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Abstract
Human action recognition is important in improv-
ing human life in various aspects. However, the
outliers and noise in data often bother the clus-
tering tasks. Therefore, there is a great need for
the robust data clustering techniques. Nonnegative
matrix factorization (NMF) and Nonnegative Ma-
trix Tri-Factorization (NMTF) methods have been
widely researched these years and applied to many
data clustering applications. With the presence of
outliers, most previous NMF/NMTF models fail to
achieve the optimal clustering performance. To ad-
dress this challenge, in this paper, we propose three
new NMF and NMTF models which are robust to
outliers. Efficient algorithms are derived, which
converge much faster than previous NMF methods
and as fast as K-means algorithm, and scalable to
large-scale data sets. Experimental results on both
synthetic and real world data sets show that our
methods outperform other NMF and NMTF meth-
ods in most cases, and in the meanwhile, take much
less computational time.

1 Introduction
Human action recognition is very useful in improving human
life in various aspects, like smart home applications, rehabili-
tation, human-computer interaction, etc. To recognize human
action is helpful to know one’s intent, such that an intelligent
system could make corresponding reactions. However, in the
real world life, the data are not as clean as we want, and there
might be many outliers and noise. For example, it is common
that part of the human body is shielded behind an obstacle,
which makes the human action difficult to recognize. There-
fore, robust data mining techniques should be developed in
order to achieve good performance.

Non-negative matrix factorization (NMF) and non-
negative matrix tri-factorization (NMTF) are models which
aim to factorize a matrix into non-negative matrices with min-
imum reconstruction error. It has been widely researched
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and used in various kinds of applications, like document co-
clustering [Li and Ding, 2006], computer vision [Lee and
Seung, 1999], social network analysis [Huang et al., 2013],
bioinformatics [Wang et al., 2012; 2014b], knowledge trans-
fer [Wang et al., 2011; 2015] and many others.

Different kinds of NMF and NMTF models are proposed
these years. The standard NMF factorize a non-negative ma-
trix into two non-negative matrices. [Ding et al., 2005] dis-
cussed the equivalence relationship between K-means, NMF
and spectral clustering. Later, [Ding et al., 2010] proposed
two NMF models: semi-NMF and convex NMF. In many sit-
uations, the data matrix may contain negative elements. In
such situation, it is not suitable to enforce the non-negative
constraints on NMF model factors. Different from stan-
dard NMF, semi-NMF relaxed the non-negative constraint on
NMF models, allowed one factor to be mix-signed. In con-
vex NMF, the author restricts that the centroid to be a lin-
ear combination of samples. Such model has better inter-
pretability, however, the performance may not be as good
as other NMF models [Li and Ding, 2006]. [Ding et al.,
2006] proposed to add orthogonality constraints in the clus-
ter indicator factor G. This property will enforce the solu-
tion of G to have a clear cluster structure, which is desir-
able for using NMF for clustering. It is pointed out in [Gu
et al., 2011] that the orthogonal constraint can prevent triv-
ial solution of NMF models. [Gu and Zhou, 2009] com-
bines Laplacian graph based algorithms with NMF to en-
force the smoothness on data manifolds. [Kong et al., 2011;
Gao et al., 2015] proposed robust NMF models which are ro-
bust to outliers.

Most previous works can not achieve good clustering re-
sults when there exist outliers in the data. Presence of outliers
is very common in real world applications. For example, in
human action recognition, it is common that part of the hu-
man body is shielded behind an obstacle, which makes the
human action difficult to recognize. Therefore, robust data
mining techniques should be developed in order to achieve
good performance.

In view of the above considerations, we propose three
NMF and NMTF models which converge as fast as K-means,
and are robust to outliers.

Notations: Given a matrix X 2 Rn⇥m, its i-th
row and j-th column are denoted by Xi., X.j , re-
spectively. The `r,p-norm of a matrix is defined as:
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2 New Fast Algorithms for Robust NMF and
NMTF Models

2.1 Motivations
NMF models often have the following form of objective func-
tions, subjecting to different kinds of constraints.

min

F,G

��
X � FG

T
��2
F

s.t. F � 0, G � 0 (4)

where X 2 Rd⇥n
+ is a data matrix with d features and n sam-

ples. Such models have close relation to K-means cluster-
ing as pointed out in [Ding et al., 2005]. F 2 Rd⇥c

+ can be
viewed as cluster centroids, and G 2 Rn⇥c

+ can be viewed as
clustering indicator matrix.

Many previous NMF work [Ding et al., 2010; 2006;
Lee and Seung, 2001; Kong et al., 2011] use a soft indica-
tor matrix G, i.e., elements in G are continuous values. Al-
gorithms for those models are based on matrix multiplica-
tive updating rules. However, these algorithms converge
very slowly, often need hundreds or even thousands of iter-
ations before convergence. Considering the computational
cost of large matrix multiplication, such algorithms usually
take a long time to converge. In addition, an additional post-
processing step need to be performed to get the final cluster-
ing labels using the soft indicator matrix G.

On the other hand, outliers are very common in real world
data problems. For example, in image recognition problems,
there maybe different extent of noise due to different condi-
tions of illuminations, viewpoints, wearings, etc. Also, hu-
man measurement and recording errors may also incur many
outliers. Previous NMF models using Frobenius norm as loss
measurement can not get good clustering results if there exist
outliers/noise in the data. This is because the loss term will
be dominated by outliers, thus the loss of other normal data
points will be disregarded. We will show this using a syn-
thetic data set in the experimental section. Therefore, devel-
oping robust models to handle data with outliers is important.

To address the above challenges, in this paper, we propose
three new fast robust NMF and NMTF models.

2.2 New Fast Robust NMF and NMTF Models
To make the NMF/NMTF models robust to outliers, instead
of using Frobenius norm, we propose to use the `2,1-norm and

`1-norm as loss measurements. The new robust and fast NMF
models aim to minimize the following objective functions:

min

F�0,G2Ind

��
X � FG

T
��
1

(5)

min

F�0,G2Ind

��
X � FG

T
��
2,1

(6)

min

F2Ind,G2Ind,S�0

��
X � FSG

T
��
1

(7)

where G 2 Ind or F 2 Ind indicates that G and F are in-
dicator matrices, i.e. gij = 1 if xi belongs to class j, and
gij = 0 otherwise. There is only one element can be non-
zero in each row of binary indicator matrix. Note that in this
way, the constraint GT

G = I in orthogonal NMF [Ding et
al., 2006] is automatically satisfied. In addition, clustering
labels are directly obtained without the need for further post-
processing as in previous NMF works. While F � 0 indi-
cates that F is a non-negative matrix with all elements greater
or equal to zero.

In the tri-factorization model (7), since both F and G are
restricted to be binary indicators, S is introduced to absorb the
magnitude in the original data matrix X . Since our methods
are robust and fast NMF/NMTF models, we call the three
models as RFNMF L1, RFNMF, and RFNMTF, respectively.

`2,1-norm and `1-norm are often used for enforcing spar-
sity when applied to regularize parameter matrix [Nie et al.,
2010; Wang et al., 2014a; 2013], and achieving robustness to
outliers when applied to loss function [Kong et al., 2011].

Laplacian Noise Interpretation for RFNMF L1: We
show the probabilistic motivation of our model from Lapla-
cian noise distribution. Suppose xi is an observed data point
contaminated by an additional noise �i:

xi = ↵i + �i (8)

where ↵i is the unobservable true data, in NMF clustering it is
the clustering centroid, i.e. ↵i = FG

T
i. , Gi. 2 Ind. �i is the

noise. Suppose the noise is drawn from Laplacian distribution
with zero mean, then we have:

p(xi|↵i) =
1

2b

exp(�
kxi � ↵ik1

b

) (9)

where b is the scale parameter of Laplacian distribution. Sup-
pose we have an observed data set X = [x1, x2, ..., xN ], the
maximum likelihood estimate (MLE) of ↵i should be:

max

↵i

log

N
⇧

i=1
p(xi|↵i) ) max

↵i

� 1
b

NP
i=1

kxi � ↵ik1

) min

↵i

NP
i=1

kxi � ↵ik1 ) min

F,Gi.2Ind

NP
i=1

kxi � FGi.k1

) min

F,G2Ind

NP
i=1

kX � FGk1 (10)

Therefore, the MLE under Laplacian noise assumption is
equivalent to the RFNMF L1 model. In the algorithm sec-
tion, we will show that the solution of cluster centroids F is
exactly finding the sample medians, which coincides with the
MLE of the location parameter of Laplacian distribution.

Similar to the Laplacian noise interpretation of
RFNMF L1, it is also not difficult to see that: the RFNMTF
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model can also be interpreted from a Laplacian distributed
noise, except ↵ is replaced by FSGi. instead of FGi.;
the RFNMF model can be interpreted from a Gaussian
distributed noise. For space reason, we do not show the detail
derivation.

The constraints in the objective functions involves combi-
natorial search over the solution space of F and G, which
is very hard to optimize. Previous works always solve the
relaxed version to make G have continuous values. In the fol-
lowing section, efficient algorithms are proposed for solving
the objective functions with binary indicator constraints.

3 Optimization Algorithms
We first introduce a lemma which will be used in the follow-
ing optimization algorithms.

Lemma 1. Considering the following objective function:

min

z

P
i
|z � ai| (11)

The optimal solution of z is the median value of ai.

This lemma can be easily obtained by setting the derivative
of Eq. 11 to zero:

X

i

sgn(z � ai) = 0 (12)

where sgn(x) = 1 if x > 0, sgn(x) = �1 if x < 0, and
sgn(x) = 0 if x = 0. This condition can be satisfied if and
only if z takes the median value of ai.

3.1 Efficient Algorithm for Problem (5)
Given an initial guess of F and G, we iteratively update the
model parameters. When G is fixed, problem (5) becomes:

min

F�0

��
X � FG

T
��
1

(13)

Since `1-norm can be decoupled through rows and columns,
the above problem can be reduced to:

) min

F�0

P
i

����Xi. �
P
k
FikG

T
.k

����
1

) min

F�0

P
i

P
k

P
Gjk=1

|Xij � Fik|

The above problem can be decoupled as: for 8i, k, solving:

min

Fik

X

Gjk=1

|Xij � Fik| (14)

According to Lemma 1, the optimal solution of FiK can be
efficiently obtained by finding the median values of samples
belong to the k-th cluster.

When F is fixed, G can be efficiently optimized by assign-
ing label to the cluster with nearest centroid, i.e.:

gij =

(
1 j = argmin

k
kX.i � F.kk1

0 otherwise

(15)

3.2 Efficient Algorithm for Problem (6)
When G is fixed, using reweighted method, problem (6) can
be reduced to:

min

F
Tr((X � FG

T
)D(X � FG

T
)

T
) (16)

where D 2 Rn⇥n is a diagonal matrix whose diagonal ele-
ments are:

Dii =
1

2

��
X.i � FG

T
i.

�� (17)

Setting the derivative w.r.t. F to zero, we get:

F = XDG(G

T
DG)

�1 (18)
When F is fixed, G can be obtained by assigning labels to

the cluster with the nearest centroid:

gij =

(
1 j = argmin

k
kX.i � F.kk2

0 otherwise

(19)

3.3 Efficient Algorithm for Problem (7)
When F and G are fixed, problem Eq. (7) becomes:

) min

S

��
X � FSG

T
��
1

) min

S

�����
P
k,l

SklF.kG
T
.l �X

�����
1

) min

S

P
k,l

P
Fik=1,Gjl=1

|Skl �Xij |

This problem can be decoupled as: 8k, l, solving:
) min

Skl

P
Fik=1,Gjl=1

|Skl �Xij | (20)

According to Lemma 1, S can be efficiently optimized by
finding the median values.

When S and F are fixed, G can be obtained by:

gij =

(
1 j = argmin

k
kX.i � FS.kk1

0 otherwise

(21)

When S and G are fixed, F can be obtained by:

fij =

(
1 j = argmin

k

��
Xi. � Sk.G

T
��
1

0 otherwise

(22)

Therefore, all the three models can be efficiently solved by
iteratively update F and G.

Unlike previous works which need to initialize G using the
clustering results of K-means, our algorithms works good
with random initialization of G. In practice, we can repeat
the algorithm many times using different random initializa-
tions, and then take the result with the minimum objective
value.

Note that our algorithms use binary indicator matrix in-
stead of soft indicator matrix. Therefore, the clustering la-
bels can be obtained directly by assigning labels to the clus-
ter with nearest centroid. Therefore, our algorithms avoid the
intensive computation of matrix multiplication. More impor-
tantly, previous NMF/NMTF works converges slowly, often
needs hundreds or even thousands iterations before conver-
gence. Our algorithms converge very fast, usually in just tens
of iterations, and take much less computational time.
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3.4 Convergence Analysis
In this section, we prove the convergence of our algorithms.
To begin with, following are some simple definitions that will
be used.

J(f, f

0
) =

X

i

|xi � f

0
si(f)

| (23)

where xi is the i-th data, f is the cluster centroid of the
previous iteration, f 0 is the new cluster centroid, si(f) de-
notes the clustering assignment of the i-th data using the
cluster centroid of previous step. Obviously, when f =

f

0
= ft, E(ft) = J(ft, ft) is exactly the objective value

of RFNMF L1 in Eq. (5) in the t-th iteration.
According to Lemma 1: the optimum solution of f 0 is the

median value of samples, and we have J(f, f

0
)  J(f, f).

In addition, since by definition si(f 0
) is the best cluster

assignment using cluster centroid f

0, we have:

E(f

0
)� J(f, f

0
)

= J(f

0
, f

0
)� J(f, f

0
)

=

X

i

|xi � f

0
si(f 0)|�

X

i

|xi � f

0
si(f)

|  0 (24)

So we have:

E(f

0
)� E(f)

= E(f

0
)� J(f, f

0
) + J(f, f

0
)� J(f, f)

 J(f, f

0
)� J(f, f)  0 (25)

Therefore, our algorithm for solving problem (5) monoton-
ically decreases the objective value at each iteration until it
reaches the optimum solution where f

0
⇤ = f⇤. In addition,

the KKT condition is satisfied. So the algorithm converges to
a local minimum.

The convergence proof of the other two algorithms follows
a similar procedure. For space reasons, we omit the detailed
proof.

4 Experimental Results
4.1 Experiment Settings
In order to validate the effectiveness of the proposed NMF
and NMTF methods, we compare our methods with some re-
lated methods as following:

(1) Standard NMF (NMF) [Lee and Seung, 2001]: solves
the objective function in Eq. (4).

(2) Orthogonal NMTF (OrthNMF) [Ding et al., 2006]: fac-
torizes a matrix into three non-negative components, and each
column of the soft indicator matrices (F and G) are required
to be orthogonal.

(3) SemiNMF [Ding et al., 2010]: allows the basis matrix
F in standard NMF to be mix-signed

(4) Convex NMF (ConvNMF) [Ding et al., 2010]: restricts
the basis matrix F into a linear combination of original data
points.

(5) Robust NMF (RNMF) [Kong et al., 2011]: replaces the
loss measurement in standard NMF from Frobenius norm to
`2,1-norm, which makes the model robust to outliers. The dif-
ference between our methods and RNMF is that: our methods

Table 1: Average distance from the centroids for normal data
(blue and red points in figure 1 (a)), outliers, and all data.

normal data outliers all data

NMF 6.02 10.82 6.09
Our methods 1.27 12.96 1.45

use a hard indicator, which is more difficult to solve, but has
clearer clustering interpretation since they reduce to directly
assign cluster labels to samples at each updates of indicator
matrix. This approach is better for clustering tasks. In addi-
tion, the algorithm is also much faster as we will show em-
pirically in the experiment section. All the above models are
solved using a multiplicative updating rules, which converges
slowly and involves intensive matrix computations.

K-means serves as a baseline in the clustering performance
comparison. The above comparison methods need to be ini-
tialized with the clustering results of K-means, since the ob-
jective functions are non-convex, and the final clustering re-
sults are sensitive to initializations. A little perturbation is
needed for preventing these NMF models from sticking at
the K-means solutions. As suggested in previous researches
[Kong et al., 2011; Ding et al., 2006], the initialization of in-
dicator matrix is set as G0 = Gk+0.2, where Gk is the result
of the K-means algorithm. The solution of these comparison
methods is then get by iteratively update F and G using the
multiplicative rule in Table 1 in [Li and Ding, 2006]. The
iteration number is set as 500.

As for our methods, the initialization is set as the follow-
ing: for RFNMF and RFNMF L1, rather than using the re-
sult of K-means, we just randomly initialize the cluster in-
dicator matrix G in case of the model stuck at the solution
of K-means. We can see in the experiments that our objec-
tive converges good on a local minimum even with random
initialization. For RFNMTF, the initialization of G and F is
using the clustering results of the data dimension and feature
dimension, similar to the strategy used in traditional NMF
methods.

4.2 Experiments on Synthetic Data
We compare our methods with standard NMF on a synthetic
data set with outliers. As shown in Figure 1 (a), the data
set contains two normal clusters (blue points and red points)
drawn from two gaussian distributions with mean (-6, 0) and
(6,0), respectively. Each cluster contains 100 data points.
Three outliers (black points) were added far away from these
two clusters. Figure 1 (b) shows the clustering results using
standard NMF algorithm. Because standard NMF is not ro-
bust to outliers, the original blue/red points in one cluster are
split into two clusters. Other comparison methods follow the
same pattern as standard NMF, i.e. split the original cluster
into two clusters. Figure 1 (c) shows the clustering results
using the proposed three methods. Our methods are robust
to outliers, therefore, the correct clustering structure is recov-
ered.

Table 1 reports the average distance of data points from the
corresponding cluster centroids. We can see that the distance
of standard NMF algorithm for outliers is a little smaller than
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Figure 1: Clustering performance on synthetic data. Blue points and red points are normal data drawn from two gaussian
distributions. Black points are outliers. Magenta points are computed cluster centroids.
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Figure 2: (a)-(c): Clustering performance comparison (d): objective value versus number of iterations.

Table 2: Computational time (in seconds) comparison. Averaged over 10 repetitions.
RFNMF L1 RFNMF RFNMTF NMF OrthNMTF SemiNMF ConvNMF RNMF K-means

DIGIT 3.57 5.98 12.13 54.89 243.27 46.98 55.47 264.22 1.72
HumanEva 5.79 49.32 23.63 67.64 2181.26 12.60 775.23 1626.69 2.23
YouTube 3.70 7.86 20.32 366.91 553.55 43.89 37.68 203.30 28.25

KTH 8.04 12.51 26.41 300.72 676.98 64.71 65.04 499.08 27.83
UCF 246.19 251.20 278.06 1974.57 3891.82 349.75 639.00 1580.65 163.20

our methods, since it pays more attention to outliers. The
distances of our methods for normal data and for all data are
much more smaller than standard NMF.

4.3 Data Set Descriptions
In this section, we will present empirical results to evaluate
the proposed NMF and NMTF approaches. Five real world
data sets are used to evaluate the effectiveness of our method.

Digit data set is a public data set hosted in UCI Machine
Learning Repository 1. This data set consists of handwritten
digits from 0 to 9, and each digit is a class.

HumanEva data set 2 contains 10000 samples from two
subjects with 5000 samples per subject. There are five types
of motions: boxing, walking, throw-catch, jogging and ges-
turing.

YouTube data set 3 contains 11 human activities: soccer
1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://vision.cs.brown.edu/humaneva/index.html
3http://www.cs.ucf.edu/l̃iujg/YouTube Action dataset.html

juggling, swinging, tennis swinging, to name a few. Figure
3 show some sample images with bounding action labels in
YouTube data set.

UCF data set 4 is an extension to the YouTube data sets. It
contains 50 actions consisting of realistic videos in YouTube.
This data set is very hard to recognize due to large variations
in camera position, pose, illumination conditions, viewpoint,
and cluttered background.

KTH data set 5 contains six type of human actions: walk-
ing, jogging, running, boxing, hand waving and hand clap-
ping. These actions are performed by 25 subjects in four
different scenarios: outdoor, outdoor with scale variations,
outdoor with different clothes, and indoors. All samples are
taken in homogeneous background, so that it is more close to
natural environments. This setting add noise in the sample,
thus, it is more difficult to recognize the actions.

4http://crcv.ucf.edu/data/UCF50.php
5http://www.nada.kth.se/cvap/actions/
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Figure 3: Sample images from the website of the YouTube data set.

4.4 Clustering Performance and Convergence
Speed Comparison

We use accuracy, NMI (normalized mutual information), and
Purity as measurements of the clustering performance. Since
all the methods are sensitive to initializations, we repeat each
algorithm 10 times, and the clustering results with the mini-
mum objective value is recorded in Figure 2. We can see that:
RFNMF L1 and RFNMF achieve the best performance on
most data sets in terms of both accuracy, NMI and purity. The
performance of OrthNMTF and RNMF is also pretty good on
some data sets.

Figure 2 (d) shows the convergence of the proposed algo-
rithms. For space limitation, only one of the five data sets are
shown in the paper. We can see that all the three algorithms
converge fast, usually in about 50 iterations.

Table 2 shows the comparison of computational time. The
algorithms are run on a Dell desktop with double i7 Cores
and 16GB memory. For RFNMF and RFNMF L1, we just
use random initialization in the experiments. For all of the
other methods, K-means result is used as initialization since
it is suggested by previous research. The time consumption of
K-means initialization is not considered for all of these meth-
ods. We can see that the RFNMF L1 algorithm converges
very fast, which is often comparable or even faster than K-
means. Thus, our algorithm is scalable to large data. The
computational time of RFNMF and RFNMTF is also much
less than other compared NMF and NMTF methods.

5 Conclusions
We proposed three new NMF and NMTF models which are
robust to outliers to improve the human action clustering
tasks. Efficient algorithms are derived, which converge as fast
as the standard K-means algorithm, and thus are scalable to
large-scale data sets. Experimental results on both synthetic
and real world data sets show that our methods outperform

other existing NMF and NMTF methods in most cases, and
in the meanwhile, take much less computational time.
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