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Abstract

In cross-domain learning, there is a more chal-
lenging problem that the domain divergence in-
volves more than one dominant factors, e.g., differ-
ent view-points, various resolutions and changing
illuminations. Fortunately, an intermediate domain
could often be found to build a bridge across them
to facilitate the learning problem. In this paper, we
propose a Coupled Marginalized Denoising Auto-
encoders framework to address the cross-domain
problem. Specifically, we design two marginalized
denoising auto-encoders, one for the target and the
other for source as well as the intermediate one.
To better couple the two denoising auto-encoders
learning, we incorporate a feature mapping, which
tends to transfer knowledge between the interme-
diate domain and the target one. Furthermore, the
maximum margin criterion, e.g., intra-class com-
pactness and inter-class penalty, on the output layer
is imposed to seek more discriminative features
across different domains. Extensive experiments on
two tasks have demonstrated the superiority of our
method over the state-of-the-art methods.

1 Introduction
Many real-world samples can be approached through differ-
ent views/modalities, especially in image classification. For
example, face images can be captured with different poses,
lighting conditions, or even with makeup [Wang and Fu,
2016]; or face images can be obtained from different sen-
sors which provide Visible and Near-Infrared features [Ding
et al., 2015]. Naturally, the comparison of different types of
heterogeneous data or knowledge across domains extensively
exists in many computer vision problems. For example, fa-
cial sketch based recognition [Zhang et al., 2011] is one of
the most well-studied cross-domain learning problems. Also,
cross-view action recognition [Liu et al., 2011] utilized train-
ing data captured by one camera and applied to recognize test
data from another camera. Since the spanned feature spaces
are quite different, it is very difficult to directly compare im-
ages across domains, and it becomes a major challenge to
represent and relate data across different domains.

In cross-domain learning, we usually have two domains
with different distributions, which are dominant with one fac-
tor, e.g., different view-points, various resolutions and large
age gap. Cross-domain learning aims to seek a common latent
space, where domain shift is well reduced. However, when
the distribution divergences involve more than one factors, it
becomes a more challenging problem to mitigate the large di-
vergence across two domains. Fortunately, we can find an
intermediate domain to bridge the gap smoothly. Take kin-
ship verification for example. Parents and child not only have
their own specific difference in appearance, but also suffer
an age gap. Therefore, it is hard to handle kinship verifica-
tion in such case. However, we always can find an interme-
diate domain, that is, the young parents, whose age is close
to his/her child. We can observe that young parents (YP) and
old parents (OP) would be more similar in appearance but in
different ages, whilst the young child (YC) and his/her young
parents (YP) share a similar age distribution. Although such
intermediate domain YP builds a bridge between OP and YC,
it meanwhile brings in one more domain to make the learning
problem more complicated.

Recently, there are several kinds of techniques to deal with
cross-domain learning problem, including feature adaptation
learning, classifier adaptation learning and dictionary learn-
ing. Among them, feature adaptation learning [Ding and Fu,
2014; Zhao and Fu, 2015] intends to seek a common fea-
ture space, where the domain divergence would be mitigated.
Classifier adaptation learning [Wu and Jia, 2012] aims to train
a classifier on one domain then adapt to the other domain.
Dictionary learning [Huang and Wang, 2013] is designed to
build one dictionary or two as the bases to generate more dis-
criminative features for two domains. Most recently, deep
learning [Dong et al., 2014; Schroff et al., 2015] has attracted
much attention in many applications, which aims to build
deep structures to capture more discriminative information.

In this paper, we propose a Coupled Marginalized Denois-
ing Auto-encoders framework, whose core idea is to build
two types of marginalized denoising auto-encoders for effec-
tive feature extraction (Figure 1). Specifically, the intermedi-
ate dataset is treated as one of two views in one domain, there-
fore, one domain has two views while the other domain only
has one view. This problem can be defined as Cross-domain

Multi-view Learning. To sum up, the major contributions of
this paper are two-fold as follows:

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2125



• Coupled marginalized denoising auto-encoders have
been proposed to extract features for each domain. To
better couple two auto-encoders, a feature mapping
scheme is adopted to alleviate one divergence factor be-
tween the intermediate one and another domain. Specif-
ically, a feature mapping matrix is proposed to project
the hidden layers of them into a common space.

• The maximum margin criterion, i.e., intra-class com-
pactness and inter-class penalty on the output layer, is
imposed on these two auto-encoders to endow discrimi-
native ability. With the learned mapping matrix, we can
transform the hidden of two domains into one space and
generate the output with the same decoding parameters.

2 Related Works
This section mainly discusses the related works from two
perspectives: method-based one, which is auto-encoder; and
application-based, which are kinship verification and person
re-identification.

Auto-encoder (AE) [Ranzato et al., 2008] is known as a
basic building block with single hidden layer to constitute
a deep structure. The identical input and target framework
makes the neurons in the hidden layer an identity-preserved
representation of input data. Furthermore, denoising auto-
encoder (DAE) is trained to have denoising ability by involv-
ing the reconstruction of clean input from partially corrupted
one with artificially added noise [Vincent et al., 2010]. How-
ever, there is a crucial limitation of DAE, which is high com-
putational cost due to non-linear optimization. To this end,
[Chen et al., 2012] proposed marginalized DAE (mDAE),
which replaces the encoder and decoder with one linear trans-
formation matrix. mDAE provides a closed-form solution
for the parameters thus eliminates the use of other opti-
mization algorithms, e.g., stochastic gradient descent, back-
propagation. The DAE is sped up by two orders of magni-
tude subsequently. In this paper, we also adopt the idea of
mDAE to fast the feature learning, however, we still preserve
the encoder and decoder in the neural networks. Besides, we
propose coupled marginalized DAEs to handle cross-domain
problems.

Person Re-identification has been well-studied recently,
due to its important application in video surveillance. There
are mainly two groups of methods: one is metric learn-
ing, which focuses on learning effective metrics to mea-
sure the similarity between two images [Zheng et al., 2013;
Koestinger et al., 2012]. The other research efforts fo-
cus on learning expressive advanced features, e.g., salience
features [Zhao et al., 2013a; 2013b] and mid-level fea-
tures [Zhao et al., 2014]. Most recently, [Jing et al., 2015]
designed coupled dictionary learning to address the chal-
lenge on matching two different views with different resolu-
tions. Differently, our proposed coupled auto-encoders adopt
a lite-version deep structure to extract more effective features
across multiple domains.

Kinship Verification was first been tackled by [Fang et

al., 2010], whose goal is to determine whether there is a kin
relation between a pair of given face images. It is still a chal-
lenging problem in computer vision, as kinship suffers dif-
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Figure 1: Framework of our proposed algorithm on two appli-
cations, e.g., kinship verification and Person re-identification.
Specifically, two coupled mDAEs are learned with a projec-
tion matrix P
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ferent types of variations, e.g., large age gap between parent
and children. Xia et al. introduced young parent dataset as an
intermediate domain to facilitate kinship learning [Xia et al.,
2011]. We also evaluate our algorithm with the intermedi-
ate domain, however, it is the first attempt to address kinship
verification with coupled marginalized auto-encoders.

3 Coupled Marginalized Auto-encoders
3.1 Motivation & Overview
In this section, we reiterate our problem scenario, to make it
general, where gallery set and probe set lie in different views
and different domains (Figure 1). In this situation, we seek
an intermediate set, which can be treated as the bridge to mit-
igate the distribution difference between gallery and probe
sets. Take kinship verification for example. The final goal
is to verify whether a given image pair (old parent, young
child) has kin relation or not. The young parents photos and
children photos are considered as similar ages while the old
parents photos have much larger ages. Therefore, the gap be-
tween old and young parents images is mainly age while the
gap between young parents and children is mainly identity
difference within biologic heredity. Consequently, this learn-
ing process significantly reduces the large gap between distri-
butions to facilitate the kinship verification problem. Also in
the person re-identification problem, where gallery set is HR
images from camera A and probe is LR images from camera
B. We can easily obtain an intermediate set with similar res-
olution to probe images by down-sampling the images from
camera A and hence will have same viewpoint with camera
A.

To this end, we propose Coupled Marginalized Denois-
ing Auto-encoders to simultaneously diminish the gap be-
tween intermediate to gallery and probe, so that our model

2126



can significantly reduce domain shift between gallery and
probe. Figure 1 gives an illustration of our framework, and
the application on kinship verification problem and person
re-identification problem. In kinship verification, two auto-
encoders are built for elder face (old parents photos) and
younger face (young parents and children photo), respectively
(AE-e, AE-y), which serve as domain adaptation to learn a
latent feature space for younger face. A mapping projection
P

y!e

is learned to couple two hidden layers of gallery S

x

pe

and intermediate sets S

x

py

. Note that only hidden layer for old
parents and young parents are associated with this coupled
term, since these two sets only differ in age. Thus a projec-
tion matrix which can map young face to elder one is learned
and could be used on the hidden layer of children to map the
children sample from AE-y to AE-e. Then a discriminative
constraint is developed on the output layer of AE-e to pre-
serve more supervised information.

3.2 Denoising Auto-encoder Revisit
Given the D-dimension input visual descriptor x 2 RD. The
auto-encoder involves two transformations: “input!hidden
units h 2 Rd”, and “hidden units!reconstructed output x̂ 2
RD” as encoder and decoder:

h = �(Wx+ b1); x̂ = �(WT
h+ b2) (1)

where W is a d ⇥ D weight matrix, and b1 2 Rd, b2 2 RD

are offset vectors. � is a non-linear activation function.
Recently, marginalized denoising auto-encoder (mDAE)

[Chen et al., 2012] was proposed to learn a linear transfor-
mation matrix W to replace the encoding and decoding steps,
and achieved comparable performance with the original auto-
encoder. To make the proposed model more flexible, in com-
parison, we still preserve encode and decode steps but in a
linearized way as:

1

2n

nX

i=1

kxi �MM

T
x̃ik22, (2)

where x̃i is the corrupted version of xi. We can treat MT
x̃i

is the encoding step, while MM

T
x̃i as the decoding step.

The solution to above objective depends on the randomly cor-
rupted features of each input. To lower the variance, mDAE
minimized the overall squared loss of m corrupted versions:

1

2mn

mX

j=1

nX

i=1

kxi �MM

T
x̃i,jk22, (3)

where x̃i,j is the j-th corrupted version of xi. Define X =
[x1, · · · , xn], its m-times repeated version X̄ and its cor-
rupted version X̃ . Eq. (3) then can be reformulated as

1

2mn

kX̄ �MM

T
X̃k2F, (4)

which has the closed-form solution for ordinary least squares.

3.3 Coupled Marginalized Auto-encoders
When dealing with cross-domain multi-view data problem,
we aim to build multiple auto-encoders for different domains,

respectively. In this way, each auto-encoder could better un-
cover more information inside each domain. Assume we have
{Xh, Xl, Yl} three datasets, where Xh and Xl are from the
same view but two domains, while Xl and Yl are from the
same domain but different views. That is, Xl is a bridge to
connect Xh and Yl. We build two marginalized auto-encoders
to extract features from Xh and {Xl, Yl}, respectively. For
simplicity, we set Zl = [Xl, Yl]. The coupled marginalized
auto-encoders learning could be formalinized as:

La = kX̄h �MhM
T
h X̃hk2F + kZ̄l �MlM

T
l Z̃lk2F, (5)

where Mh and Ml are the two transformation matrices for
two encoders. However, the two auto-encoders are learned
individually, therefore, it is essential to couple two auto-
encoders to effective knowledge transfer.

As we mentioned before, Xh and Xl are from the same
view but different domains. For example, Xh is the high-
resolution data while Xl is the low-resolution data in the same
view; or Xh and Xl are the same person but in different ages,
e.g., old parents and young parents. Therefore, there should
be a high correlation across them and we propose a cross-
domain mapping to mitigate the domain shift. To this end,
we have the following objective function as:

Lm = kMT
l Xl � PM

T
h Xhk2F, (6)

where P is the feature mapping matrix, which transforms the
hidden layer of one domain to that of the other domain.

Furthermore, the supervised information of positive pairs
and negative pairs are very essential to build two discrimi-
native coupled auto-encoders. Assume we have the positive
pair in two domains {Xp

h, Y
p
l } and negative pairs {Xn

h , Y
n
l }.

We aim to couple the output of positive pairs similar while
keeping the output of negative pairs far away. To this end, we
propose these discriminative terms:

Ld = �1kMlM
T
l Y

p
l �MlPM

T
h X

p
hk2F

��2kMlM
T
l Y

n
l �MlPM

T
h X

n
h k2F,

(7)

where �1 and �2 are the trade-off parameters. Xp
h and X

n
h are

first encoded with Mh, then mapped to the other domain and
further decoded with Ml. To sum up, we propose our coupled
marginalized auto-encoders learning:

min
Ml,Mh,P

La + ↵Lm + Ld, (8)

where ↵ is the balanced parameter.

3.4 Optimization
To solve the proposed objective function (8), we apply an iter-
ative optimization scheme to update three variables Ml, Mh

and P one by one. The detailed updating steps are:
Update Mh:

min
Mh

kX̄h �MhM
T
h X̃hk2F + ↵kMT

l Xl � PM

T
h Xhk2F

+�1kMlM
T
l Y

p
l �MlPM

T
h X

p
hk2F

��2kMlM
T
l Y

n
l �MlPM

T
h X

n
h k2F,

(9)
which has a closed-form solution as:

AhMh +BhMhP
T
P � Ch = 0,

) B

�1
h AhMh +MhP

T
P �B

�1
h Ch = 0,

(10)
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which can be solved with Liapunov function. Ah = X̃hX̃
T
h �

X̄hX̃
T
h �X̃hX̄

T
h , Bh = ↵XhX

T
h +�1X

p
hX

p
h
T ��2X

n
hX

n
h
T

and Ch = ↵XhX
T
l +�1X

p
hY

p
l
T��2X

n
hY

n
l

T. Ideally, the re-
peated number m would be 1, so that the denoising transfor-
mation Mh could be effectively learned from infinitely copies
of noisy data. Fortunately, the matrices Ph = X̃hX̃

T
h and

Qh = X̄hX̃
T
h converge to their expected values as m ! 1.

Therefore, Ah can be calculated as:

Ah = E(Ph)� E(Qh)� E(Qh)
T
, (11)

where the expectations E(Ph) and E(Qh) can be easily com-
puted through mDAE [Chen et al., 2012].
Update Ml:

min
Mh

kZ̄l �MlM
T
l Z̃lk2F + ↵kMT

l Xl � PM

T
h Xhk2F

+�1kMlM
T
l Y

p
l �MlPM

T
h X

p
hk2F

��2kMlM
T
l Y

n
l �MlPM

T
h X

n
h k2F,

(12)
which also has a closed-form solution as:

AlMl +BlMlP
T
P � Cl = 0,

) B

�1
l AlMl +MlP

T
P �B

�1
l Cl = 0,

(13)

which can be solved with Liapunov function. Al = Z̃lZ̃
T
l �

Z̄lZ̃
T
l � Z̃lZ̄

T
l , Bl = ↵XlX

T
l +�1Y

p
l Y

p
l
T��2Y

n
l Y

n
l

T and
Cl = ↵XlXhMhP

T+�1Y
p
l X

p
h
T��2Y

n
l X

n
h
T. And Al can

also be calculated in the same way to Ah.
Update P :

min
P

↵kMT
l Xl � PM

T
h Xhk2F

+�1kMlM
T
l Y

p
l �MlPM

T
h X

p
hk2F

��2kMlM
T
l Y

n
l �MlPM

T
h X

n
h k2F,

(14)

whose solution is also closed-form and can be represented as:

P = ApB
�1
p , (15)

where Ap = M

T
l (↵XlX

T
h + �1Y

p
l X

p
h
T � �2Y

n
l X

n
h
T)Mh

and Bp = M

T
h (↵XhX

T
h + �1Y

p
l X

p
h
T � �2Y

n
l X

n
h
T)Mh.

When iterative updating is finished, the new features for
probe and gallery are calculated as Y

new
l = MlM

T
l Yl, and

X

new
h = MlPM

T
h Xh, respectively, for later tasks.

4 Experiments
We evaluate our approach on two applications, e.g., person
re-identification and kinship verification.

4.1 Experimental Setting
To evaluate the effectiveness of proposed method in SR per-
son re-identification, we mainly compare our approach with
two types of related methods, e.g., metric learning methods
and feature learning methods. The metric learning meth-
ods include large margin nearest neighbor (LMNN) [Wein-
berger et al., 2005], information theoretic metric learn-
ing (ITML) [Davis et al., 2007], KISS metric learning
(KISSME) [Koestinger et al., 2012] and probabilistic rela-
tive distance comparison (PRDC) [Zheng et al., 2013]. The
compared feature learning methods include symmetry-driven

(a) (b)

Son  — Mother Daughter—Father

Figure 2: (a) Images in VIPeR, high resolution gallery images
from camera A (left), followed by two low resolution probe
images from camera B with down sampling rate 1/4 and 1/8.
(b) Sample images in UB KinFace. Each group consists im-
ages for children (top-left), old parents (top-right) and young
parents (lower) as the bridge.

accumulation of local features (SDALF) [Farenzena et al.,
2010], unsupervised salience learning (eSDC) [Zhao et al.,
2013b], salience matching (SalMatch) [Zhao et al., 2013a],
and mid-level filters [Zhao et al., 2014]. The state-of-the-art
dictionary learning method SLD2L [Jing et al., 2015] for per-
son re-identification is also included. All compared methods
are performed with the online available code provided by the
authors, except for SLD2L, whose results are copied from the
original paper.

In person re-identification experiments, we adopt a fusion
strategy to jointly learn the proposed model on account of
both patch-based and image-based features. We directly use
the patch feature provide by Zhao et al. [Zhao et al., 2013b].
However, due to the well-known misalignment problem, the
matching cannot be done directly between the corresponding
patches in the probe image and gallery images. Therefore, for
each probe patch, the neighbors of the corresponding patches
in gallery images should also be searched and calculate each
pair’s distance. The overall similarity between a pair of probe
image and gallery image can be estimated with this adjacency
searching scheme. One problem still unsolved with this phe-
nomenon is that when we train the patch based model, the
pairwise samples in two auto-encoders may not actually cor-
responding to each other, which will be considered as noise or
outliers for our model. To this end, two processing steps are
introduced in our model. First, we adopt a weighted scheme
to solve the misalignment, where one patch is reconstructed
with all patches with different weights, therefore, we could
find the best matched patch to boost the performance. What’s
more, besides of only comparing the patch-based features, the
image-based matching is also conducted with common used
ELF descriptor [Gray and Tao, 2008]. Then the final score for
i-th probe is obtained by adding patch-base and image-base
scores together.

For kinship verification, two transfer learning methods,
i.e., Transfer Subspace Learning (TSL) [Si et al., 2010] and
KVTL [Xia et al., 2011] are compared. Note that KVTL was
introduced with UB KinFace dataset to particularly dealing
with this task. Besides, the evaluation is also conducted on
two state-of-the-art coupled dictionary learning methods, i.e.,
SCDL [Wang et al., 2012] and CDFL [Huang and Wang,
2013] for comparison. Moreover, a most recent proposed

2128



0 10 20 30 40 50

10

20

30

40

50

60

70

80

90

100

Rank

M
at

ch
in

g 
ra

te
 (%

)
VIPeR dataset with sampling rate 1/2

17.66% LMNN
12.97% ITML
18.35% KISSME
14.24% PRDC
16.30% SDALF
18.99% eSDC
21.33% SalMatch
20.82% Mid−level
30.13% Ours

0 10 20 30 40 50

10

20

30

40

50

60

70

80

90

100

Rank

M
at

ch
in

g 
ra

te
 (%

)

VIPeR dataset with sampling rate 1/4

18.04% LMNN
13.16% ITML
17.85% KISSME
13.29% PRDC
15.79% SDALF
18.99% eSDC
20.13% SalMatch
20.44% Mid−level
29.68% Ours

0 10 20 30 40 50

20

40

60

80

100

Rank

M
at

ch
in

g 
ra

te
 (%

)

VIPeR dataset with sampling rate 1/8

16.27% LMNN
10.44% ITML
13.23% KISSME
10.70% PRDC
12.97% SDALF
14.87% eSDC
16.20% SalMatch
16.65% Mid−level
25.94% Ours

Figure 3: Experiments results on VIPeR dataset with down sampling rate 1/2 (left), 1/4 (middle) and 1/8 (right). Rank-1
matching rate is marked before each approach.

Table 1: Top r ranked matching rates (%) on the VIPeR
dataset with sampling rate of 1/8

Methods r = 1 r = 5 r = 10 r = 20
PRDC 10.69 31.84 45.19 60.82
LMNN 16.27 39.37 55.06 71.58
ITML 10.44 31.84 45.95 62.53

KISSME 13.23 39.56 56.01 71.90
SDALF 12.97 33.29 44.49 58.39
eSDC 14.87 36.08 44.30 56.96

SalMatching 16.20 34.24 45.06 56.96
Mid-level 16.65 32.91 44.87 57.91
SLD2L 16.86 41.22 58.06 79.00

Ours 25.95 50.00 64.37 79.75

Neighborhood Repulsed Metric Learning (NRML) for kin-
ship verification [Lu et al., 2014] is also compared. For
SCDL, CDFL and NRML, we conduct experiments with the
online available code, while for TSL and KVTL, the match-
ing results under same setting are copied from original paper.

There are 3 parameters in our model including ↵, �1 and
�2, which are tuned through 5-fold cross validation. Specifi-
cally, we set them as ↵ = 1, �1 = 1.4, �2 = 0.4 for VIPeR,
and ↵ = 10, �1 = 10, �2 = 0.1 for UB KinFace dataset.

4.2 Person Re-identification
VIPeR Dataset [Gray et al., 2007] was collected in outdoor
academic environment by two cameras from different views.
It contains 632 pedestrians with each having a pair of images.
All images are normalized to 128⇥48.

In the protocol of person re-identification, we follow the
down-sampling operations in [Jing et al., 2015] to generate
632 low-resolution images from camera B. For each pedes-
trian pair, there is one HR image from camera A and one gen-
erated LR image from camera B. Figure 2(a) shows four pairs
of images in different resolutions in VIPeR dataset. Then, the
evaluation setting follows [Gray and Tao, 2008], where half
of the dataset, i.e., 316 image pairs, are randomly split for

training, and the remaining half for testing. In the testing,
HR images from camera A are used as gallery image set and
those LR images from camera B are constructed as probe set.
For each probe image, every gallery images are matched to
obtain the rank. Rank-r matching rate means the expectation
of the correctly matches at rank r, and the CMC curve is the
cumulated matching rate at all ranks. We conduct 10 trials of
evaluation to achieve stable results.

As mentioned above, patch-based and image-based fea-
tures are both utilized in our framework for person re-
identification. Specifically, for image-based, we use Gray
and Tao’s ELF descriptor [Gray et al., 2007].1 Other com-
pared metric learning based methods also conduct on this
representation, since it is widely used by existing person re-
identification techniques. For patch-based feature, we fol-
low the extraction process in [Zhao et al., 2013b]2, thus each
patch was represented by a vector with 672 dimension.

Table 1 reports the matching rates in Rank-1, 5, 10 and 20
with sampling rate of 1/8. We can observe that the matching
results are severely dropped, compared with those reported
in the original paper due to the low resolution challenge.
The performances of our model always surpass these com-
pared methods, and the Rank-1 rate is significantly improved,
which verifies the effectiveness of our proposed approach for
person re-identification. More detailed comparison results are
plotted in Figure 3, with the dataset at different sampling rates
(1/2, 1/4, and 1/8). It is observed from the CMC curves that
our approach consistently achieves higher matching results
at all down-sampling rates. Figure 4(a) shows the matching
rates of our approach and its two components.

It is worth to note that the computation time of our ap-
proach is proportional to the feature dimension, and the num-
ber of patches. Our experiments run on a computer with an
Intel I7 quad-core 3.4GHZ CPU and 8GB memory. The com-
putation time of learning coupled auto-encoders on VIPeR
dataset is about six minutes, thanks to the close-form solu-

1http://www.eecs.qmul.ac.uk/⇠rlayne/downloads qmul elf descriptor.html
2http://www.ee.cuhk.edu.hk/⇠rzhao/
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Figure 4: (a) Matching rates of image-based model, patch-based model and the fusion model on VIPeR dataset at sampling rate
equal to 1/2, 1/4, 1/8, respectively. (b) Convergence curve of our proposed method on VIPeR dataset.

tion of mDAEs. Further, we also evaluate the convergence
of our proposed algorithm on VIPeR dataset (Figure 4(b)),
which shows a rapid convergence.

4.3 Kinship Verification
Currently, UB KinFace [Shao et al., 2011]3 is the only dataset
collected with children, young parents and old parents. The
dataset consists of 600 images which can be separated into
200 groups (two persons each group). Each group is com-
posed of child and parent, while each parent has their young
and old images. All images in the database are real-world
images of public figures downloaded from the Internet.

In the following experiments, we follow the feature extract-
ing setting with [Xia et al., 2011]. The cropped faces (Figure
2(b)) are first obtained with facial landmark detection, and
aligned to canonical faces using an affine transform. We then
extract the Gabor features (5 scales and 8 directions) from the
face image after illumination normalization.

We conduct two evaluation protocols on this dataset: one
is kinship verification and the other is child-old parent match-
ing. First, the 200 groups are randomly split into five folds
with 40 pairs each fold, then the two protocols are both per-
formed with five-fold cross validation. For the verification
protocol, 40 positive pairs and 40 negative pairs are gener-
ated using the testing 40 pairs at each fold. The true child-
parent pairs are positive examples, while the children with
randomly selected non-corresponding parents form negative
pairs. Those 80 pairs are given to be classified into true or
false pairs. The classification process is simply using Eu-
clidean distance and ROC curve to produce the verification
accuracy (area under curve). For the child-old parent match-
ing, similar as person re-identification problem, the Rank-r
recognition rates are reported on the 40 child probe and par-
ent gallery pairs at each fold. The results of five-fold cross-
validation on both protocols are provided in Table 2. Both the
kinship verification rate and Rank-r matching rates show our
method’s advantage. Take the poor quality of this dataset’s
“wild” images into consideration, the improvements are sig-
nificant enough to demonstrate our proposed method’s effec-

3http://www1.ece.neu.edu/⇠yunfu/research/Kinface/Kinface.htm

Table 2: Verification accuracy (left column) and Top r ranked
matching rates (%) (right two columns) on UB KinFace
dataset

Methods ACC Rank 10 Rank 20
NRML 55.50±4.01 30.00 57.50
CDFL 61.25±3.26 35.50 57.50
SCDL 59.00± 5.55 37.50 62.50
TSL 56.11±2.72 N/A N/A

KVTL 56.67±6.93 N/A N/A
Ours 63.25±2.44 45.00 75.00

tiveness.

5 Conclusion
In this paper, we proposed Coupled Marginalized Denoising
Auto-encoders for cross-domain learning, where we built two
marginalized denoising auto-encoders, each for one domain
to extract discriminative features. To better align two auto-
encoders, we designed a feature mapping matrix to transform
the hidden layer features of one domain close to that of the
other. In this way, the mapping matrix could better couple two
domains to mitigate the domain shift. Furthermore, two su-
pervised terms, intra-class and inter-class regularizers on the
output of one of the auto-encoders were developed to gener-
ate discriminative output for two domains. Specifically, the
mapped hidden-layer features of one domain was decoded
with the weight matrix of the other auto-encoder, then two
discriminative terms were imposed on the output of two do-
mains. Experimental results on two real-world applications,
i.e., kinship verification and person re-identification, demon-
strated the superiority of our method, by comparing with the
state-of-the-art algorithms.
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