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Abstract

Deep feature learning has recently emerged with
demonstrated effectiveness in domain adaptation.
In this paper, we propose a Deep Nonlinear Fea-
ture Coding framework (DNFC) for unsupervised
domain adaptation. DNFC builds on the marginal-
ized stacked denoising autoencoder (mSDA) to ex-
tract rich deep features. We introduce two new ele-
ments to mSDA: domain divergence minimization
by Maximum Mean Discrepancy (MMD), and non-
linear coding by kernelization. These two elements
are essential for domain adaptation as they ensure
the extracted deep features to have a small distri-
bution discrepancy and encode data nonlinearity.
The effectiveness of DNFC is verified by exten-
sive experiments on benchmark datasets. Specifi-
cally, DNFC attains much higher prediction accu-
racy than state-of-the-art domain adaptation meth-
ods. Compared to its basis mSDA, DNFC is able
to achieve remarkable prediction improvement and
meanwhile converges much faster with a small
number of stacked layers.

1 Introduction
Conventional machine learning needs sufficient labeled data
to achieve satisfactory prediction performance. Nonethe-
less, the acquiring of labeled data is an expensive and time-
consuming process. Domain adaptation [Ben-David et al.,
2007; Pan and Yang, 2010; Margolis, 2011] provides an ef-
fective way to manage the label scarcity of data. The objec-
tive of domain adaptation is to learn a model that works well
in a target domain where none or scarce labeled data is avail-
able, by leveraging upon the knowledge from a different but
related source domain with plenty of labeled data. The main
challenge of domain adaptation lies in the distribution dis-
crepancy between source and target domains [Ben-David et
al., 2007]. Therefore, a direct application of the model learnt
from the source domain to the target domain often results in
poor performance, and thus effective adaptation is in demand.

Depending on the availability of labeled data in the tar-
get domain, domain adaptation can be categorized into unsu-
pervised one (with no labeled data) and semi-supervised one

(with scarce labeled data). In this paper, we focus on unsuper-
vised domain adaptation, which is a more difficult task since
no labeled data in the target domain can be used to guide the
model learning.

In order to address the distribution discrepancy in unsu-
pervised domain adaptation, various feature-based methods
[Pan et al., 2011; Gong et al., 2012; Fernando et al., 2013;
Long et al., 2014] are developed. They share the same
underlying intuition which tries to find new feature repre-
sentations well aligning the two domains. Among them,
deep feature learning [Glorot et al., 2011; Chen et al., 2012;
Zhou et al., 2014; Ding et al., 2015] has attracted much atten-
tion with demonstrated effectiveness. It learns deep features
jointly from source and target data in an unsupervised man-
ner. By doing so, generic concepts that exist in both domains
can be extracted and captured in the new feature space. Such
concepts can be further sharpened when more layers of deep
features are constructed. Therefore, when operating on the
deep feature spaces, the model learnt from one domain is able
to adapt better to the other.

One typical unsupervised deep feature learning method
is the marginalized stacked denoising autoencoder (mSDA)
[Chen et al., 2012]. It extracts multi-layer deep features by
reconstructing the input data from a number of randomly cor-
rupted ones. By averaging over an infinite number of cor-
ruptions, robust features can be extracted efficiently without
materializing any data corruption. The feature representation
generated by mSDA has yielded very impressive performance
for cross-domain sentiment analysis. It has also been em-
ployed as a building block in other domain adaptation meth-
ods [Zhou et al., 2014; Ding et al., 2015].

Despite its success, mSDA suffers from two limitations.
First, it does not pay attention to the domain divergence that
might arise in the new feature space. As a result, distribu-
tion discrepancy on the extracted features may still be large.
Second, it injects the nonlinearity after the feature learning.
Consequently, the extracted features may not capture much
nonlinear relationship in the data, which compromises one of
the biggest strengths of deep learning.

In this paper, we propose a Deep Nonlinear Feature Cod-
ing framework (DNFC) to address these two limitations of
mSDA for unsupervised domain adaptation. In DNFC, the
minimization of domain divergence and the exploitation of
data nonlinearity are incorporated seamlessly into the deep

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2189



Figure 1: Deep nonlinear feature coding framework

feature learning. More specifically, we introduce two new
elements, Maximum Mean Discrepancy (MMD) and kernel-
ization, into 1-layer mSDA and stack the single-layer non-
linear feature coding to create higher-level deep features. As
illustrated in Figure 1, at each layer, we measure the distri-
bution discrepancy between the source and target domains in
the new deep feature space by MMD and minimize it in the
feature learning process. This enforces the distribution dis-
crepancy in the new feature representation, on which domain
adaptation is performed, to be minimized. Moreover, we also
develop a kernelization that fuses the nonlinearity exploita-
tion with the feature learning. Both elements play important
roles in learning good features for domain adaptation and are
enclosed in a unified framework.

2 Related Work
A number of feature-based methods have been developed for
unsupervised domain adaptation. These methods aim to learn
a common feature representation shared by source and target
domains, on which the model built from the source domain
adapts well to the target domain. One typical approach is to
construct subspaces as new feature representations. Recent
studies include GFK [Gong et al., 2012], DASA [Fernando et
al., 2013], and TJM [Long et al., 2014]. GFK integrates an in-
finite number of subspaces that lie between source and target
along the geodesic flow on a Grassmann manifold. DASA di-
rectly aligns the subspaces of the two domains, without con-
sidering intermediate subspaces. TJM extracts a subspace by
jointly matching features and reweighting instances under the
kernel PCA.

As another type of feature-based method, deep feature
learning has recently emerged and demonstrated its effective-
ness for unsupervised domain adaptation. Marginalized de-
noising autoencoder (mDA) [Chen et al., 2012] learns fea-
ture embedding by reconstructing the original data from the
randomly corrupted ones. To extract multiple layers of deep
features, mDA are stacked to mSDA in a layer-wise man-
ner. Thanks to its effectiveness in capturing deep structures
embedded in data, mSDA is also used as a building block
for other domain adaptation methods [Zhou et al., 2014;
Ding et al., 2015]. In addition, autoencoders are also applied
to transfer model parameters across different domains [Deng
et al., 2013; Kandaswamy et al., 2014; Zhuang et al., 2015].

In this paper, we incorporate two new elements into mSDA,
which makes it more powerful for domain adaptation.

Our work adopts Maximum Mean Discrepancy (MMD)
[Gretton et al., 2006] to quantify the domain divergence.
MMD is widely used to measure the distance between two
distributions in domain adaptation [Pan et al., 2011; Long et
al., 2013; Wang et al., 2015]. It avoids density estimations
and uses the mean embeddings of the two distributions in a
Reproducing Kernel Hilbert Space (RKHS) H for distance
calculation. Given two sets of samples X = {x1, ...,xn1}
and Y = {y1, ...,yn2}, drawn from the distributions P and
Q respectively, the empirical MMD is calculated as:

|| 1
n1

n1X

i=1

�(xi)� 1

n2

n2X

i=1

�(yi)||H,

where � : R ! H with K(xi,xj) = �(xi)T�(xj) as the
kernel of H.

3 A Deep Nonlinear Coding Approach
In this section, we introduce the proposed Deep Nonlinear
Feature Coding (DNFC) approach in detail.

3.1 Problem Statement
Denote Xsrc as a set of ns labeled samples from source
domain: Xsrc = {xs

1, ...,x
s
ns
} and Ysrc = {ys1, ..., ysns

},
where x

s
i 2 Rd and ysi is the class label. Denote Xtar as

a set of nt unlabeled samples from target domain: Xtar =
{xt

1, ...,x
t
nt
}, where x

t
i 2 Rd. Denote X = Xsrc [Xtar =

[x1, ...,xns , ...,xn] = [f1; f2; ...; fd] 2 Rd⇥n, where n =
ns + nt and fi 2 Rn is the i-th dimensional feature vector.
The task is to predict the labels Ytar in the target domain, by
leveraging the labelled data from the source domain.

3.2 Main Idea
The proposed DNFC aims to extract deep structures from
source and target data, and use them as features in domain
adaptation. DNFC is based on the marginalized stacked
denoising autoencoder (mSDA) [Chen et al., 2012], which
extracts multiple layers of deep features by stacking the
marginalized denoising autoencoder (mDA). Though mSDA
has demonstrated encouraging results for domain adaptation
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[Chen et al., 2012; Zhou et al., 2014; Ding et al., 2015], it
suffers from two limitations. First, the deep features are ex-
tracted by minimizing the reconstruction error solely. The di-
vergence between source and target in the deep feature space
is not taken care of. Second, mSDA learns a linear mapping,
after which the nonlinearity is inserted by applying a nonlin-
ear squashing function. As a result, the nonlinear relationship
embedded in the data may not be well exploited and captured.

To address these two limitations, we propose to bring in
two new elements: (1) Maximum Mean Discrepancy (MMD)
for domain divergence minimization; and (2) kernelization
for nonlinear coding. In the subsequent subsections, we first
introduce the original mDA, followed by these two new ele-
ments. We then describe how we incorporate them seamlessly
with mSDA in a unified framework for domain adaptation.

3.3 The Original mDA
mDA is a type of autoencoder that corrupts the inputs be-
fore mapping them into the deep representation [Chen et al.,
2012]. It aims to learn a linear mapping W to reconstruct the
original data from the corrupted ones. Its objective function
is formulated as:

L(W)mDA =
1

2mn
tr[(X�W

e
X)T(X�W

e
X)], (1)

where X = [X,X, ...,X], is the m-times repeated version
of the input X; e

X = [fX1, fX2, ..., gXm] is the corrupted ver-
sion of X with m different corruptions of X at a feature cor-
ruption probability p; and tr(·) is the operator to calculate
the trace of a matrix. A robust mapping W in Eq. (1) can
be obtained by averaging over infinitely many m corruptions,
without actually constructing any corruption. This process is
named marginalization and enables efficient implementation.

3.4 Domain Divergence Minimization by MMD
We propose to use MMD to quantify the domain divergence
in the learnt deep feature space and incorporate it in the learn-
ing of W. This is particularly essential for unsupervised
learning of deep features since no labeled data in the target
domain is available to guide the feature learning.

Denote f
x

r
i as the i-th sample in the r-th corrupted version

of X. Following the definition of MMD, the empirical dis-
tance between source and target domains in the r-th recon-
structed space is:

|| 1
ns

nsX

i=1

W

f
x

r
i �

1

nt

nX

i=ns+1

W

f
x

r
i ||2

=tr(Wf
X

r
M

f
X

r
T
W

T)

(2)

where M = [Mi,j ]n⇥n with Mi,j = 1
n2
s

if xi,xj 2 Xsrc;
Mi,j =

1
n2
t

if xi,xj 2 Xtar; otherwise Mi,j = � 1
nsnt

.
Combining Eq. (1) and Eq. (2), and considering m cor-

rupted versions, we formulate the objective function as:

L(W) = tr[(X�W

e
X)T(X�W

e
X)]

+ ✓tr(W e
X

f
M

e
X

T
W

T),
(3)

where f
M is a block diagonal matrix with m copies of M as

the diagonal elements, and ✓ > 0 is the balancing parameter.
Eq. (3) has a closed-form solution:

W = P(Q1 + ✓Q2)
�1 with

P = X

e
X

T, Q1 = e
X

e
X

T, Q2 = e
X

f
M

e
X

T.
(4)

The computation of W relies on the construction of m cor-
ruptions of X. The more corruptions are constructed, the
more robust W is. Since the corruptions are obtained in-
dependently with the same corruption probability p for each
feature, we can apply the weak law of large numbers and de-
rive the expectations of P, Q1 and Q2 as m ! 1.

Define q = [1 � p, 1 � p, ..., 1 � p] 2 Rd, R = XX

T,
S = XMX

T, and T = XNX

T (N is a diagonal matrix
whose diagonal elements are the same as those in M).

For Q1, we have:

E[Q1] = E[fXr f
X

r
T
]

) E[Q1]↵,� = E[ efr↵ e
f

r
�

T
] = E[

nX

i=1

gfr
↵,i

gfr
�,i]

When ↵ 6= �,

E[Q1]↵,� = q↵q�

nX

i=1

f↵,if�,i = q↵q�R↵,�

When ↵ = �,

E[Q1]↵,↵ = q↵

nX

i=1

f↵,if↵,i = q↵R↵,↵

For Q2, we have:

E[Q2]↵,� = E[efr↵M e
f

r
�

T
] = E[

nX

i=1

nX

j=1

gfr
↵,iMi,j

gfr
�,j ]

When ↵ 6= �,

E[Q2]↵,� = q↵q�

nX

i=1

nX

j=1

f↵,iMi,jf�,j = q↵q�S↵,� .

When ↵ = �,

E[Q2]↵,↵ = q2
↵

nX

i=1

nX

j=1
i 6=j

f↵,iMi,jf↵,j + q↵

nX

i=1

f2
↵,iMi,i

= q2
↵S↵,↵ + q↵(1� q↵)T↵,↵.

Similarly, we can obtain the expectation of P as E[P]↵,� =
q�R↵,� .

After obtaining these expectation matrices, the mapping
W can be computed as:

W = E[P](E[Q1] + ✓E[Q2])
�1. (5)

By incorporating MMD into mDA, we not only take advan-
tage of mDA in obtaining discriminative deep features but
also ensure that the new feature space brings the two domains
as close as possible. As evidenced by our experimental re-
sults, this leads to much better adaptation performance. We
also remark that the incorporation of MMD is seamless in the
sense that the marginalization property of mDA is preserved
and thus the efficiency of the proposed approach is ensured.

2191



3.5 Nonlinear Coding by Kernelization
With the learning of W, only the linear relationship in the
input data is captured. In the original mDA, the nonlinear-
ity is inserted by applying a nonlinear squashing function on
the output of mDA. Consequently, the nonlinearity in the data
may not be well exploited because it is not taken care of in the
learning of W. Note that with the incorporation of MMD,
such a neglect also harms the minimization of domain diver-
gence in the deep feature space.

In order to address this issue, we propose a kernelized so-
lution. Specifically, we use a nonlinear mapping function �
to map the original data to a RKHS. We then reconstruct the
original data by randomly corrupting the mapped data in the
RKHS. By doing so, we factor in the nonlinearity in the learn-
ing of W and thus in the extracted deep features.

Suppose that X is mapped to a RKHS H by a nonlin-
ear mapping function � : Rd ! H. Denote �(X) =
[�(x1), ...,�(xns), ...,�(xn)] as the mapped data matrix and
K = �(X)T�(X) as the corresponding kernel matrix. The
mDA term to reconstruct the original data from the corrupted
mapped data now becomes:

L(W)mDA =
1

2mn
tr[(X�W�̂(X))T(X�W�̂(X))]

where �̂(X) = [�̂(X)1, �̂(X)2, ..., �̂(X)m] represents the
corrupted mapped data with m different corruptions of �(X).

With the incorporation of nonlinearity, the objective func-
tion that combines mDA and MMD terms becomes:

L(W) =tr[(X�W�̂(X))T(X�W�̂(X))]

+ ✓tr(W�̂(X)fM�̂(X)
T

W

T)

According to [Niyogi, 2004], the linear mapping W in H can
be represented as a linear combination of the data points in
H, that is, W = Wk�(X)T. The objective function thus
becomes:

L(Wk) = tr[(X�Wk
e
K)T(X�Wk

e
K)]

+ ✓tr(Wk
e
K

f
M

e
K

T
W

T
k ),

(6)

where e
K = [fK1, fK2, ..., gKm] is the m corrupted kernel ma-

trix with f
K

r = [fkr
1;fkr

2; ...;fkr
n], fkr

i = [gkri,1,gkri,2, ...,gkri,n] and
gkri,j = �(xi)

T�̂(xj)
r. The closed-form solution of Eq. (6)

is:
Wk = Pk(Qk1 + ✓Qk2)

�1 with

Pk = X

e
K

T, Qk1 = e
K

e
K

T, Qk2 = e
K

f
M

e
K

T.
(7)

Since corrupting �(X) corresponds to corrupting the ker-
nel matrix K, we assume that each element gkri,j is corrupted
with probability p. We now define the kernelized counter-
parts: q

0 = [1 � p, 1 � p, ..., 1 � p] 2 Rn, R0 = KK

T,
S

0 = KMK

T, and T

0 = KNK

T. The expected values of
Qk1 and Qk2 can be obtained in a similar way to those of Q1

and Q2:

E[Qk1]↵,� = E[
nX

i=1

gkr↵,igkr�,i] = q

0
↵q

0
�R

0
↵,� ,

E[Qk1]↵,↵ = E[
nX

i=1

gkr↵,igkr↵,i] = q

0
↵R

0
↵,↵,

E[Qk2]↵,� = E[
nP

i=1

nP
j=1

gkr↵,i Mi,j
gkr�,j ] = q

0
↵q

0
�S

0
↵,� ,

E[Qk2]↵,↵ = E[
nX

i=1

nX

j=1
i 6=j

gkr
↵,iMi,j

gkr
↵,j +

nX

i=1

gkr
↵,iMi,i

gkr
↵,i]

= q0
↵q

0
↵S

0
↵,↵ + q0

↵(1� q0
↵)T

0
↵,↵.

Similarly, we define U = XK

T and obtain the expectation
of the matrix Pk: E[Pk]↵,� = q

0
�U↵,� . Then, we obtain the

mapping matrix:

Wk = E[Pk](E[Qk1] + ✓E[Qk2])
�1. (8)

Our nonlinear feature coding at a single layer is then de-
fined as:

Z = WkK. (9)
It encloses both the data nonlinearity and domain similarity
in the deep feature space.

3.6 Deep Nonlinear Feature Coding (DNFC)
Similar to the stacking of mDA in mSDA, we stack our
single-layer feature coding in Section 3.5 so as to create richer
deep feature representations. The framework is illustrated in
Figure 1. The stacking is performed by feeding the output
Z = [Zsrc,Ztar] of each layer into the next layer as the in-
put. In this way, higher-level deep structures can be captured.
To avoid overfitting the data nonlinearity during stacking, we
conduct cross validation at each layer on the source data to
select a suitable kernel function. Our proposed DNFC is sum-
marized in Algorithm 1.

For domain adaptation, we concatenate the outputted fea-
ture coding at all L layers as the final feature representation.
A classifier is then trained on the labeled source data and ap-
plied to the target domain to perform the prediction.

Algorithm 1 Deep Nonlinear Feature Coding
Input: Source data matrix Xsrc, target data matrix Xtar,
and the number of layers L.
for k = 1 to L do

1. Select kernel function using cross validation on
source;
2. Learn coding Z

k
src and Z

k
tar by Eq. (9);

3. Set Xk+1
src = Z

k
src and X

k+1
tar = Z

k
tar.

end for
Output: Feature coding {Zk

src,Z
k
tar}, (k = 1, ..., L).

4 Experimental Results
In this section, we evaluate the performance of DNFC by
comparing with state-of-the-art domain adaptation methods.
We also study the properties of DNFC and analyze the effect
of the two new elements in DNFC.
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4.1 Datasets & Experimental Setting
We use two benchmark datasets that are widely used in do-
main adaptation.

Amazon product review dataset [Blitzer et al., 2007]
contains sentiment reviews from four product categories:
books (B), DVD (D), electronics (E) and kitchen appliance
(K). Each review is characterized by unigram and bigram tf-
idf features and labeled as positive or negative. Each do-
main has about 5,000 samples. When a domain is selected
as source (target), all the samples in this domain are used as
training (test) data. By pairing up the domains for adaptation
task, we have 12 domain pairs, denoted as ‘source!target’.
For example, K!E means that category K is the source do-
main and E is the target domain.

20-Newsgroups [Dai et al., 2007] consists of about 20,000
documents coming from four top categories: computer (C),
recording (R), science (S), and talk (T). Each top category
has four subcategories. Top categories are treated as labels,
while subcategories are treated as related domains. There-
fore, six binary prediction tasks are formed: C-R, C-S, C-T,
R-S, R-T, and S-T. We take the task C-R for instance. Top
category C is the positive class and R is the negative class.
Two subcategories under each class are selected to constitute
the source domain, while another two subcategories are se-
lected to form the target domain. By exchanging the roles of
the two domains, we have two domain pairs for the prediction
task C-R, denoted as C-R1 and C-R2.

We compare DNFC with five baselines: NN, which pre-
dicts target labels using the 1-nearest neighbour classifier
trained on the source domain with original features, DASA
[Fernando et al., 2013], GFK [Gong et al., 2012], TJM [Long
et al., 2014], and mSDA [Chen et al., 2012]. Following
[Gong et al., 2012; Long et al., 2014], we use 1-NN as the
base classifier since it avoids model parameter tuning. For
subspace-based methods DASA, GFK, and TJM, we use the
default subspace dimension d if it is specified by the authors,
otherwise we set d to be the smallest one that contributes 85%
of the energy. For TJM, we use the default kernel function
specified by the authors. In our DNFC, we conduct the cross
validation on source to automatically select between ‘rbf’ and
linear kernels at each layer. For mSDA and DNFC, we set the
default number of layers as three and do the cross validation
on source to select the best corruption probability p between
0.1 and 0.9 with step size 0.1.

4.2 Comparison with Baselines
The classification accuracies of DNFC and five baselines on
the two benchmarks are reported in Table 1. The best result
on each domain pair is highlighted in bold, and the runner-up
is highlighted in bold-italic.

As can be seen in Table 1, our DNFC achieves very promis-
ing performance and is a clear winner. Out of 24 domain
pairs, DNFC performs the best in 21 and the second best in
3. For mSDA, on which DNFC is based, it is the best for 3
domain pairs and the runner-up for 15 domain pairs. The re-
maining 6 runner-ups mostly go to TJM, which is the most re-
cent subspace-based method with nonlinear feature mapping.
The performance improvement of DNFC over the second best
method mSDA is up to 14.12% and is 5.32% on average. This

Table 1: Accuracy (%) on two benchmark datasets

Dataset NN DASA GFK TJM mSDA DNFC
B ! D 51.04 59.42 55.49 61.92 64.79 66.66
B ! E 53.26 57.36 55.84 59.92 65.79 66.43
B ! K 56.37 60.68 58.86 61.65 64.01 69.35
D ! B 52.51 61.29 56.95 63.34 67.09 70.84
D ! E 55.23 59.23 57.28 63.16 67.07 67.31
D ! K 56.53 61.36 59.27 65.52 69.06 68.35
E ! B 51.45 56.82 54.29 61.16 62.13 62.22
E ! D 51.37 57.21 54.24 62.94 63.19 65.16
E ! K 54.84 65.62 61.66 70.84 75.49 72.73
K ! B 50.93 51.93 51.44 61.74 52.95 62.65
K ! D 51.86 57.31 54.36 63.35 60.79 63.83
K ! E 53.55 59.38 54.53 69.37 69.67 74.11
C-R1 56.21 57.75 60.33 60.75 53.90 68.98
C-R2 55.22 60.73 60.31 63.36 79.30 78.03
C-S1 60.31 61.08 55.86 63.13 63.47 77.59
C-S2 54.51 61.07 56.73 60.39 58.86 72.40
C-T1 59.62 72.15 68.61 77.13 85.93 87.18
C-T2 58.78 68.56 67.82 76.45 87.38 91.27
R-S1 59.29 62.91 49.54 64.34 68.63 77.38
R-S2 62.31 50.67 65.60 62.90 71.84 74.70
R-T1 51.89 60.89 53.50 67.99 59.75 76.61
R-T2 53.49 57.80 58.32 64.07 60.68 69.82
S-T1 54.78 62.63 53.26 65.18 69.54 82.02
S-T2 57.39 64.74 59.57 62.77 75.28 83.14

Average 55.11 60.36 57.65 64.72 67.36 72.68

demonstrates that the two new elements in DNFC are very ef-
fective in achieving better domain adaptation.

The results also show that the deep-feature-based methods,
DNFC and mSDA, significantly outperform the subspace-
based methods. This demonstrates the superiority of exploit-
ing deep structures. The success of DNFC and TJM (with
respect to other subspace-based methods) also reveals the ne-
cessity of capturing the data nonlinearity. Our DNFC takes
advantage of both and thus is able to significantly boost the
domain adaptation performance.

4.3 Property Study on DNFC
In this subsection, we study our proposed DNFC in four as-
pects: 1) sensitivity analysis on the balancing parameter ✓; 2)
the influence of the number of layers; 3) the kernel functions
selected in each layer; and 4) the effect of feature concatena-
tion. Due to space limit, we only report the results of three
domain pairs: S-T1, R-T1, and K!E.

As shown in Figure 2(a), with the increase of ✓, the classi-
fication accuracy generally increases until it gets stable. The
larger ✓ is, the more sensitive the MMD term is to the objec-
tive function. When the empirical MMD gets stable, larger
values of ✓ cannot further improve the performance. For all
three domain pairs, this happens when ✓ reaches 103, which
is also the case for all other domain pairs. In our experiments,
we set ✓ = 103 as default.

Figure 2(b) shows how the number of layers affects the per-
formance of DNFC. The results of mSDA are also shown as
a reference. In general, both DNFC and mSDA obtain bet-
ter results when more layers are stacked. However, they have
different trends. With the increase in the number of layers,
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(a) Sensitivity analysis on the balancing pa-
rameter ✓

(b) Influence of the number of layers (c) Kernel functions selected at each layer

Figure 2: Property study on DNFC

the performance of DNFC converges very fast, while that of
mSDA improves gradually. Even after 7 layers of stacking,
mSDA is still not as good as DNFC. In particular, the accu-
racy of mSDA is about 5% worse than that of DNFC for S-T1
and R-T1 with 7 layers of stacking. The different trends may
be due to the different ways of exploiting the data nonlinear-
ity. mSDA injects the nonlinearity to the output of each layer,
while DNFC incorporates the consideration of nonlinearity
into the feature learning process. As a result, the data nonlin-
earity can be captured by DNFC more quickly with a small
number of stacked layers. Considering that more stacked lay-
ers incur heavier computational overheads, the quicker con-
vergence of DNFC also becomes a big strength, which makes
it more practically useful in real applications.

Figure 2(c) shows the kernels selected by the cross vali-
dation on the source domain at different layers of DNFC. It
demonstrates the flexibility of selecting different suitable ker-
nels for different layers even for the same domain pair.

We also investigate the impact of concatenating all layers
of features. We test DNFC using the final layer features only
and find that the performance is just slightly compromised.
On 20-Newsgroups, its average accuracy is only 0.53% lower
than the one with concatenated features. This suggests that
one can simply use the final layer features in DNFC if the
slightly lower accuracy is not a big concern.

4.4 Effect of New Elements in DNFC
In this subsection, we assess the individual effect of MMD
and kernelization in DNFC, as well as their joint effects, with
respect to the performance of domain adaptation.

We develop two variants of mSDA: one with MMD but
not kernelization, the other with the kernelization but not
MMD. The two variants are referred to as mSDA MMD and
mSDA Kernel, respectively. We compare DNFC with mSDA
and the two variants on the 20-Newsgroups dataset.

The results are reported in Table 2. Overall, either MMD or
kernelization alone improves the performance. This demon-
strates the effectiveness of each individual element in DNFC.
Moreover, as evidenced by the performance of DNFC, in-
tegrating MMD and kernelization together is able to further
boost the improvement. We notice that the impacts of MMD
and kernelization could vary even within the same domains.

Table 2: Accuracy (%) on 20-Newsgroups for assessing the
effect of new elements in DNFC

Dataset mSDA mSDA MMD mSDA Kernel DNFC
C-R1 53.90 71.21 58.27 68.98
C-R2 79.30 77.95 75.40 78.03
C-S1 63.47 70.92 73.48 77.59
C-S2 58.86 63.63 69.59 72.40
C-T1 85.93 89.00 87.46 87.18
C-T2 87.38 87.49 90.75 91.27
R-S1 68.63 75.71 65.85 77.38
R-S2 71.84 71.33 65.26 74.70
R-T1 59.75 72.54 59.94 76.61
R-T2 60.68 67.97 52.87 69.82
S-T1 69.54 78.05 77.29 82.02
S-T2 75.28 76.73 83.35 83.14

Average 69.55 75.21 71.63 78.26

This is because their effects are affected by the choices of p
and the kernel, which are selected using cross validation on
source data. We also observe occasional inferior performance
of DNFC and the variants to mSDA. This may be again due
to the parameter selection on source data, which might result
in overfitting when generalizing to target domain.

5 Conclusion

In this paper, we propose a deep nonlinear feature coding
framework for unsupervised domain adaptation. It incorpo-
rates MMD and kernelization into mSDA to extract nonlinear
deep features with minimum domain divergence. Extensive
experimental studies show that DNFC achieves very promis-
ing results. It consistently and significantly outperforms all
baselines in terms of prediction accuracy. Compared to the
best baseline mSDA, DNFC attains up to 14% better accu-
racy and converges much faster in terms of the number of
stacked layers. The effects of MMD and kernelization on the
performance of DNFC are also investigated. It is shown that
DNFC benefits from both elements, as well as their joint ef-
fects. All the results demonstrate that DNFC is an effective
and promising solution to unsupervised domain adaptation.
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