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Abstract

To learn users’ preference, their feedback infor-
mation is commonly modeled as scalars and inte-
grated into matrix factorization (MF) based algo-
rithms. Based on MF techniques, the preference
degree is computed by the product of user and item
vectors, which is also represented by scalars. On
the contrary, in this paper, we express users’ feed-
back as constrained vectors, and call the idea con-
strained preference embedding (CPE); it means that
we regard users, items and all users’ behavior as
vectors. We find that this viewpoint is more flexi-
ble and powerful than traditional MF for item rec-
ommendation. For example, by the proposed as-
sumption, users’ heterogeneous actions can be co-
herently mined because all entities and actions can
be transferred to a space of the same dimension. In
addition, CPE is able to model the feedback of un-
certain preference degree. To test our assumption,
we propose two models called CPE-s and CPE-ps
based on CPE for item recommendation, and show
that the popular pair-wise ranking model BPR-MF
can be deduced by some restrictions and variations
on CPE-s. In the experiments, we will test CPE and
the proposed algorithms, and prove their effective-
ness.

1

How to represent customers’ behavior is an important as-
pect for designing item recommendation algorithms. Unfor-
tunately, there are no general and ideal solutions for different
application scenarios so far. As for modeling users’ explicit
feedback such as rating scores, a successful assumption is to
represent them as different integers. The primarily methods
for leveraging them are matrix factorization (MF) techniques,
according to which, users and items are represented by low-
rank latent factors (i.e., numeric vectors), and preference de-
gree is computed by the product of related vectors. However,
absolutely correlating scalars with users’ feedback may lead
to some problems. For example, although the rating scores
are uniformly distributed, the preference degree may not be
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liner. As we know, users’ attitudes tend to be following a
long-tail distribution, which means most users prefer giving
3, 4 and 5 stars, and hence the difference between 3 stars and
1 star should be more obvious than the difference between 5
stars and 3 stars.

What’s more, in applications, users’ behavior is not limited
to rating scores, but can be heterogeneous actions. For exam-
ple, a user may give some tags to a favorite book, add a pair
of shoes into a shopping cart and visit some pages about chil-
dren’s clothing. Traditional MF based approaches may face
two problems in this situation. First, it is difficult to ascer-
tain the preference degree of those actions. Different from
modeling rating scores, translating “giving some tags” and
“adding an item into a shopping cart” into real numbers is a
difficult task because we cannot exactly assign some values
to the preference degree. The situation is even worse when
we are not sure whether one type of behavior is more positive
than another one. Most MF based algorithms ignore those
problems and directly express all the heterogeneous feedback
as integer 1 and the unobserved correlations as 0, and hence
fail to capture differentiated information from each type of
feedback. Second, for most MF based item recommenda-
tion algorithms, different kinds of preference information is
finally translated into the same user and item latent space,
hence the value in each dimension is hard to explain. Simply
embedding heterogeneous information into two types of vec-
tors is inadequate and inflexible when we import more and
more kinds of information from e-commerce sites into rec-
ommendation algorithms.

To deal with the discussed problems, in this paper, we in-
troduce a novel method called constrained preference embed-
ding (CPE) to model users’ behavior. For CPE, we no longer
regard the behavior information as numerical values, but em-
bed them in a high-dimensional space together with users and
items. In other words, all entities and feedback are repre-
sented by d dimensional vectors, e.g., the rating scores from
one to five are expressed as five vectors. Then, a modified add
approximation is employed to model (user, item) correlations.
This process is similar to some knowledge relationship min-
ing methods for relationship discovery[Bordes ef al., 2013;
Chen er al., 2013], but we emphasize on fine grained actions
with degree information. For CPE, the Lo-norm of the feed-
back vectors is used to represent preference degree in a rela-
tive way, and hence it avoids correlating them with explicit



numbers. Another advantage of the proposed idea is that,
users’ behavior can share an isomorphic structure and be con-
gruently modeled by a unified method. Because we express
preference degree in a relative way, each type of behavior
will be assigned an auto-adjusted satisfaction value accord-
ing with datasets rather than an absolute number. In addition,
by embedding users’ feedback, CPE can translate different
kinds of behavior information to feedback vectors instead of
restricting it in user and item space.

In section 2, we start by discussing matrix factorization
(MF) techniques and talk about some related MF based item
recommendation approaches. Then, we introduce our con-
strained preference embedding (CPE) method in section 3.
Based on CPE, we propose two item recommendation algo-
rithms CPE-s and CPE-ps in section 4. In section5, we test
CPE’s performance on real-world datasets. Finally, we draw
conclusion in section 6.

2 Background

2.1 Matrix Factorization

Based on the low-rank assumptions, the matrix factorization
methods[Koren er al., 2009; Koren, 2008] represent each user
and item as a d dimensional vector. The preference of user
u for item ¢ is represented as a scalar r,; € R. If we de-
note the vector of u as v, € R%! and the vector of i as
v; € R%!, the preference of u for i can be predicted by
vai. In order to learn the factors, a probabilistic version
of MF (PMF)[Salakhutdinov and Mnih, 2008] assumes 7, ;
to be sampled from Gaussian distribution with the mode of
vl'v;, and tries to optimize the maximum posterior on all ob-
served (u, 1y, 1) triplets.

2.2 Preference Ranking

To learn a ranked list of items, some related point-wise, pair-
wise and list-wise preference ranking algorithms have been
proposed based on matrix factorization assumptions. For ex-
ample, iMF[Hu e al., 2008; Lin et al., 2014] and OCCF[Pan
et al., 2008] consider both observed and unobserved (user,
item) correlations in a point-wise way and try to optimize the
following loss function:

Z (V;l;vz _ru,i)2+® (1)

(u,i)eDTUDO

where D! and D° are observed set and unobserved set, and
© is the regularization term \, ||v,||2 + \i||[vi|[3.

The MF based pair-wise methods are similar to iMF or
OCCEF, but they adopt different preference comparing struc-
tures. For example, the state-of-the-art pair-wise algorithm
BPR-MFI[Rendle et al., 2009; Pan and Chen, 2013] assumes
user u may prefer an observed item ¢ than an unobserved item
7, and directly optimizes their relationships by logistic regres-
sion with the parameter (vZv; — vIv;). Finally, we maxi-
mize the following equation:

Z In cr(vai —

(u,i)€D1, (u,j)€DO

vavj)+© 2

For MF based list-wise algorithms, each action is com-
pared with a list of actions. For example, CofiRank[Weimer
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Figure 1: Illustration of CPE.

et al., 2007] is proposed to directly optimize NDCG[Val-
izadegan et al., 2009] scores based on maximum margin
matrix factorization models, and ListRank[Cao et al., 2007;
Shi et al., 2010] tries to optimize a function of cross entropy
of item lists based on PMF.

As we can see from the above loss functions, those MF
based algorithms are powerful for modeling isomorphic feed-
back with assigned preference degree information, but some
of them may be inflexible and ineffective when the following
situations occur:

(1) It is difficult to determine the preference degree p(f) of
feedback f (e.g., {p(fa) :77p(fb) :7’p(fc) :?})

(2) We are only given the relative positiveness of some types
of feedback(e.g., {p(fa) < p(fo),p(fe) < p(fa)D-

(3) We try to leverage heterogeneous feedback and com-
bine them in a single model (e.g., {p(f.) = 1,p(fp) =
2,p(fe) =7,p(fa) <p(fe),p(fg) =7,p(fn) =7,..}).

where, p(-) denotes preference degree. Note that, here f is a
type of feedback, e.g., “giving 2 stars”, “click” or “browse”.
For example, if we denote “giving two stars” as feedback b,
then p(f,) may be 2,i.e., p(fy) =7 ;if r;; = 2.

3 Constrained Preference Embedding

In this section, we introduce our proposed method con-
strained preference embedding (CPE) and discuss some of its
characteristics. We denote a kind of feedback f as vy € R%1,
Therefore, the rating scores {1,2,3,4,5} are represented
as {V(l star)s V(2 stars) V(3 stars)s V(4 stars)) V(5 staTs)}’ and
users’ preference can be optimized by the following function:

min EuEU,fGF,iGI(VqLavfavi) (3)

where U, I and F’ are user, item and feedback set, v,, and v;
are user vector and item vector.

In this paper, we assume users, items and preference obey
add approximation rule, which means v, + v; should be
close to v; if u gives f to ¢.The idea is illustrated in Fig-
ure 1. Based on the rating matrix and add approximation, we
should optimize v, 4+ V1 star —+ Viy> Vu, + V5 stars — Vigs



Vus + V1 star — Vig and vy, + V2 stars — Vi, Where “—7
indicates “approximates’.

For item recommendation, we also need to introduce col-
laborative filtering[Sarwar et al., 2001] features and prefer-
ence degree information by giving some constraints on users’
feedback. We assume that if v has strong preference for ¢,
v, and v; should be close; if u has similar preference for i,
and 79, v;, and v;, should be close; if u; and us have simi-
lar preference for 4, v,,, and v,,, should be close. To achieve
this, we control the Ly-norm (i.e., vector norm) of v ¢ to make
sure that it is smaller if f is more positive. Because the square
root of Ly-norm of v (i.e., /||2) is the Euclidean distance,
based on the former rules, the stronger the preference of u for
i, the shorter the distance between v,, and v;. It means that
the correlated (user, item), (user, user) or (item, item) should
have similar direction and length in terms of their vectors.

4 CPE for Item Recommendation

In this section, we propose two item recommendation meth-
ods called CPE-s and CPE-ps based on our CPE assumption.
For CPE-s, we adopt add approximation rule and pair-wise
preference comparison strategy, and optimize a loss function
with soft constraints. CPE-ps is similar to CPE-s, but it is
based on vector projection. In this paper, we primarily con-
sider rating scores and unobserved (user, item) correlations
(denoted as “unobserved feedback”) for studying our models.

4.1 CPE-s

We assume that if user u has a strong preference for item ¢,
she will give it a higher rating score. Therefore, our task is
to minimize the difference between v,, + v and v; for each
triplet (u, f,). Given users’ rating matrix, the loss function
on the overall triplets is as follows:

L = Z dvy +vi —vi)° 4+ 0
(u,f,i)€D )

2 2
st Allvpllz <lvgllz [ p>a}, fo,fa€F

where (u, f,i) € D denotes the observed and unobserved
triplets; d(-) is Euclidean distance; © controls the norm of
the parameters. For the rating scores, vy, is the vector of
“giving k star(s)” action and comes from the set {vy, |k =
1,2,3,4,5}, and the “unobserved feedback” is denoted as
v ,. For our model, f,, is assumed to be more positive than f,
for all p > q, which means the correlation of observed triplets
are stronger than the unobserved ones.

All the vectors are randomly constructed. The possible v,
v; and vy in the above loss function are optimized with L,-
regularization terms. This constraint is important for CPE-s
because it prevents the learning algorithm to trivially mini-
mize the optimization function by artificially increasing the
norms of v, v; and vy.

Instead of directly optimizing the loss function with con-
straints on preference, we convert them to the following soft
unconstrained function:

L= Z dvy +vy —vi)>+ 6
(u,f,i)€D

Wy, f 2 2
-3 o mC(llvs,llz = vy, ll2)

p>q

&)
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where p and q belong to F'; e is hyperparameter; wy, 7 de-
notes the weight of the preference comparison between f,
and f,; it is computed by the product of f,’s and f,’s fre-
quency in the triplets, and guarantees that the feedback prior-
ity can be adjusted according to the datasets instead of some
predetermined values. Here C(x) can be some monotonic in-
creasing functions. We here adopt the sigmoid function.

4.2 CPE-ps

For CPE-s, if both u; and ug give ¢ the same rating score, v,,,
and v,,, should be very similar, which means CPE-s may sup-
press exploiting personalized information. The reason lead-
ing to the consequence is that for the elements in F' (i.e.,
{frlk = 0,1,2,3,4,5}), we keep the same user and item
vectors. To overcome the shortcomings, we adopt a projec-
tion method inspired by [Wang ef al., 2014b] to model vec-
tor relationships. We create a plane Py with the normal vec-
tor wy for each type of feedback v¢. Then, for each triplet
(Vu, V§,V;), we project v, and v; to Py, denoting the pro-
jected vectors as v ,, and v ; respectively. Finally, we opti-
mize (v ,,Vy, vy ;) similar to CPE-s, where v, , and v ;
are computed according to the following equations:

Vi =Vy— w;vuwf ©)

T
V]i=V;— WfVZWf

Therefore, the loss function can be described as d(v ,, +
vy — v ;) and is illustrated in Figure 2(a). The Lo-norm of
W is restricted to 1 to control v , and v, ;. Based on our
CPE assumption, the loss function is

£ = Z AdViu+vy—vii)
(u,f,i)€D
{vap||g< vaqu ‘ p>q}7 fpqu GF (7)
st [lwell3 =1, fer
wive/llvellz < e, fer

where d(-) is the Euclidean distance; w?vf/\ [Villa < €
guarantees that v ¢ is in the translated plane. Similar to CPE-
s, we do not directly optimize the above function but convert
it to the following soft unconstrained loss function:

wf Z Wf vy)®

L= > dviu+vs—vii)

Wi = TviB
w
= = I C(llva, |5~ vy, I3) + ©
p>q

where |||w||3 is constrained to 1 in the learning procedure;
wy is the weight of f.

CPE-ps is better than CPE-s because it can help exploit
more personalized information. For example, v,, and v,
can be different even if v, ,, equals to v ,,. That is,
users’ preference can be shared through projected correla-
tions, while some personalized information can be remained.

4.3 Learning and Item Recommendation

The proposed algorithms are carried out by stochastic gradi-
ent descent (SGD) to optimize v,, vy and v;. Specifically,



Figure 2: Illustration of CPE-ps and SCPE.

for preference embedding and positiveness learning, in each
iteration, we randomly sample ¢; triplets according to the dis-
tribution of each feedback in D! and ¢, unobserved feedback,
and optimize them according to E.q.(5) and E.q.(8) until they
converge to a stable state. Note that for item recommendation
in the experiments, we directly update the related v,, and v;
onInC(||vy,||3 — ||vy,||3) part for better learning efficiency
and performance. The form can be expressed by E.q.(13), and
we will discuss it later.

The u’s preference for ¢ is computed according to E.q.(9)
for CPE-s, and E.q.(10) for CPE-ps, and the top k items with
the greatest p,, ; are recommended to u.

Pui = 1/(|lvi = vull3 + 1) )

Pui =1/([vii—viull3+1) (10)

where p denotes preference degree.

4.4 Discussion

In this section, we discuss some features of CPE and explain
why they are flexible for preference learning.
Semi-constrained preference embedding (SCPE). An
advantage of CPE is that it can model users’ heterogeneous
actions in a unified way. In applications, although the rat-
ings can be directly modeled by the scores, it is hard to
specify some types of implicit feedback (e.g., “click” and
“browse”) to a certain preference degree, because we are not
sure, for example, whether “click” and “browse” are more
positive than “giving 2 stars”. The MF based algorithms can-
not directly model the latter information well; a compromise
is to represent all types of users’ behavior as implicit feed-
back, and correlate them with 1 (e.g., BPR-MF). Those ap-
proaches may have some shortcomings because the diversity
of behavior information is lost. On the contrary, a modified
CPE method called semi-constrained preference embedding
(SCPE) may provide a possible fine grained solution. Specif-
ically, for SCPE, all the elements in F' are considered in the
add approximation part, but the Ly-norm of the unknown
feedback is not constrained in the learning process. For ex-
ample, given the set { x|k = a, b, ¢,d, e} and the experience
that p(fa) > p(fp), p(fec) > p(fa), and p(fe) =7, the loss
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function can be
min L(Vua VisVias Vs Vs Vias er)

s.t. { Ci(llv 3 = [[vr.l3) (11

2
Co([Ivralls = [Ivl13)

where f. is modeled in £(-) to help correlate (user, item) pairs
and predict users’ potential preference, which is illustrated in
Figure 2(b). We also find that besides benefiting item recom-
mendation, SCPE can also help learn preference degree of f,
by the help of ficq.p.c.q. Therefore, besides for item recom-
mendation, SCPE may also be used to study whether a user’s
behavior is positive or not according to some assistant behav-
ior. We will study it in the next section.

Relation between CPE-s and BPR-MF. As we discussed
above, BPR-MF is an effective pair-wise ranking algorithm
for item recommendation, and its loss function is represented
in E.q.(2). For our CPE-s, if we assume C(-) in E.q.(5) as
logistic regression, and denote f, as positive feedback and
fn as negative feedback, the main part of the soft preference
restriction can be expressed as

12 = 1lve, 1) (12)

With pair-wise CPE assumption, for two triplets (u, fp,%)
and (u, fn,J), the distance between v, and v; should be
shorter than the distance between v,, and v;. Based on add
approximation, we replace vy, with v; — v, and vy, with
Vv — V,, and constrain Ly-norm of item vectors to a constant
c. Hence, our task is to maximize the following function:

> no(llv; = valls = [[vi — val3) + ©
= Ino2vyvi — v vs] + [[vill3 = [|v;][2) + ©
= Zlna(2[v3vi — VZV]']) + 0

s.t.

—lno(|lvy,

13)

[Ivill> = llv;II* = ¢

As we can see from E.q.(13), by some restrictions and vari-
ations, we can deduce BPR-MF with a constraint of item Lo-
norm by pair-wise CPE. This reveals the potential relation
between CPE-s and BPR-MF, and also shows why it is rea-
sonable to express p,, ; as 1/(||v; — vy |[3 + 1).

5 Experiments

5.1 Datasets and Evaluation Metrics

In this section, we study CPE on some real-world datasets
in different domains and categories. The number of users,
the number of items and the sparsity information is listed in
Table 1. The first 5 datasets are from Amazon.com[McAuley
and Leskovec, 2013]; the movies, books and music datasets
are from DouBan.com[Wang et al., 2014al. Each dataset is
subdivided into three parts; 80% of it is used for training, 10%
is used for validation and the last 10% is left for test.

The evaluation metrics we used are NDCG[ Valizadegan et
al., 2009],Precision, and F1[Wang er al., 2014a] scores.

5.2 Baselines and Parameter Settings

To comprehensively study our proposed models, we compare
them with the following state-of-the-art ranking methods:



Table 1: Datasets used in the experiments.

dataset #users | #items | sparsity
beauty (Amazon) 167,725 | 29,004 | 0.99995
tools&games (Amazon) 283,514 | 51,004 | 0.99997
clothing&accessories(Amazon) | 128,794 | 66,370 | 0.99993
shoes (Amazon) 73,590 | 48,410 | 0.99989
industrial&scientific (Amazon) | 29,590 | 22,622 | 0.99980
movies (Douban) 5,664 10,013 | 0.97423
books (Douban) 10,024 | 10,115 | 0.99280
music (Douban) 10,208 | 11,200 | 0.99157

e point-wise: iMF (explicit, implicit)
e pair-wise: BPR (implicit), GBPR (implicit)
e list-wise: ListRank (explicit), CofiRank (explicit)

The baselines are carefully chosen to make sure that each
algorithm is typical in each discussed class. ListRank [Cao
et al., 2007; Shi et al., 2010] and CofiRank [Weimer et al.,
2007] are mainly for optimizing observed (user, item) corre-
lations, while iMF [Hu et al., 2008; Lin et al., 2014], BPR
[Rendle et al., 2009] and GBPR [Pan and Chen, 2013] con-
sider both observed and unobserved correlations. Some de-
tails of those methods are discussed in the previous sections.

For all the approaches, the learning rate is set to 0.05, and
the latent dimension is set to 10 (i.e., d = 10). The reg-
ularization coefficient is selected from {1,0.1,0.01,0.001};
t1 = to = 2; Because the adopted weighted sampling method
for SGD, we set e, wy, r, and wy to 1. For GBPR-MF, the
group size is 3.

5.3 Analysis of Preference Embedding

We reconstruct the Lo-norm of the feedback vectors (i.e.,
{vs,]i=0,1,2,3,4,5}) after learning CPE-s or CPE-ps, and
illustrate them by column charts in Figure 3. Due to the lim-
ited space, we only provide the results learned by CPE-s.
According to the figure, ||vy,||2 is much greater than
IV fic (125,45 ||2 for all datasets; it implies that whether a
user gives a rating score or not to an item is more signif-
icant than which score she chooses. The results are due
to the fact that the number of (u, fo,i) triplets is much
larger than other triplets’, and the assumption that the mem-
bers in {f;|1,2,3,4,5} should be more positive than f;.
Hence, the difference between |[v, ||z and [[vy, ., .., 5, 1]2
has an important influence on model optimization. With the
same reason, we can also explain why the difference be-
tween |[vy, ., |2 and [[vy,_  , |[2 is greater comparing
with va4 ||2_| Vs ‘ |2 or val | |2_ | |Vf2 | ‘2' Hence, the length
of feedback vectors learned by our models can intuitively re-
flect the behavior distribution on the real-world datasets.

5.4 Analysis of Item Recommendation

The item recommendation results on 8 real-world datasets are
listed in Table 2. It is interesting that the selected point-wise
and pair-wise algorithms are better than the list-wise ranking
methods, which is inconsistent with our intuition. The reason
for the outcomes is that the compared list-wise ranking meth-
ods mainly consider explicit rating scores and ignore unob-
served (user, item) pairs. For our sparse datasets, CofiRank
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Figure 3: Ly-norm of the learned feedback vectors. Here “U”
represents the unobserved (user, item) pairs, and the numeri-
cal numbers denote the feedback about related rating scores,

with the bar indicating their vector length.
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Figure 4: Ls-norm comparison of two feedback vectors
learned by CPE with some assistant feedback.

and ListRank cannot take full advantage of the available data
due to the shortage of the former information.

It is obvious that our proposed models are better than BPR
and GBPR on most datasets. On average, CPE-s (or CPE-ps)
can help improve 14.75% precision-5, 15.41% recall-5, and
16.17% NDCG-5 due to the preference embedding assump-
tions. First, CPE-s and CPE-ps consider 6 different levels of
users’ feedback, but BPR and GBPR primarily focus on bi-
nary information. Therefore, our models can exploit more in-
formation than BPR and GBPR. Second, our methods transfer
each type of behavior to its related vector rather than restrict
it in user and item space. Therefore, they are more effective
comparing with other baselines.

The latent dimension d € {3,5,10,15} is changed to test
model stabilities of the compared approaches. The outcomes
of NDCG-5 on beauty and clothing &accessories are shown in
Figure 6. We find that when d is large, the advantage of CPE
is obvious; it is because the feedback vectors may help cap-
ture more preference related information as well as loose the
low-rank assumption when d is bigger. The benefit is reduc-
ing with the decreasing of d, but due to the effectiveness of
preference embedding, the performance of CPE is still better
than the baselines. Finally, we study NDCG-K, precision-
K and recall-K scores with different recommendation size
K €{1,3,5,7}, and show some selected results in Figure 6.
It is clear that CPE-s and CPE-ps are stable when K varies.



Table 2: Prediction, recall and NDCG scores on 8 real-world datasets. The size of recommendation list is 5.

. Is& lothing& industrial . .
‘ metric ‘ method ‘ beauty[a] lg();n:es [a] :cg;:;ies[a] shoes|[a] ézc?;rtii?ic[a] ‘ movies[d] ‘ books[d] ‘ music[d] ‘
iMF 0.0306 0.0075 0.1054 0.1212 0.0434 0.1125 0.0231 0.0378
BPR 0.0380 0.0093 0.1456 0.1845 0.0597 0.1403 0.0405 0.0570
GBPR 0.0374 0.0094 0.1502 0.1896 0.0575 0.1444 0.0429 0.0598
Precision-5 | ListRank | 0.0149 0.0029 0.0482 0.0802 0.0232 0.0903 0.0170 0.0138
CofiRank | 0.0164 0.0039 0.0607 0.0819 0.0285 0.1043 0.0256 0.0242
CPE-s 0.0431 0.0119 0.1731 0.1957 0.0780 0.1434 0.0440 0.0619
CPE-ps 0.0443 0.0121 0.1669 0.2092 0.0802 0.1410 0.0460 0.0637
iMF 0.1232 0.0288 0.2919 0.3484 0.0889 0.0139 0.0085 0.0128
BPR 0.1499 0.0358 0.3788 0.4380 0.1181 0.0202 0.0169 0.0230
GBPR 0.1477 0.0366 0.3887 0.5005 0.1152 0.0213 0.0179 0.0247
Recall-5 ListRank | 0.0663 0.0131 0.1656 0.2612 0.0537 0.0106 0.0054 0.0023
CofiRank | 0.0754 0.0174 0.1993 0.2715 0.0641 0.0089 0.0082 0.0045
CPE-s 0.1678 0.0458 0.4414 0.4895 0.1504 0.0207 0.0187 0.0272
CPE-ps 0.1729 0.0468 0.4108 0.5416 0.1652 0.0208 0.0195 0.0278
iMF 0.0996 0.0239 0.2327 0.2709 0.0819 0.1134 0.0229 0.0391
BPR 0.1305 0.0305 0.3281 0.4344 0.1184 0.1427 0.0417 0.0601
GBPR 0.1273 0.0313 0.3398 0.4509 0.1137 0.1437 0.0441 0.0632
NDCG-5 | ListRank | 0.0480 0.0083 0.1215 0.1912 0.0408 0.1003 0.0180 0.0142
CofiRank | 0.0526 0.0128 0.1443 0.1978 0.0565 0.1097 0.0271 0.0254
CPE-s 0.1510 0.0398 0.3982 0.4355 0.1518 0.1462 0.0456 0.0673
CPE-ps 0.1569 0.0411 0.3685 0.4870 0.1620 0.1484 0.0483 0.0683
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We use rating scores and unobserved correlations to study
SCPE’s ability on identifying behavior’s positiveness. Specif-
ically, two types of feedback f, and f, are randomly selected
from {fx|k = 0,1,2,3,4,5} to simulate unknown behav-
ior, then every feedback vectors are embedded by SCPE-s,
with f,, and f; not constrained in the optimizing procedure.
We will test whether SCPE-s can correctly rank p(f,,) and
p(fy)- Inthe experiments, we choose the following two cases:
{p = 3.0 = 1} and {p = 4,q = 2}. [[vy,||2 and [[v,]|>
learned by SCPE-s on beauty dataset are plotted in Figure
4(a), and ||vy,||2 and ||vy,||2 are shown in Figure 4(b). It
is clear that when the algorithm converges, ||f1]||2 is persis-
tently greater than ||fs||2, and || f2||2 is greater than || f4||2,
which means that, with other assistant feedback, our SCPE-s
can automatically infer that “giving 3 scores” is more positive
than “giving 1 score”, and “giving 4 scores” is more posi-
tive comparing with “giving 2 scores”. The results are in line
with what we expected, and can be explained by collabora-
tive filtering features of SCPE discussed before. Therefore,
SCPE may provide a possible way for analyzing and compar-
ing users’ heterogeneous feedback for e-commerce websites.

2144

Figure 6: Performance comparison with different recommen-
dation list size.

6 Conclusion

In this paper, we introduced the constrained preference em-
bedding (CPE) assumption and two models (i.e., CPE-s
and CPE-ps) for preference learning. We discussed semi-
constrained preference embedding (SCPE) and showed its ef-
fectiveness on modeling users’ feedback of uncertain prefer-
ence degree. Finally, we demonstrated the relationship be-
tween CPE and BPR-MF. In the experiments, CPE is proved
effective from different perspectives.
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