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Abstract

We study the multi-play budgeted multi-armed ban-
dit (MP-BMAB) problem, in which pulling an arm
receives both a random reward and a random cost,
and a player pulls L(> 1) arms at each round. The
player targets at maximizing her total expected re-
ward under a budget constraint B for the pulling
costs. We present a multiple ratio confidence bound
policy: At each round, we first calculate a truncated
upper (lower) confidence bound for the expected
reward (cost) of each arm, and then pull the L arms
with the maximum ratio of the sum of the upper
confidence bounds of rewards to the sum of the
lower confidence bounds of costs. We design a 0-
1 integer linear fractional programming oracle that
can pick such the L arms within polynomial time.
We prove that the regret of our policy is sublinear
in general and is log-linear for certain parameter
settings. We further consider two special cases of
MP-BMABSs: (1) We derive a lower bound for any
consistent policy for MP-BMABs with Bernoulli
reward and cost distributions. (2) We show that the
proposed policy can also solve conventional bud-
geted MAB problem (a special case of MP-BMABs
with L = 1) and provides better theoretical results
than existing UCB-based pulling policies.

1

Multi-armed bandits (MAB) are a typical sequential decision
problem, in which a player receives a random reward by play-
ing one of K arms from a slot machine at each round and
wants to maximize her cumulated reward. Multiple real world
applications have been modeled as MAB problems, such as
auction mechanism design [Mohri and Munoz, 20141, search
advertising [Tran-Thanh et al., 2014], UGC mechanism de-
sign [Ghosh and Hummel, 2013], and personalized recom-
mendation [Li er al., 2010]. Many policies have been de-
signed for MAB problems and studied from both theoretical
and empirical perspectives, including UCBI, ¢,-GREEDY
[Auer et al., 2002], LinRel [Auer, 2003], UCB-V [Audibert
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et al., 2009], DMED [Honda and Takemura, 20101, and KL-
UCB [Garivier and Cappé, 2011]. A good survey on MAB
can be found in [Bubeck and Cesa-Bianchi, 2012].

Recently, budgeted MABs have attracted much research at-
tention. In budgeted MABs, playing an arm needs to pay a
cost while receiving a reward, and the player targets at max-
imizing her cumulative reward under a budget constraint for
the total costs. Different settings of costs have been studied in
budgeted MABs. Deterministic costs were studied in [Tran-
Thanh et al., 2012]. [Vanchinathan et al., 2015] attacked an
MAB related problem by taking both deterministic costs and
the diversity of the selected items into consideration. UCB
based algorithms were adapted to the random discrete cost
setting [Ding et al., 2013] and random continuous cost set-
ting [Xia er al., 2015al. Thompson sampling algorithm for
budgeted MAB was studied in [Xia ef al., 2015b]. Besides
minimizing the regret, the best arm identification problem for
budgeted MAB was studied in [Xia et al., 2016].

Multiple-play MABs, in which the player pulls multiple
arms at each round, have been studied in conventional set-
tings without considering budget [Anantharam et al., 1987,
Agrawal et al., 2010; Komiyama et al., 2015; Liu and Zhao,
2010; Chen et al., 2013]. In some applications, a decision
maker needs to take multiple actions at each round and con-
sider a budget constraint. For example, consider an adver-
tiser who creates an ad campaign to promote her products
in a search engine. To participate in search ad auctions, she
needs to choose multiple keywords for her campaign and set a
monthly/quarterly budget. Since each keyword (together with
a bid price) can be regarded as an arm [Ding et al., 2013], this
keyword selection and bid optimization problem can be mod-
eled as a budgeted MAB with multiple plays. In this work,
we study this new setting, the Multiple-Play Budgeted Multi-
armed Bandit (denote as MP-BMAB) problem. For simplic-
ity, we refer the simple case of the budgeted MAB, playing
a single arm at each round, as Single-Play Budgeted Multi-
armed Bandit (denoted as SP-BMAB).

Consider a bandit with K arms in total and the player needs
to pull L > 1 different arms at each round. There are (IL( ) dif-
ferent ways of pulling L different arms, and the number could
be of order O(2%) in the worst case. Therefore, we need to
carefully design policies that can efficiently deal with large
number of possible pullings. Our work can be summarized
from the following three aspects:



Policy Design: Intuitively, a good policy for MP-BMABs
should try to pull the L arms with the maximum ratio of the
sum of the expected rewards to the sum of the expected costs.
Since the reward and cost distributions of all the arms are un-
known, the policy needs to allocate necessary explorations to
all the arms. We design an efficient policy for the MP-BMAB
problem, called Multiple Ratio Confidence Bound policy (de-
noted as MRCB), which works as follows. For each arm,
we introduce a truncated upper confidence bound for the es-
timated expected reward and a truncated lower confidence
bound for the estimated expected cost. A hyper parameter
is introduced to the confidence bound, which brings flexibil-
ity to the policy. At each round, we pull the L arms with the
maximum ratio of the sum of the upper bounds of rewards to
the sum of the lower bounds of costs. How to find such L
arms with the maximum ratio is an 0-1 integer linear frac-
tional program (denoted as 0-1 ILFP) [Seerengasamy and Je-
yaraman, 2013]. We design an efficient algorithm that can
find the optimal solution of the 0-1 ILFP in our setting within
polynomial time.

Theoretical Analysis: We conduct theoretical analysis on
MRCB, and show that it enjoys a sublinear regret bound with
respect to budget B. By properly setting the hyper parameter,
we show that the policy theoretically achieves a log-linear
regret. Comparing with conventional MABs, there are two
challenges to analyze MRCB: (1) One needs to pull L dif-
ferent arms at each round (for simplicity, we say any L dif-
ferent arms constitute a super arm) and there are exponen-
tial number of possible super arms, which might bring the
combinatorial number into the regret bound and make the
bound very loose. (2) The randomness of both the rewards
and costs brings difficulties when decomposing the probabil-
ities that suboptimal super arms are pulled'. To address the
first challenge, we carefully divide the exponential number
of suboptimal super arms into K subsets and design interme-
diate events related to the pulling time of each super arm in
each subset. Doing so we can eliminate the affects brought by
the exponential number of super arms. To address the second
one, we introduce the J-gap in Eqn.(11a), based on which we
can separate the ratio related terms which depend on both re-
wards and costs into terms that depend on rewards only and
costs only.

Special Cases: We further study two special cases of MP-
BMABSs. First, for Bernoulli MP-BMABs (whose rewards
and costs are either 0 or 1), we give a lower bound to any con-
sistent policy and show that our proposed policy can match
the lower bound in terms of the order of B. Second, for con-
ventional budgeted MABs (i.e., SP-BMABs), we show that
our policy can be directly applied and achieves a better re-
gret bound than existing UCB based policies [Ding et al.,
2013]. We also provide a lower bound for SP-BMABs, which
is missing in the literature.

!The super arms which do not have the maximum ratio of the
sum of the expected rewards to the sum of expected costs are subop-
timal.
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2 The Problem

An MP-BMAB problem can be described as follows. Given a
slot machine with K arms (K > 2), at each round, the player
needs to pull L(> 1) different arms of the bandit. Denote
the set of arms pulled at round ¢ as I;. For each pulled arm
i € [K] atround ¢ (let [K] denote the set {1,2,--- , K'}), she
needs to pay a random cost ¢;(t) and receives a random re-
ward r;(t). Both ¢;(¢t) and r;(t) are drawn from distributions
supported in [0, 1]. We study the semi-bandir setting [Kveton
et al., 2015], in which the player can only observe ;(t) and
¢;(t) for pulled arms, i.e., for all ¢ € I;. The player can keep
pulling until her budget, B, runs out. B is a positive number
and does not need to be known to the player in advance.

Following the common practice in standard MABs, we as-
sume the independence between arms and rounds: the re-
wards and costs of an arm are independent of any other arm,
and the rewards (and costs) of arm ¢ at different rounds are
independently drawn from the same distribution with expec-
tation pj (and pf). For ease of reference, denote the vec-
tor (pu7, 14, -+, () as p”, and so for . Note that we do
not assume that the rewards of an arm are independent of its
costs. Without loss of generality, we assume 0 < u7, u§ < 1
for all ¢ € [K]. The player wants to minimize the regret,
which is usually defined as the differences between R*, the
maximum expect cumulative reward that a pulling policy can
obtain when the reward/cost distributions of all the arms are
known, and the expected reward that a policy can obtain, both
under the budget constraint. Mathematically,

Regret = R" — EZ:; Zieh ri(t)I{B¢ > 0},

where B, is the remaining budget at round ¢, i.e., B, =
B - Zizl > icr, ci(s), and I{-} is the indicator function.
I{E} = 1if the event E is true; otherwise, 0.

(€]

3 Pulling Policy

It is hard to find the optimal policy for MP-BMABs. Even for
a simplified setting, in which the reward and cost of each arm
are deterministic and L = 1, the problem is an unbounded
knapsack problem, which is NP-hard [Lueker, 1975]. For the
semi-bandit setting, this problem becomes even harder. To
solve the MP-BMAB problem, in this section, we first con-
sider a simple case with known reward and cost distributions
for all the arms, and show that a simple greedy policy M,
can obtain almost the same expected reward as R*. Then we
design a pulling policy for the setting with unknown reward
and cost distributions by leveraging M.

3.1 M, for Known Distributions

Remind that any L different arms from the K candidates con-
stitute a super arm. Let Cf denote the set of all the super
arms, which is mathematically defined as follows.

. K .
Wiz =1} 25 = Lyz; € {0,1} Vj € [K]}.
Let I, denote the super arm defined as follows:

Lo = argmax;cen (Y oper i)/ (Xper 13- 2

Without loss of generality, assume I, is unique. Define o7, as

(Zkel* 'u‘};)/(ZkEI* [1%)-



The greedy policy M is shown in Algorithm 1. Lemma 1
shows that M is close to the optimal policy for the case with
known reward/cost distributions, and therefore we call I, the
nearly-optimal super arm.

Algorithm 1: M for Known Distributions

1 Input: The reward and cost distributions of the K arms;
the budget B; L € [K];

2 For any arm ¢ € [K], calculate the expected reward p]
and expected cost (i5; find the I, of the bandit in (2);

3 Keep pulling the L arms in I, until the budget runs out.

Lemma 1 When the reward and cost distributions of all the
arms are known, we have R* < (B + L)p} and the expected
reward of M is at least (B — L)o3.

Due to space limitations, we leave the proof of Lemma 1 to
Appendix? A. Lemma 1 tells that the gap between R* and the
expected reward of M, is at most 2L g7, which is very small
when B is sufficiently large.

Step 2 of Algorithm 1 needs to find the I, defined in (2),
which is actually a 0-1 Integer Linear Fractional Program-
ming problem defined as follows.

max (3,7 a:i) /(X bi) st IeCE, 3)
where a and b are K-element vectors with the i-th element
a; > 0,b; > 0 for any i € [K]. We design a 0-1 ILFP Oracle
O(a, b, L) that can efficiently solve the optimization problem
in (3). The oracle is shown in Algorithm 2.

Algorithm 2: 0-1 ILFP Oracle O(a, b, L)

1 Input: Vectors a and b with a; > 0,b; > 0Vi € [K];
L € [K];

2 Boundary Cases: Denote Zy = {i|b; = 0,Vi € [K]}. If
|Zo| > L, then randomly return L elements in Zy; Else
if Lis 1, return argmax, (a;/b;) for any i € [K]
directly; Else, go to the next step;

3 Solve the LP problem marked with (A) by Interior Point
Method. Denote the solution as y* and z*.
max a’y s.t. Efil yi—Lz=0; b1y =1;

220, 0<y; <zVie|[K];

s LetZT ={ilyf =z%ie K|}, F ={il0<yf <zi€
[K]}; If |Z| = L, return T; otherwise, pick any L — |Z|
elements from % forming %' and return Z U F'.

(A)

Lemma 2 The O(a,b, L) in Algorithm 2 can output the op-
timal solution of (3) within polynomial time®.

The proof of Lemma 2 is constructive: (1) Relax the 0-1 inte-
ger constraints to continuous ones, (2) solve the relaxed linear
fractional programming, and then (3) convert the fractional
solutions to integer ones. Complete proof is in Appendix B.

2All the appendices are included in the online full version of this
work, which is at http://goo.gl/ewyX9c.

3We follow the common practice in combinatorial optimization
literature that the “polynomial time” means “polynomial time in the
number of bits of precision in which the inputs are specified”.
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3.2 Multiple Ratio Confidence Bound Policy

Now we turn to the MP-BMAB problem with unknown
reward/cost distributions. We can only observe the re-
wards/costs of the pulled arms at each round. Our idea is
simple and straightforward: We estimate the expected re-
ward/cost of each arm using historical observations and then
apply Algorithm 2 with estimated expected rewards/costs as
input to select the pulled arms at each round.

For any i € [K], let T;(t), i (t), 15 (t) and EF; denote the
number of pulling rounds, the empirical average reward and
cost, and a confidence term of arm ¢ at round ¢ respectively:

t

Ti(t) =Y i€ L}, ai(t

s=1

)= %@;rusmi €L},

kIn(t — 1)
T;(t—1) "’

(C))

t

> eils)i € L}, £ =

s=1

T;(t)
where « is a positive hyper parameter, which brings flexibil-
ity* to our policy.

Note that for each arm, we do not directly replace the ex-
pected reward and cost by the empirical average reward and
cost. Instead, we take the uncertainty of the estimation into
consideration. Define i (¢) and fi¢(¢) as the truncated up-
per confidence bound for the empirical average reward (see
(5)) and truncated lower confidence bound for the empirical
average cost (see (6)) respectively.

fii (t) = min{fi; (t = 1) + &y, 1} Q)
fii (t) = max{j; (t — 1) — &, 0}. ©)
Our proposed policy, Multiple Ratio Confidence Bound pol-
icy (briefly denoted as MRCB), is shown in Algorithm 3, in

which /i"(t) is a K-dimensional vector’® with the i-th element
fr (t), and so for fi°(t).

Algorithm 3: Multiple Ratio Confidence Bound (MRCB)
1 Input: hyper parameter x > 0, the budget B; L € [K];

2 fort —1:[K/L]do
3 | Pullarms {([(t = 1)L +j — 1] mod K) +1|j € [L]};
s fort —» [K/L]+1:00do
s | Update the Ty (¢), if (). (t). fi; (1), fis(¢) for any i
6 Pull the arms output by O(i" (t), i°(t), L); update
By; if By > 0, obtain the reward; else, return;

4 Theoretical Analysis
In this section we theoretically analyze and upper bound the
regret of the MRCB policy.

We first define some notations. (1) Let Cs denote CX\{I..}.

(2) For any i € [K], let S; denote {I|I € Cy,i € I}. (3) For
any i € [K], define

Afnin = minses, (07, Zke[ Wi — Zke] 17); )
Ainax = maXIequ(Qz Zke[ Mi - Zke] .u};)

*This trick has also been used in [Li et al., 2010].
SKeep in mind that both ji" (¢) and /i°(t) depend on the .



Define B = {i|i € [K], A%, > 0}.
4) 7-L(B) = I_QB/(LMmm)J where :uﬁnin = miniE[K] /.L:
(5) XL(B) = O(IB/(Lpty, ) expf —(Biity,) /2}).

The above notations can be interpreted as follows. (1) Cs
can be regarded as the set of all suboptimal super arms, since
it is very likely that these arms are not as good as the near-
optimal arm I, in terms of the ratio of expected rewards to ex-
pected costs. (2) S; is the collection of suboptimal super arms
containing arm i. (3) A? . and Amax are two gaps measuring
the suboptimality of the super arms in S;. B is a collection of
“bad” arms, which can lead to regret after pulling. (4) 71 (B)
can be seen as the pseudo stopping time of the bandit, since
when B is large, the probability that the pulling rounds of an
MP-BMAB can exceed 77, (B), bounded by X7 (B), is very

small. Mathematically,
Yo7y ()1 PABe = 0} < X (B). ®)

Note X (B) decreases exponentially w.r.t. B. The proof of
the above inequality is left in Appendix C. In our MP-BMAB
problem, the stopping time is not given in advance like those
in [Auer et al., 2002; Badanidiyuru et al., 2013]; instead, the
stopping time is controlled by the budget B. To leverage the
proof techniques from conventional bandits, we introduce the
pseudo stopping time 77, (B). We will see how to use it later.

Define .(72(B)) = 321" (log, (1) + 1)1 7",

One can verify that when x > 1, (;(7.(B)) can be
bounded by a term depending on k only; when v = 1,
Cx(To(B)) is of order O(In*(B)); when s < 1, (.(T.(B))
is of order O(B'=*In(B)/(1 — k)). (See Appendix D for
details.)

We can upper bound the regret of our policy as follows.

Theorem 3 The regret of MRCB is upper bounded by
¢ InTL(B) + ¢sCe(TL(B)) + o, )

where Y, = (Q*L + 1)2L2(\/E + 1)2 Zi68(2/Am1n -
/AL s = 203, Al and ¢ = O5(L —
)(pb 1nK+¢S+LQzXL(B) +2LQL +2Z’LGB max-

When « € (0,1), the regret shown in (9) can be written as
s T "(B)In(T1(B))/(1 — k) + o(Tz(B)), which is sub-
linear in terms of 71 (B), and thus B. When x > 1, the regret
improves to ¢, In 71, (B)+0O(1), which is of order O(x In B).
Proof outline: The proof of Theorem 3 is quite technical.
Here we only give a proof sketch. The omitted derivation
details are left in Appendix E.

o Step 1: Bridge the regret and the expected pulling number
of each suboptimal super arm. With some derivations, we can
get that the regret can be bounded as

Regret < Zlecs AI]E{NI} + Lo1Xr(B) + 2Le7, (10)

where for any I € Cy, A is defined as (3, o; ug)[o} —
(O rer i)/ O rer 1)) N is the pulling number of super
arm [ from round 1 to round 77, (B). The insight behind (10)
is very intuitive: if the player pulls a suboptimal super arm [
once, the expected cost is ), -, uf; if she spends such cost
on the near optimal super arm, she can gain A’ more reward.
(10) frees us from the randomness of the stopping time, and
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allows us to only consider the expected pulling number of
suboptimal arms before round 7, (B), which is deterministic
(even though the budget might run out before it).

o Step 2: Bridge the regret and each arm. It is not convenient
to work on the super arms directly. Therefore, we need to
further decompose (10).

Let K; denote that number of super arms in S; for any
i € [K], and S(i,j) denote one super arm in S; indexed by
J € [K;]. Assume the super arms in S; are sorted by the order
ASGD > ASGE2) > ... > ASGK  For simplicity of use,
denote AS(:9) a5 ABI.

For any suboptlmal super arm S(%,j), define the J-gap
§%J(v) in Eqn.(11-a), which can be seen as a weighted ver-
sion of A7, We can verify that the gap satisfies Eqn.(11-b).

AHI . (Cresgg i) +677(7)
——®orL= - RTIOR
vor +1 (Zkes(i,j) Bg) — 7653 ()

In the analysis of the upper bound of the regret, we only
need to consider the case of ® ¥ = 1. For ease of reference,
let %7 denote §%7(1).

Define fi; = L*(v/k + 1)?In[VKL=1TL(B)]/(6%9)2.
According to [Chen et al., 2013] the Y-, o ATE{N7} of
(10) can be bounded by > .. R;, in which R; is

@6 (v)= (11)

ieB

Ri <2Amax + L (14 VE)* (01 + 1)*(2/Ain — 1/Amax)
T.(B) K;
In[VELITL(B)| +E ) ZA”H{L: ,9);
t=tg j=1
Vke I, Tt —1) > | fiil}, (12)

where to = [K/L] + 1.

o Step 3: Bound the E{-} in (12). For ease of reference, let
Ui, (t) denote the event {I, = S(i,7),Vk € I, Tp(t — 1) >
| fi,j]}in (12). Define the event Q,(t) as

Q(t) =, _, (a® < piy U{ai(®) > pi}.  (13)
Accordingly, the E{-} in (12) can be decomposed as:
B2 B Yo ART{UL, (), Qo(1)} (14)
HE S S AU 4 (8), Qo(8)}, (15)
where Q,(t) means that the event Q,,(t) does not hold.
Step 3-1: Bound (14). Since U; ;(t) are disjoint for different

J € [K;], we have thatz L{U; (1), Qo(t)} < T{Q,(1)}.
Since we do not need to cons1der the randomness of the stop-
ping time, we can apply Hoeffding’s maximal inequality and
union bound, and obtain that

P{O,(t)} < 2L{log,(t — 1)+ 1}(t —1)"". (16)
Thus, (14) is bounded by 2LA! | ¢.(T.(B
Step 3-2: Bound (15). If super arm S(i,j) is pulled where
i € Bandj € [K;], conditioned on Q,(t), we know that
P{U; ;(t), Qo(t)} is upper bounded by

{Ukes iy Ve (®) 2 ok + 5; Ti(t —1) > [ fi;]} U

5
~C < (& _ -
U s RO < i = =,

®The case of v # 1 will be considered when analyzing the lower
bound of MP-BMAB in the next section.

T(t=1)> [fi]}} a7



With some derivations, for any k € S(, j), we have

PR > ik + 2 Tl = 1) > Lfus ]} < 1/IKY T (B))

2%}

~c c 0
P{fi(t) < pi — —

STt 1) > L]} < VIS TL(B)).

Therefore, P{U; ;(t), Q,(t)} < (2L)/[KE~1TL(B)]. Ac-
cordingly, (15) can be bounded by 2LA¢ .

According to the above three steps, by combining (10),
(12), the bound of (14) in Step 3-1, and the result of (15)

in Step 3-2, we can eventually get Theorem 3. [

5 Special Cases

In this section, we consider two special cases of MP-BMABs:
the Bernoulli MP-BMABS, in which the reward and cost dis-
tributions of all the arms are Bernoulli, and the SP-BMABsS,
in which the player can only pull L = 1 arm at each round.

5.1 Bernoulli MP-BMABs

In this subsection, we present a lower bound for the regret
of any consistent policy (defined later) for Bernoulli MP-
BMABSs and compare it with the regret of MRCB.

For any policy w, let IY(T") denote the pulling number of
arm k € [K] in the first 7" rounds, and I'}*(7") for super arm
IecCf,where T € Zy. If Yo B{I'"(T)} = o(T")
holds for any a € (0, 1) and any bandit, we say policy w is
consistent. According to the analysis in Section 4, we can
get that the regret of any consistent policy is sublinear to the
pseudo stopping time 77, (B), and so to the budget B.

Since the costs are no larger than 1, the stopping time of a
policy is at least B/L (assume B/ L is an integer for simplic-
ity). The regret of the first B/L rounds is certainly a lower
bound of the total regret, thus we will only consider the regret
in these rounds. Let kl(x, y) denote the KL divergence of two
Bernoulli distributions with parameters x and y:

T 1
=zlh—+4+(1—-2)l
kl(z,y) == ny ( z) In 1

Vo,y € (0,1).  (18)
For ease of reference, define 47 ;. () = minje(x,] 6“7 (7)
for any ¢ ¢ I,. Define the following optimization problem:

s.t. :u; + (anm(r}/) < 17 :uzc - ’Y(Srlmn(’}/) > 07 Y 2 0
As shown in Appendix F.1 and F.2, we can prove that: (1) the
feasible set of (19) is non-empty; (2) the optimal solution of
(19) is an interior point of its constraint set. Thus, the optimal

value exists and is strictly positive. Denote the optimal value
of (19) as L.

Theorem 4 For Bernoulli MP-BMAB:s, if the rewards are in-
dependent to the costs for each arm, for any consistent policy
w(ie, Y e, B{I1(T)} = o(T) holds for any a € (0,1)
and T € 7. ), we have that for any i ¢ I, and € > 0,

R L

andliminfp_, E[I7*(B/L)]/[In(B/L)] > 1/L}.
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From Theorem 4, we can get that for Bernoulli MP-BMABs,
the pulling time of arm ¢ ¢ I, for any consistent policy is
at least Q(In(B/L)/L}). After some derivations, we can get
that the regret is (>, (Al,;,/L;)In(B/L)). The the-
orem can be proved by using the change-of-measure tech-
niques and large number laws, as shown in Appendix F.3.
First, we can see that, for Bernoulli bandits, the upper
bound of the regret of MRCB is O(x1n B) when £ > 1,
which matches the lower bound in terms of the order of B.
Second, we make some discussion about the coefficients of
In B. We specify MRCB by setting « = 2. For ease of refer-
ence, denote the upper bound and lower bound as O(oln B)
and Q(w In B) respectively. Similar to the UCB-based poli-
cies for conventional MABs (without budget constraints), our
MRCB cannot match the lower bound perfectly, i.e., 0 > w.
The following example shows that o in the upper bound of
MRCB and w in the lower bound share similar trends.

Example 5 We study the relationship between the regret and
the ratio gap A! . Vi € B for an MP-BMAB. Suppose p €

(0,0.5). Consider a Bernoulli bandit with pi7;, u$ € [p, 1 — p]
Vj € [K]and A, < p/2Vi € B. In this case, we have

(@)o=3 5L/ (P*Alyn)i (B)w = Zigj* P/ Al
That is, the coefficients of In B in both the upper and lower
bounds of the regret are linear to Zi&I* /AL

5.2 Single-Play Budgeted MAB

Since SP-BMABsS are a special case of MP-BMABs with L =
1, our MRCB policy (Algorithm 3) can be directly applied.
While applying Algorithm 3 to the SP-BMAB prob-
lem, I, degenerates to the arm with the maximum ratio
of the expected reward to the expected cost, ie., . =
argmax;e(x pi /415 and o7 = p /pg . Forany i # i, (a)
Al equals A? . and we denote them as A® = pSof — ul';
(b) 0% ;.. () degenerates to 6°(y) = AY/(vo} + 1); (c) the

optimization problem of (19) degenerates as follows:

miny k(g pi 4+ 6°(7)) + kl(ug, ps — 3" (7))

) (20)
st pp +0(y) <1, v>0.

One can verify the existence of the optimal solution and opti-
mal value of (20). Denote the optimal value as £;*. Theorem
3 and 4 degenerate to the following two corollaries:

Corollary 6 For SP-BMABSs, the regret of MRCB is upper
bounded by

(o} + 1)) ;
(e [
+4> 7, Al + [2 + X1 (B)|ot, where the T1(B) and
X1 (B) are obtained by setting the L’s in Tr,(B) and X1, (B)
(defined at the beginning of Section 4) as 1.

Corollary 7 For Bernoulli SP-BMABSs, if the rewards are in-
dependent to the costs for each arm, for any consistent policy
w(ie, D, E{I}(T)} = o(T?) holds for any a € (0,1)
and T € 7. ), we have that for any i # i, and € > 0,

limp oo P{IM(B) > [(1 —¢€)/L*]InB} = 1;
consequently, liminfp_,o E[I(B)]/[ln B] > 1/L}*.



Corollary 7 tells that the regret for Bernoulli SP-BMAB is at
least (>, ;. (AY/L:*)In B). So far as we know, it is the
first non-trivial lower bound for SP-BMABs. Similar to the
Example 5, for SP-BMABS, the coefficients of In B in both
the upper bound of MRCB’s regret and the lower bound of
the regret of any consistent policy are linear to ) _, 2i, 1 /AL

SP-BMABs with random costs have been studied in [Ding
et al., 2013]. Compared with the above literature, MRCB has
two advantages: (1) Since there is a hyper parameter of our
policy, by carefully setting the parameter, the empirical per-
formance of our policy can outperform previous algorithms
(see Section 6). (2) The theoretical guarantees of our pol-
icy are better than previous UCB-based policies. For exam-
ple, Corollary 6 outperforms the regret bound in [Ding ef al.,
2013]. (See Appendix G for the details.)

6 Empirical Evaluations

We conducted a set of numerical simulations to test the em-
pirical performance of our policy. We compared with the fol-
lowing baselines. (1) The e-first policy first pulls the arms one
by one when the spent budget is less than € B; after that we
have two schemes to recommend L arms: Scheme T always
pulling the top L arms with the largest average reward to av-
erage cost ratio, and Scheme R always pulling the L arms with
the maximum ratio of the sum of average rewards to the sum
of average costs. We followed the practice in [Tran-Thanh
et al., 2010; Xia et al., 2015b] to set € = 0.1. (2) Frac-
tional KUBE [Tran-Thanh et al., 2012] with both schemes T
and R. (3) BTS policy [Xia ef al., 2015b] with schemes T
and R. (4) the UCB-BV1 [Ding et al., 2013] with scheme T
only, since the confidence term is added to the ratio of the
average rewards to average costs, which makes it hard to be
associated with scheme R. For e-first, we set the budget as
{bK,10K,15K,--- ,50K}; for the other policies, we set the
budget as 50K and record the regret at each budget.

We simulated the bandit with two distributions: one with
multinomial distribution, and the other with beta distribution.
For each distribution, we simulated a 10-armed bandit and a
50-armed bandit. Detailed parameters of the distributions are
left in Appendix H.1 due to limited space. We individually
run each policy under each setting for 100 times and report
the average regret and standard derivation over the 100 runs.

MRCB has a hyper parameter x. We searched the « in the
set {2710,277 274 211 and found that s = 2~* worked well
for most cases. Therefore, we fix 2~ in the following exper-
iments. Though asymptotically MRCB enjoys log-linear re-
gret when > 1, it is not good to set large values for « since
B is limited in our experiments.

The results of the first three baselines with different
schemes are shown in Table 1. It is obvious that Scheme R is
better than Scheme T. Thus, in the following experiments, we
will only show the results for Scheme R. We will not show
the regrets for UCB-BV 1 neither since they are too large.

The average regret and the standard deviation of each pol-
icy w.r.t different K and different reward/cost distributions
are shown in Figure 1. We can see that our MRCB has clear
advantages over the 3 baselines: It achieves smaller regrets
and lower standard derivations. When the number of arms
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Table. 1 Comparison of Baselines

e-first | KUBE | BTS | UCB-BV1
Scheme T | 1159.0 | 831.3 | 568.5 2273.8
Scheme R | 919.4 760.8 | 344.3 ---

increases from 10 to 50, the regrets of all the policies in-
crease. This is in accord with our intuition, since more can-
didate arms can make the nearly-optimal super arm harder to
be found.

z 3 T B ° T B B
Budget ot Budget

(a) Multinomial, K =1 (b) Multinomial, K = 50
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(c) Beta, K =10 (d) Beta, K = 50
Figure 1: The Regrets

We also tested the performance of MRCB under the SP-
BMAB setting (i.e., L = 1). The results are in Table 2, which
are carried out on the bandits with multinomial reward/cost
distributions and B = 50K. The average regrets and the
standard derivations are reported. Again, MRCB performs
the best, which shows the MRCB can handle the SP-BMAB.
Additional experiments can be found at Appendix H.2.

Table 2. Regrets for SP-BMAB

10-armed bandit | 50-armed bandit
e-first 2183.5 £ 51.9 2403.8 & 54.9
KUBE 552.9 + 34.4 2722.3 £ 66.9
BTS 226.9 £+ 38.3 1182.0 £93.6
MRCB 103.3 +13.5 521.9 + 31.1

7 Conclusion and Future Work

In this work, we studied the MP-BMAB problem and pro-
posed a policy for it. The policy theoretically enjoys a sublin-
ear regret (log-linear under some conditions) and empirically
outperforms several baselines in different settings.

There are several aspects to study in the future for MP-
BMABSs. (1) multi-play budgeted linear/contextual bandit, in
which each arm is associated with a multi-dimensional fea-
ture vector, is an attractive topic; (2) the distribution-free up-
per/lower bound of MP-BMABsS is still unknown and remains
to be explored.
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