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Abstract

Random forests are one type of the most effective
ensemble learning methods. In spite of their sound
empirical performance, the study on their theoreti-
cal properties has been left far behind. Recently,
several random forests variants with nice theoreti-
cal basis have been proposed, but they all suffer
from poor empirical performance. In this paper, we
propose a Bernoulli random forests model (BRF),
which intends to close the gap between the theoreti-
cal consistency and the empirical soundness of ran-
dom forests classification. Compared to Breiman’s
original random forests, BRF makes two simplifi-
cations in tree construction by using two indepen-
dent Bernoulli distributions. The first Bernoulli dis-
tribution is used to control the selection of candi-
date attributes for each node of the tree, and the
second one controls the splitting point used by each
node. As a result, BRF enjoys proved theoretical
consistency, so its accuracy will converge to opti-
mum (i.e., the Bayes risk) as the training data grow
infinitely large. Empirically, BRF demonstrates
the best performance among all theoretical random
forests, and is very comparable to Breiman’s orig-
inal random forests (which do not have the proved
consistency yet). The theoretical and experimen-
tal studies advance the research one step further to-
wards closing the gap between the theory and the
practical performance of random forests classifica-
tion.

1 Introduction

Random forests (RF) represent a class of ensemble learning
methods that construct a large number of randomized deci-
sion trees and combine results from all trees for classifica-
tion or regression. The training of the random forests, at
least for the original Breiman version [Breiman, 2001], is ex-
tremely easy and efficient. Because predictions are derived
from a large number of trees, random forests are very ro-
bust, and have demonstrated superb empirical performance
for many real-world learning tasks (e.g., [Svetnik et al., 2003;
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Figure 1: Comparisons between Breiman RF (left panel) vs.

the proposed BRF (right panel). The tree node splitting of
Breiman RF is deterministic, so the final trees are highly data-
dependent. Instead, BRF employs two Bernoulli distributions
to control the tree construction. BRF ensures a certain degree
of randomness in the trees, so the final trees are less data-
dependent but still maintain a high classification accuracy.

Prasad et al., 2006; Cutler et al., 2007; Shotton et al., 2011;
Xiong et al., 2012]).

Different from their well recognized empirical reputation
across numerous domain applications, the theoretical pro-
perties of random forests have yet been fully established and
are still under active research investigation. Particularly, one
of the most fundamental theoretical properties of a learning
algorithm is the consistency, which guarantees that the algo-
rithm will converge to optimum (i.e. the Bayes risk) as the
data grow infinitely large. Due to the inherent bootstrap ran-
domization as well as attribute bagging process employed by
random forests, and the highly data-dependent tree structure,
it is very difficult to prove the theoretical consistency of ran-
dom forests. As shown in Fig. 1(a), Breiman’s original ran-
dom forests have two random processes, bootstrap instance
sampling and attribute bagging, which intend to make the tree
less data-dependent. However, when constructing each inter-
nal node of the tree, the attribute selected for splitting and
the splitting point used by the attribute are controlled by a
deterministic criterion (such as Gini index [Breiman et al.,
1984]). As a result, the constructed trees eventually become
data-dependent, making theoretical analysis difficult.

Notice the difficulty of proving the consistency of ran-
dom forests, several random forests variants [Breiman, 2004;
Biau et al., 2008; Genuer, 2010; 2012; Biau, 2012; Denil et
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al., 2014] relax or simplify the deterministic tree construc-
tion process by employing two randomized approaches: (1)
replacing the attribute bagging by randomly sampling one
attribute; or (2) splitting the tree node with a more elemen-
tary split protocol in place of the complicated impurity crite-
rion. For both approaches, the objective is to make the tree
less data-dependent, such that the consistency analysis can be
carried out. Unfortunately, although the properties of such
approaches can be theoretically analyzed, they all suffer from
poor empirical performance, and are mostly incomparable to
Breiman’s original random forests in terms of the classifica-
tion accuracies. The dilemma of the theoretical consistency
vs. empirical soundness persists and continuously motivates
the research to close the gap.

Motivated by the above observations, in this paper, we
propose a novel Bernoulli random forests model (BRF)
with proved theoretical consistency and comparable perfor-
mance to Breiman’s original random forests. As shown in
Fig. 1(b), our key is to introduce two Bernoulli distributions
to drive/control the tree construction process, so we can en-
sure a certain degree of randomness in the trees, but still
keep the quality of the tree for classification. Because each
Bernoulli trial involves a probability value controlled random
process, BRF can ensure that the tree construction is random
with respect to a probability value or being deterministic, oth-
erwise. As a result, the trees constructed by BRF are much
less data-dependent, compared to Breiman’s original random
forests, yet still have much better performance compared to
all existing theoretically consistent random forests.

The main contribution of the paper is threefold: (1) BRF
has the least simplification changes, compared to Breiman’s
original random forests, and its theoretical consistency is
fully proved; (2) The two independent Bernoulli distributions
controlled attribute and splitting point selection process pro-
vides a solution to resolve the dilemma of theoretical consis-
tency vs. empirical soundness; and (3) empirically, a series
of experimental comparisons demonstrate that BRF achieves
the best performance among all theoretical random forests.

2 Bernoulli Random Forests

Compared to Breiman’s original random forests, the proposed
BRF makes three alterations, as shown in Fig. 1, to close the
gap between theoretical consistency and empirical soundness.

2.1 Data point partitioning

Given a data set Dn with n instances, for each instance
(X, Y ), we have X 2 RD with D being the number of at-
tributes and Y 2 {1, 2, . . . , C} with C being the number of
classes. Before the construction of each individual tree, we
randomly partition the entire data points into two parts, i.e.,

Structure points and Estimation points. The two parts per-
form different roles in the individual tree construction, which
helps establish the consistency property of the proposed BRF.

Structure points are used to construct the tree. They are
only used to determine the attributes and splitting points in
each internal node of the tree, but are not allowed to be used
for estimating class labels in tree leaves.

Estimation points are only used to fit leaf predictors (esti-
mating class labels in tree leaves). Note that these points are

also split obeying the rules created by structure points along
the construction of the tree, but they have no effect on the
structure of the tree.

For each tree, the points are partitioned randomly and in-
dependently. The ratio of the two parts is parameterized by
Ratio = |Structure points|/|Entire points|.

2.2 Tree construction

In the proposed BRF, firstly, as stated above, the data point
partitioning process replaces the bootstrap technique in train-
ing instances. Secondly, two independent Bernoulli distribu-
tions are introduced into the strategies of selecting attributes
and splitting points.

The first novel alteration in BRF is to choose candidate at-
tributes with a probability satisfying a Bernoulli distribution.
Let B1 2 {0, 1} be a binary random variable with “success”
probability of p1, then B1 has a Bernoulli distribution which
takes 1 in a probability of p1. We define B1 = 1 if 1 candidate
attribute is chosen and B1 = 0 if

p
D candidate attributes are

chosen. To be specific, for each internal node, we choose 1

or
p
D candidate attributes in a probability of p1 or 1 � p1

respectively.
The second novel alteration is to choose splitting points

using two different methods with a probability satisfying
another Bernoulli distribution. Similar to B1, we assume
B2 2 {0, 1} satisfies another Bernoulli distribution which
takes 1 in a probability of p2. We define B2 = 1 if the ran-
dom sampling method is used and B2 = 0 if the optimizing
impurity criterion method is used. Specifically, we choose the
splitting point through random sampling or optimizing impu-
rity criterion in a probability of p2 or 1 � p2 respectively in
each candidate attribute.

The impurity criterion is denoted by:

I(v) = T (DS
)� |D0S |

|DS | T (D
0S
)� |D00S |

|DS | T (D
00S

). (1)

Here v is the splitting point which is chosen by maximizing
I(v). D is the cell belonging to the node to be split, which
contains structure points DS and estimation points DE . D0

and D00 are two children that would be created if D is split at
v. The function T (DS

) is the impurity criterion, e.g. Shannon
entropy or Gini index, which computes over the labels of the
structure points DS . In BRF, the impurity criterion is Gini
index and it is certain that Shannon entropy is also acceptable.

Through the above two steps, for each internal node of
the tree, one attribute and its corresponding splitting point is
selected to split the data and grow the tree. Note that only the
structure points are involved in the tree construction. The pro-
cess recursively repeats until the stopping condition is met.

Similar to Breiman’s original random forests, BRF’s stop-
ping condition is also based on the minimum leaf size. But,
we only restrict the estimation points rather than the entire
data points. In other words, in each leaf, we require that the
number of estimation points must be larger than kn which de-
pends on the number of training instances, i.e., kn ! 1 and
kn/n ! 0 when n ! 1.
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2.3 Prediction

Once the trees are trained by structure points and the leaf pre-
dictors are fitted by estimation points, BRF can be used to
predict labels of new unlabeled instances.

When making predictions, each individual tree will predict
independently. We denote a base decision tree classifier cre-
ated by our algorithm as g. Assuming the unlabeled instance
is x, the probability of each class c 2 {1, 2, . . . , C} is

⌘

(c)
(x) =

1

N(A

E
(x))

X

(X,Y )2AE(x)

I {Y = c} , (2)

and the prediction of the tree is the class that maximizes
⌘

c
(x):

ŷ = g(x) = argmax

c
{⌘(c)(x)}, (3)

where N(A

E
(x)) denotes the number of estimation points

in the leaf containing the instance x. I(e) is the indicator
function which takes 1 if e is true and takes 0 for other cases.

Second, the prediction of the forests is the class which re-
ceives the most votes from individual trees.

ŷ = g

(M)
(x) = argmax

c

M
X

i=1

I
n

g

(i)
(x) = c

o

, (4)

where M is the number of individual trees in the random
forests.

3 Consistency

In this section, we first give an outline of the lemmas for es-
tablishing the consistency of random forests. Then we prove
the consistency of the proposed BRF. We use a variable Z

to denote the randomness involved in the construction of the
tree, including the selection of attributes and splitting points.

3.1 Preliminaries

Definition 1. Given the data set Dn, a sequence of classifiers

{g} are consistent for a certain distribution of (X, Y ) if the

error probability L satisfies

E [L] = P (g(X, Z,Dn) 6= Y ) ! L

⇤
as n ! 1, (5)

where L

⇤
is the Bayes risk that is the minimum achievable

risk of any classifier for the distribution of (X, Y ).

The consistency of random forests is implied by the consis-
tency of the trees they are comprised of, which will be shown
in the following two lemmas.
Lemma 1. Suppose a sequence of classifiers {g} are con-

sistent, then the voting classifier g

(M)
obtained by taking the

majority vote over M copies of g with different randomizing

variables is also consistent.

Lemma 2. Suppose each class posterior estimation is

⌘

(c)
(x) = P (Y = c |X = x), and that these estimations are

each consistent. The classifier

g(x) = argmax

c
{⌘(c)(x)} (6)

is consistent for the corresponding multi-class classification

problem.

Lemma 1 shows that the consistency of random forests is
determined by the individual trees [Biau et al., 2008]. Lemma
2 allows us to reduce the consistency of multi-class classifiers
to the consistency of posterior estimates for each class [Denil
et al., 2013].

Lemma 3. Suppose a sequence of classifiers {g} are con-

ditionally consistent for a specified distribution on (X, Y ),

i.e.

P (g(X, Z, I) 6= Y | I) ! L

⇤
, (7)

where I represents the randomness in the data point par-

titioning. If the random partitioning produces acceptable

structure and estimation parts with probability 1, then {g}
are unconditionally consistent, i.e.

P (g(X, Z, I) 6= Y ) ! L

⇤
. (8)

Lemma 3 shows that data point partitioning procedure of
the tree construction almost would not affect the consistency
of the base decision tree [Denil et al., 2013].

To prove the consistency of the base decision tree, we em-
ploy a general consistency lemma used for decision rules as
follows:

Lemma 4. Consider a classification rule which builds a pre-

diction by averaging the labels in each leaf node, if the labels

of the voting data do not influence the structure of the classi-

fication rule then

E [L] ! L

⇤
as n ! 1 (9)

provided that

1. diam(A(X)) ! 0 in probability,

2. N(A

E
(X)) ! 1 in probability,

where A(X) denotes the leaf containing X and N(A

E
(X))

denotes the number of estimation points in A(X).

Generally, the construction of decision trees can be viewed
as a partitioning of the original instance space. Thus, each
node of the tree corresponds to a rectangular subset/cell of
RD and the tree root corresponds to all of RD. Therefore,
diam(A(X)) ! 0 is equal to that the size of hypercube
A(X) is close to 0.

Lemma 4 shows that the consistency of the tree construc-
tion can be proved on condition that the hypercubes/cells be-
longing to leaves are sufficiently small but contain infinite
number of estimation points [Devroye et al., 2013].

3.2 Consistency theorem

With these preliminary results in hand, we are equipped to
prove the main consistency theorem.

Theorem 1. Suppose that X is supported on [0, 1]

D
and

has non-zero density almost everywhere. Moreover, the cu-

mulative distribution function (CDF) of the splitting points is

right-continuous at 0 and left-continuous at 1. Then BRF is

consistent provided that kn ! 1 and kn/n ! 0 as n ! 1.
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According to Subsection 3.1, we know that the consistency
of random forests is determined by the consistency of the base
decision tree (Lemma 1 and 2), which is further dependent
on the consistency of the tree construction (Lemma 3 and
4). More specifically, the proof of Theorem 1 is to prove
the two conditions of Lemma 4, i.e., diam(A(X)) ! 0 and
N(A

E
(X)) ! 1 in probability.

Proof. Firstly, since BRF requires N(A

E
(X)) � kn,

N(A

E
(X)) ! 1 is trivial when n ! 1.

Secondly, we prove diam(A(X)) ! 0 in probability. Let
V (d) be the size of the d-th attribute of A(X). It suffices to
show that E [V (d)] ! 0 for all d 2 {1, 2, . . . , D}.

For any given d, the largest size of the child node for the
d-th attribute is denoted by V

⇤
(d). Recalling that the splitting

point is chosen either by randomly sampling in [0, 1] with a
probability p2 or by optimizing the impurity criterion with a
probability 1� p2, we have

E [V

⇤
(d)]  (1� p2)⇥ 1 + p2 ⇥ E [max(U, 1� U)]

= (1� p2)⇥ 1 + p2 ⇥
3

4

= 1� 1

4

p2, (10)

where U is the splitting point for random sampling method
and U ⇠ Uniform[0, 1].

Revisiting that 1 or
p
D candidate attributes are selected

with a probability p1 or 1 � p1 respectively, we define the
following events:

E1 = {One candidate attribute is split}
E2 = {The splitting attribute is exactly the d-th one}

Denoting the size of the child node for the d-th attribute by
V

0
(d), then

E [V

0
(d)] = P (E1)E [V

0
(d)|E1] + P

�

¯

E1

�

E
⇥

V

0
(d)| ¯E1

⇤

 p1 ⇥ E [V

0
(d)|E1] + (1� p1)⇥ 1

= p1 ⇥
�

P (E2|E1)E [V

0
(d)|E1, E2]

+ P
�

¯

E2|E1

�

E
⇥

V

0
(d)|E1,

¯

E2

⇤�

+ (1� p1)

 p1 ⇥ (

1

D

E [V

⇤
(d)] + 1� 1

D

) + (1� p1)

 1� p1p2

4D

. (11)

Assuming K is the distance from the tree root to a leaf and
iterating (11) after K splits, we have:

E [V (d)] 
⇣

1� p1p2

4D

⌘K
. (12)

The consistency of BRF suffices to have K ! 1 in proba-
bility, which will be shown in Lemma 5.

Lemma 5. For sufficiently large n, every node of the tree will

be split infinite times in probability, on the condition that the

CDF of the splitting points is right-continuous at 0 and left-

continuous at 1.

Proof. Revisit that the splitting point is obtained either by
random sampling method with a probability p2 or by opti-
mizing the impurity criterion with a probability 1� p2. Thus,

the final selected splitting point through the two methods can
be viewed as a random variable Wi(i 2 {1, 2, . . . ,K}) with
CDF FWi from the tree root to a leaf.

For any given K and a constant � > 0, the smallest child
node of the root has the size M1 = min(W1, 1�W1) at least
�

1/K with the probability:

P
⇣

M1 � �

1/K
⌘

= P
⇣

�

1/K  W1  1� �

1/K
⌘

= FW1(1� �

1/K
)� FW1(�

1/K
). (13)

Without loss of generality, we scale the values of attributes to
the range [0, 1] for each node, then after K splits, the small-
est child at the K-th level have the size at least � with the
probability at least

K
Y

i=1

(FWi(1� �

1/K
)� FWi(�

1/K
)), (14)

which is derived by assuming that the same attribute is split
at each level of the tree. If different attributes are split at
different levels, the bound (14) also holds. Since FWi is right-
continuous at 0 and left-continuous at 1, FWi(1 � �

1/K
) �

FWi(�
1/K

) ! 1 as � ! 0. Thus, 8✏1 > 0, 9�1 > 0, such
that

K
Y

i=1

(FWi(1� �

1/K
1 )� FWi(�

1/K
1 )) > (1� ✏1)

K
. (15)

Besides, 8✏ > 0, 9✏1 > 0, such that

(1� ✏1)
K

> 1� ✏. (16)

The above (15) and (16) show that each node at K-th level of
the tree has the size of � with probability at least 1� ✏.

Because the distribution of X has a non-zero density, each
of these nodes has a positive measure with respect to µ

X

.
Defining

p = min

l: a leaf at K-th level
µ

X

(l), (17)

we know p > 0 since the minimum is over finitely many
leaves and each leaf contains a set of positive measure.

In a data set of size n, the number of data points falling in
the leaf A is Binomial(n, p). Then, the number of estimation
points in A is np/2 assuming the Ratio is 0.5 without loss
of generality. According to Chebyshev’s inequality, we can
bound N(A

E
) as follows:

P
�

N(A

E
) < kn

�

= P
⇣

N(A

E
)� np

2

< kn � np

2

⌘

(a)
=

1

2

P
⇣

|N(A

E
)� np

2

| > |kn � np

2

|
⌘

 1

|kn � np
2 |2 , (18)

where the equation (a) is due to the fact that kn� np
2 is nega-

tive as n ! 1. The RHS of (18) goes to zero as n ! 1, so
the leaf contains at least kn estimation points in a high prob-
ability. According to the stopping condition, if the number of
estimation points in the node is larger than kn, the tree will
continue to grow. So, K ! 1 in probability.

2170



4 Discussion

In this section we discuss the proposed BRF with three vari-
ants of random forests which have the proved consistency,
i.e.,

[Biau et al., 2008], [Biau, 2012] and [Denil et al., 2014]
denoted by Biau08, Biau12 and Denil14 respectively. Be-
sides, we also discuss these models with Breiman’s original
random forests [Breiman, 2001] denoted by Breiman.

In terms of the data point partitioning, as long as the trees
in the forests are constructed using the labels of data points,
it is a must to partition the data points to ensure consistency,
because Lemma 4 requires the labels of the voting data do
not influence the structure of the tree. Thus, BRF, Biau12

and Denil14 all require data partitioning, whereas Biau08

and Breiman do not need it.
For candidate attribute selection, according to Lemma 4, to

ensure consistency, every attribute of the data must be split in
probability as n ! 1. For Biau08, it chooses a single attri-
bute uniformly at random. Biau12 chooses a fixed number
of random candidate attributes with replacement. Denil14

chooses min(1 + Poisson(�), D) candidate attributes with-
out replacement. BRF chooses 1 or

p
D attributes with a

probability satisfying a Bernoulli distribution B1 without re-
placement. At last, Breiman chooses a fixed number of ran-
dom candidate attributes without replacement.

Thirdly, as for the selection of splitting points, accord-
ing to Lemma 4, each candidate splitting point should be
selected to split in probability so as to guarantee the consis-
tency. Biau08 selects a point uniformly at random to split.
Biau12 selects the midpoint in each attribute as the splitting
point. Denil14 selects a few structure points at random and
searches for the optimal splitting point over the range defined
by previously selected points. BRF implements two strate-
gies for splitting point selection in another Bernoulli distri-
bution B2. The two strategies either select a point uniformly
at random to split or search for the splitting point that gives
the largest impurity decrease. Lastly, Breiman checks all
the candidate splitting points and chooses the one with the
largest impurity decrease.

According to the above discussion, we can find that the
proposed BRF closely resembles to Breiman’s original ran-
dom forests. The key difference is that two independent
Bernoulli distributions are introduced into the selection of
splitting attributes and points to ensure consistency. Another
noticeable difference is the data point partitioning procedure.
In fact, all strategies implemented in BRF are to ensure the
theoretical consistency as well as maintain the empirical per-
formance.

5 Experiments

5.1 Data sets

Table 1 reports the 9 benchmark data sets [Lichman, 2013]
ranked by the number of attributes. The benchmark data sets
have different number of instances (from small to large), and
also include low, moderate, and high dimensional attributes
for binary and multi-class classification. Therefore, they are
sufficiently representative to demonstrate the ability of ran-
dom forests to handle different types of data.

Table 1: Detailed information of the benchmark data sets

DATA SET INSTANCES ATTRIBUTES CLASSES
WINE 178 13 3
VEHICLE 946 18 4
IMAGE 2310 19 7
CHESS 3196 36 2
LAND-COVER 675 148 9
MADELON 2600 500 2
INDOORLOC 21048 529 4
ADS 3279 1558 2
GISETTE 13500 5000 2

5.2 Experimental settings

Since the algorithms are each parameterized slightly differ-
ently, it is not possible to use the same parameters for all
methods. Breiman, Denil14 and BRF specify a minimum
leaf size, which is set to 5 as suggested in [Breiman, 2001].
Biau08 and Biau12 are parameterized in terms of a target
number of leaves which we set to be n/5, meaning the trees
are approximately the same size as those parameterized by the
minimum leaf size. For the forest size M , we set M = 100.
As for the ratio of structure points to entire points (Ratio),
we all set Ratio = 0.5 for Biau12, Denil14 and BRF.

Moreover, Denil14 needs to choose m structure points for
determining the search range of the splitting point which we
set m = 100 according to [Denil et al., 2014]. For BRF, we
set the probability p1 = p2 = 0.05 in the two Bernoulli dis-
tributions respectively. Besides, for each data set, a 10 times
10-fold cross-validation is performed to reduce the influence
of randomness.

5.3 Comparisons of different random forests

Table 2 reports the accuracies of different algorithms. The
highest accuracy of the consistent random forests algorithms
on each data set is in boldfaced. Besides, �theory shows the
improvement of the proposed BRF compared to the state-of-
the-art consistent random forests; �practice exhibits the gap
between BRF and Breiman’s original random forests.

As expected, among all consistent random forests algo-
rithms, BRF achieves the highest accuracy. Compared to
the state-of-the-art consistent random forests, i.e., Denil14,
the accuracy improvement is remarkable, especially on IN-
DOORLOC data set where the improvement is up to 65.58%.
The reason behind the huge improvement is that the IN-
DOORLOC data set has some attributes with numerous val-
ues. Thus, in Denil14, the preselected m structure points
may only possess a few values of the attribute, which have
a great effect on selecting the splitting point and further in-
fluence the tree structure as well as performance. The clas-
sification accuracy improvement over Denil14 is also sup-
ported by Wilcoxon signed ranked test [Demšar, 2006] which
assures the statistical significance on almost all data sets, as
shown in Table 2. Combining the comparisons with other
consistent algorithms, we conclude that the improvement of
BRF is mainly attributed to the two Bernoulli distributions in
the strategies of selecting splitting attributes and points.

When comparing BRF to Breiman, the gap still remains
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Table 2: Classification accuracy (ACC%) of different random forests algorithms on different data sets

DATA SET Biau08 1
Biau12 1

Denil14 1 BRF Breiman

2 �theory �practice

WINE 40.59 41.18 96.47 97.65 98.27 1.18 0.62
VEHICLE 27.98 23.10 68.81 71.67

• 74.70 2.86 3.03
IMAGE 12.42 13.29 95.45 96.06 97.71 0.61 1.65
CHESS 55.64 54.95 61.32 97.12

• 98.72 35.80 1.60
LAND-COVER 16.12 15.37 78.06 82.99

• 86.08 4.93 3.09
MADELON 49.27 50.31 54.81 69.23

• 76.58 14.42 7.35
INDOORLOC 26.61 25.12 34.39 99.97

• 100.00 65.58 0.03
ADS 86.12 86.06 85.99 94.43

• 97.59 8.44 3.16
GISETTE 50.08 50.27 84.97 94.83

• 97.43 9.86 2.6
1
Biau08, Biau12, and Denil14 are consistent random forests algorithms.

2
Breiman is the original random forests algorithm. (It has not been proved to be consistent.)

• BRF is significantly better than Denil14 at a level of significance 0.05.

but has been significantly narrowed down to within 3% in al-
most all data sets. Actually, the gap is caused by the data
point partitioning procedure in BRF which reduces the in-
stance size for constructing the trees. Particularly, on MADE-
LON data set, the gap is still 7.35% although BRF has al-
ready tremendously outperformed Denil14. The main rea-
son is that after the partitioning, the number of instances are
severely insufficient for 500 attributes.

Overall, BRF is proved to be consistent. In addition, BRF
not only empirically outperforms all other consistent random
forests, but also achieves the closest empirical performance
to Breiman than previous theoretical variants including the
state-of-the-art consistent random forests Denil14.

5.4 Cross-test for parameter settings

In this subsection, we conduct a series of cross-test experi-
ments to evaluate the influence of parameters in BRF, i.e., the
ratio of structure points to entire points (Ratio), the num-
ber of trees M and the probabilities p1 as well as p2 in the
Bernoulli distributions.

Due to page limitations, we select three representa-
tive data sets with small, middle and large instances
or attributes, i.e., CHESS, MADELON and ADS. We
test Ratio among {0.15, 0.3, 0.45, 0.6, 0.75, 0.9}, M

among {1, 10, 100, 500, 1000, 5000}, p1 and p2 among
{0.05, 0.15, 0.25, 0.35, 0.45, 0.5}.

The results in Fig. 2 show that the accuracy increases grad-
ually and approaches to a stable value as the number of
trees M increases. Besides, Fig. 2 indicates that the best
Ratio varies across data sets (e.g., 0.45 for CHESS, 0.75 for
MADELON, 0.3 for ADS). In addition, Fig. 3 demonstrates
that BRF is not sensitive to p1 and p2 as long as they have
small values (i.e., p1, p2  0.25). Recalling the tree con-
struction procedure of BRF, we know that p1 and p2 are two
parameters to balance the consistency analysis and empirical
performance. When p1, p2 ! 0, BRF is close to Breiman.
When p1, p2 ! 1, BRF is close to Biau08. Therefore, p1 and
p2 can use small values empirically. Meanwhile, on one hand,
a large Ratio value implies less estimation points, which re-
sults in imprecise leaf predictors. On the other hand, a small
Ratio value will lead to less structure points, so the structure
of the tree will not be optimal. Generally, Ratio value is set
as 0.5 to balance the structure and estimation parts, without
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Figure 2: Classification accuracy (ACC%) of BRF with dif-
ferent M and Ratio. (p1 = p2 = 0.05)
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Figure 3: Classification accuracy (ACC%) of BRF with dif-
ferent p1 and p2. (M = 100, Ratio = 0.5)

favour of any part. Besides, the ensemble size (i.e., the num-
ber of trees M ) is set considering the computation time and
accuracy, because the accuracy tends to be stable once the
ensemble size is larger than a threshold.

6 Conclusion

In this paper, we proposed a new Bernoulli random forests
model (BRF) with sound empirical performance and proved
theoretical consistency. We argued that although Breiman’s
original random forests have very good empirical perfor-
mance, their theoretical consistency has yet to be proved due
to the highly sensitive data-driven tree construction proce-
dure. On the other hand, several random forests variants have
nice theoretical consistency but they all suffer from poor em-
pirical performance. In the proposed BRF, we employ two
Bernoulli distributions to help determine the attributes as well
as the splitting points used by each node. For each Bernoulli
trial, it determines whether to use a random process or a de-
terministic process to build the tree with a probability value.
As a result, the trees constructed by BRF are much less data-
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dependent, compared to Breiman’s original random forests,
yet still have much better performance compared to theoret-
ically consistent random forests. Experiments and compar-
isons validate that BRF significantly outperforms all existing
consistent random forests, and its performance is very close
to Breiman’s original random forests. BRF takes a step for-
ward to close the gap between theoretical consistency and
empirical soundness of random forests classification.
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