the samples projected into a
new feature space by nonlinear dictionary F , from which
it can be observed that the samples of the first group (blue
samples) exhibit linearity in the first dimension (Figure 2(e))

Table 1: Learning performances (mean ± std dev.), RMSE
for synthetic and school datasets, AUC for landmine dataset.
The best results for each dataset are bolded.

Synthetic School Landmine
STL 5.05± 0.24 10.91± 0.08 0.7767± 0.009
MTFL 4.97± 0.21 10.68± 0.06 0.7805± 0.011
Trace 5.01± 0.35 10.65± 0.06 0.7847± 0.008
DMTL 4.92± 0.19 10.44± 0.07 0.7809± 0.010
MultiBoost 4.42± 0.28 10.59± 0.08 0.7789± 0.013
GDMTLB 3.31± 0.42 10.11± 0.07 0.7936± 0.008

5 10 15 20 25 30 35 40

x1

x2

5 10 15 20 25 30 35 40

w1

w2

Figure 1: Correlation coefficients between features and out-
puts. Top: Original feature space, Bottom: Projected feature
space.

while the samples of the second group (red samples) exhibit
linearity in the second dimension (Figure 2(f)), which means
the data can be well fitted by sparse linear regression in the
new feature space. In other words, the nonlinear structure of
tasks can be well captured by the dictionary F , where each
basis function of F corresponds to one group of tasks. Each
task within the group can be fitted by the corresponding basis
function up to a scaling factor, which is the slope of linear
fitting in the new feature space. This can be further illus-
trated by Figure 1, where it can be observed that after projec-
tion the outputs of each group of tasks are highly correlated
with only one dimension (basis function) of the new feature
space. The results of different algorithms, measured by root
mean squared error (RMSE), are shown in the first column
of Table 1, where we see that GDMTLB outperforms other
multitask learning algorithms in this simple case. This is not
surprising, since the linear multitask learning algorithms can-
not fit nonlinear functions, while MultiBoost cannot capture
the group structure of the tasks.

3.2 Real Data
Next, we evaluate multi-task methods on three real-world
datasets, one for regression: London school data [Argyriou
et al., 2007]; and two for classification: landmine data [Xue
et al., 2007], and BCI Competition data2. We omit the de-
scription of the first two datasets as they are frequently used
benchmarks for multitask learning. The BCI dataset consists
of EEG signals from 9 subjects who are instructed with visual

2http://www.bbci.de/competition/iv/.
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Figure 2: A synthetic example with two groups of tasks marked in different colors. Samples of different tasks within each
group are marked in different symbols. Top: the original samples, Bottom: the samples projected by nonlinear dictionary.

Table 2: Classification accuracy (%) of different algorithms for nine different subjects. The best results are bolded.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean
STL 86.81 51.39 90.28 64.58 51.39 61.11 81.25 92.36 87.50 74.07
MTFL 82.64 52.78 92.36 65.97 50.69 61.11 82.64 92.36 88.89 74.38
Trace 84.03 50.69 93.75 68.06 54.86 61.11 81.94 90.97 87.50 74.77
DMTL 84.03 54.86 91.67 65.97 52.08 63.19 80.56 92.36 89.58 74.92
MultiBoost 85.42 53.47 91.67 65.28 53.47 61.81 79.86 90.97 89.58 74.61
GDMTLB 90.97 55.56 95.83 66.67 52.78 65.28 81.25 90.28 88.19 76.31

cues to perform left hand or right hand motor imagery. Each
subject corresponds to a distinct task. For each subject, the
EEG signals consist of a training set and a test set, each con-
taining 72 trials. The main challenge of this problem is that
the underlying task (i.e. patient) relatedness is unknown and
the EEG data structure can be complex [Müller et al., 2003].

For the London school regression problem, RMSE is used
for performance evaluation. Performance on the classification
problems is measured using area under ROC curve (AUC) for
the landmine data since the dataset is imbalanced, and clas-
sification accuracy for the EEG dataset. The results on the
London school and landmine datasets are summarized in the
second and third columns of Table 1, which again shows that
GDMTLB improves the predictive performances over single
task learning as well as other multitask learning algorithms.
Table 2 presents the results on the EEG dataset. GDMTLB
achieves the highest classification accuracy on four subjects,
yielding an average improvement of 2.24% over all subjects,
which is significant compared with other multitask learning
approaches. Across all the experiments, the improvements of
GDMTLB over STL is at least twice as much as other algo-
rithms, which validates the effectiveness of our algorithm.

4 Conclusion
This paper presents a novel GDMTLB algorithm for multi-
task learning with nonlinear structure. The core idea is to ap-
ply gradient boosting to learn the dictionary in function space,
which substantially enriches the expressiveness of the model.
The proposed model can be applied to a variety of loss func-
tions and can readily accommodate many choices of nonlin-
ear base algorithms for multitask learning. We validate the ef-
fectiveness of allowing nonlinear model and dictionary learn-
ing through theoretical and empirical analysis. Perhaps one
of the most promising future directions is to investigate use of
deep neural network for the base learners [Bengio, 2012]; our
approach could provide an appealing framework for learning
multitask constraints over several such learners.
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