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Abstract

Video-based facial expression recognition (FER)
has recently received increased attention as a re-
sult of its widespread application. Many kinds of
features have been proposed to represent different
properties of facial expressions in videos. How-
ever the dimensionality of these features is usu-
ally high. In addition, due to the complexity of
the information available in video sequences, using
only one type of feature is often inadequate. How
to effectively reduce the dimensionality and com-
bine multi-view features thus becomes a challeng-
ing problem. In this paper, motivated by the recent
success in exclusive feature selection, we first intro-
duce exclusive group LASSO (EG-LASSO) to un-
supervised dimension reduction (UDR). This leads
to the proposed exclusive UDR (EUDR) frame-
work, which allows arbitrary sparse structures on
the feature space. To properly combine multiple
kinds of features, we further extend EUDR to
multi-view EUDR (MEUDR), where the structured
sparsity is enforced at both intra- and inter-view
levels. In addition, combination weights are learned
for all views to allow them to contribute differently
to the final consensus presentation. A reliable so-
lution is then obtained. Experiments on two chal-
lenging video-based FER datasets demonstrate the
effectiveness of the proposed method.

1 Introduction

Automatic facial expression recognition (FER) plays an im-
portant role in pattern recognition and computer vision. Its
extensive applications include: human-computer interaction
systems, psychology, and security. Over the past decade, there
has been extensive productive and fruitful study of static im-
ages [Gu er al., 2012]. In reality, however, facial expression
activity is dynamic, and its variability can be described as
the onset, the apex and the offset [Xie et al., 2014]. Many
experiments, including those conducted in psychology [Am-
badar et al., 2005], have demonstrated that the utilization of
the temporal information located in facial expression activity
enhances recognition performance. Temporal information is
thus an essential component of a successful FER system, and
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video-based FER has attracted particular attention [Zhao and
Pietikainen, 2007; Xie et al., 2014].

Numerous methods for video-based FER have been pro-
posed, but they are all limited in that only a single type of
feature is utilized. This may lead to unsatisfactory recognition
results because the facial expression information in videos
is very complex. Combining the different kinds of features
has significant potential to improve the performance of video-
based FER since each feature characterizes a different view.
For example, spatio-temporal features based on the scale in-
variant feature transform (SIFT) [Gu et al., 2012] and his-
tograms of oriented gradients (HOG) [Klaser et al., 2008]
descriptors effectively characterize the respective shape and
appearance of an expression, while the features based on the
motion boundary histograms (MBH) [Wang e al., 2013a] de-
scriptor are especially good at capturing the motion informa-
tion, and the widely used texture feature LBP-TOP [Zhao
and Pietikainen, 2007] is particularly insensitive to mono-
tonic gray-scale changes. In this paper, we treat each feature
representation as a particular view for charactering facial ex-
pression in videos.

It has been demonstrated empirically in [Wang er al.,
2013a] that combining multiple features tends to achieve bet-
ter recognition accuracy in action recognition, simply as a
result of concatenating different features. However, the sim-
ple concatenation strategy is not physically meaningful be-
cause each view has a specific statistical property, and it of-
ten leads to over-fitting due to the high dimensionality [Luo
et al., 2016; Tao et al., 2009] of the spatio-temporal fea-
tures. For example, the dimensionality of the LBP-TOP fea-
tures is about 3000 if 4 x 4 blocks are adopted for each
frame, and the codebook size of the bag-of-features repre-
sentations for HOG, HOF and MBH can also be several thou-
sands. To properly combine the different views and also re-
duce feature dimensionality, we develop a novel multi-view
dimension reduction (MVDR) algorithm, which aims to find
a low dimensional representation for heterogeneous high di-
mensional data. MVDR can be performed in a supervised,
semi-supervised, or unsupervised manner; most of the cur-
rent works are unsupervised due to the high labeling cost in
many real-world applications. We also focus on the unsuper-
vised setting in this paper.

Inspired by the recently proposed exclusive feature se-
lection [Kong et al., 2014], we first propose a novel



sparse framework for unsupervised dimensionality reduc-
tion (UDR) termed exclusive UDR (EUDR), which learns
a low-dimensional and sufficiently informative pattern for
the original feature [Tao et al., 2007]. The exclusive group
LASSO [Kong ef al., 2014] (EG-LASSO) is employed as a
regularization term on the corresponding projection matrix.
The main advantage of EUDR is that it allows arbitrary group
structures being exploited on the feature space. To also deal
with the multi-view features in video-based FER, we extend
EUDR to multi-view exclusive UDR (MEUDR), which si-
multaneously combines multi-view features and reduces the
dimensionality. In MEUDR, the structure sparsity brought by
the EG-LASSO regularization is achieved at both intra- and
inter-view levels. Therefore, the complementary nature of dif-
ferent views tends to be better exploited than it is in existing
multi-view unsupervised dimensionality reduction (MUDR)
methods. In addition, combination weights are learned for
each view to allow various views to contribute differently to
the final representation. Thus the model is robust to noisy
views and complementarity exploration can be further en-
hanced.

To validate the effectiveness of the proposed MEUDR for
FER, we conduct experiments on two challenging video-
based FER datasets. The superiority of our method is obvi-
ous by comparing it with several competitive baselines and
recently proposed MUDR approaches.

2 MEUDR: Multi-view Exclusive
Unsupervised Dimension Reduction

Notations: For a matrix X, we use X; .y and X, j to signify
its i-th row and j-th column vector respectively. X;; denotes
the (i, j)-element of matrix X. I, denotes an r X r identity
matrix, ||P||F is the Frobenius norm of matrix P, ||p||; de-
notes the /1 -norm of vector p, and BT is the transpose of B.

2.1 Problem formulation

Suppose we are given the original feature matrix X € R"*9,
where n is the total number of samples, d is the dimensional-
ity of high-dimensional data points. A basic formulation for
UDR is to minimize the reconstruction errors of the original
data represented by the matrix X, i.e.,

1 T2 2
arg min —||X — BP + Y|P %,
min | 4P
st.BTB=1,.

where P = [p1,p2,...,Pr] € R is the projection ma-
trix that maps the original high-dimensional data to a low-
dimensional subspace, and B € R"*" r < d is the low-
dimensional representation in the subspace. Although this
formulation efficiently finds a low-dimensional representa-
tion, all input variables are encouraged to contribute to each
dimension of the final representation. To remove junk di-
mensions and discern important ones, we propose to adap-
tively select variables for constructing each projection vector
p; € R? This leads to the following general formulation of

the sparse unsupervised dimension reduction (SUDR):

Lix_ppr Q(p;
arg min | ||F+VZ (pi),

)
st.BTB=1,.

where (2 is any convex sparse-promoting penalty. In this pa-
per, we adopt the recently proposed exclusive group LASSO
(EG-LASSO) [Kong et al., 2014] as the regularizer for p;.
EG-LASSO first adopts a general “group” setting to obtain
arbitrary group structure of p;, following which [y /l> norm
penalty is used to achieve sparsity. In this way, this regularizer
brings out sparsity with arbitrary structure on feature space.
Therefore we obtain the following exclusive UDR (EUDR)
problem:

arg{mln —||X BPT||F+WZQ Pi)s @
i=1

st.BTB=1,.

where Q%g (Pi) = X ,cq IPig, |7 is the EG-LASSO term,
and G is the group set. However, this framework is limited in
that only problem of UDR with single view data is available.
To deal with the multi-view features in video-based FER, we
extend it to multi-view dimensionality reduction (MVDR) by
mapping the features of different views X (*) into a common
subspace. Therefore we have the following multi-view exclu-
sive unsupervised dimension reduction (MEUDR) formula-
tion:

\4
1
n - @) _ g(pNT |12
B,{Ilgl}g},BTLE 0o X™ = B(P™) |7

v 77 2
+ g, ( p)+ 2013, @
7212 2|| Il
Vv
st.BTB =1,: Zev =1,6, > 0.
v=1

where 6 = [01,0,,...,0y] is a vector of view combination
coefficients [Nie er al., 2014] to explore the complementary
information of different views, and also prevent the model
from being contaminated by noisy views. To further exploit
the feature relationships between different views, we refor-
mulate Eq.(4) as:

min 0,11 X @ — P(“) 2
B{P(u)}enz || ) ||F
(/(L 77
+w29g ")+ 5llels, 5)
v
st. BTB=1;Y 6,=1,6,>0.
v=1
Here, p§* = [pE ), p§2>, . pl(-V)] is a concatenation of pro-

jection vectors, and the group set G consists of two parts: we
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first regard the features in the same view as in a group to bring
sparsity at intra-view level; then we put the highly correlated
features of different views in a group to bring sparsity at inter-
view level, where the feature correlation matrix is calculated
as R = (R;;) € R™*™, and R;; denotes the correlations be-

. . . Xit X
tween i-th and j-th features, i.e., R;; = 2 KXol
g NS SN
Benefiting from this two-part group setting, both the feature
relationships within each view and the complementary nature

between different views are well exploited.

2.2 Optimization

The global solution to the optimization problem in Eq.(5) is
difficult to achieve since it is not joint convex with respect
to the set of variables (B, {P(")},0). We therefore present
an alternative iterative algorithm to solve the problem by
converting the original problem into three sub-problems, in
which only one variable is updated. First, we reformulate
Eq.(5) as follows:

1. -
min F(B, P,0) = ﬁHX — BPTO.|%

- cat 12, 1
DD IBEG I+ 1015 ()
i=1g€g
st. B"B=1:Y 0,=1,0,>0v=1,.,V.
v=1
where X = [V XD ... /O, XV)] € R™4 is the con-
catenated feature matrix with the dimension d = ZL/:l dy,

P = [PW;..; PV)] € R is the concatenated mapping
matrices, and ©4 € R?*? is a block diagonal matrix in which
the v-th block is a diagonal matrix 1/8,1,. Then we update
B, P and 0 alternatively until the termination criterion is
achieved.

When P and 0 are fixed, the problem Eq.(6) becomes:

min F(B) = | X — BPTO4|%, st. BT B=1,. (1)

According to [Han er al., 20121, we first apply SVD to E =
X @gP, i.e., £ = USYV, and then obtain the solution for B
asB=UV.

Next, when B and 0 are fixed, the problem Eq.(6) w.r.t. P
is given as follows:

*IIX szpl @dIIF+WZ > IIpS

i=1 geg

cat

min F(P) Gy

7
®)
where b; = Bi. ;) is the i-th column of B. This problem can
be solved by alternating for each p, until convergence. The
above problem w.r.t. p; is given by:

. 1.5 ca
min F(p;) = —||X = bip/ Oullf +7 Y I, 7. 9
9€g
where X = X — (X kpi bipi ). Tt is easy to verify that

the optimal solution of Eq.(9) is exactly the solution of the
following problem:

L %
= gHX - blpz @dHF +’7pz D D;-

min G(p;) (10)
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where D’ is a diagonal matrix with the entry D§j

> (Igg)j”Pf,agtg l1
g

o] ), where Ig, € {0, 1}9%1 is a vector of
30 .
the group index indicator, and |p;;| is replaced by |/p?; + ¢

when pj; = 0 [Kong et al., 2014]. Taking the derivative of the
objective with respect to p, and setting it to zero, we have:

2 . 2 ,
—ﬁ@dXTbi + 5(1)? b;)(0401)p; +2yD'p, = 0. (11)
Then we obtain:
1.1 ~T
pi = —(~(b/b:)(0407) + D) 10X b (12)

Note that D’ is dependent on P, and thus is also an unknown
variable. Fortunately, we can prove that the solution for p;
can be obtained by repeating the following two steps until
convergence:

e Calculate the diagonal matrix D | using p7;

(b7 b:)(©407)

e Update p]*!

’}/DTJFI) 1@dXTbi.
This iteration can also be incorporated into the alternation
of different p,,7: =1, ...,r
Lastly, for fixed P and B, we can rewrite the original prob-
lem Eq.(6) as:

101(p

n(n

+

min F(8) = 67 q + 71|63,
13
s.t. Z"v =1,0,>0,v=1,..,V. (13)
v=1
where q %[ql,...,qv}T with each ¢, = [ X® —

B(PY)T||2. We adopt the coordinate descent algo-
rithm [Huang et al., 2015] to solve Eq.(13). Therefore, in each
iteration of the descent procedure, only two elements 6; and
0; are selected to be updated; the others are fixed. By using
the Lagrangian of Eq.(13) and considering the sum to one
constraint, we obtain the following updating rule:

e — 10 +0;) + (45— ai)
' 2n ’ (14)
9; =0; + t9j — 9:

The obtained 6] or ¢ may violate the constraint 6; > 0. Thus
we set 0F = 0 if 17(9 +6;)+ (¢; — ¢;) <0, and similarly for
0.

! We summarize the main procedure of the optimization in
Algorithm 1. The stopping criterion for terminating the al-
gorithm is the difference of the objective value between two
consecutive steps. That is, if |Op41 — O:|/|O¢| < €, then the
iteration stops, where O; is the objective value at the i-th it-
eration step. Since the sub-problems of Eq. (7), (8) and (13)
are convex w.r.t. B, P, and 0 respectively, the algorithm is
guaranteed to converge according to the following analysis.

2.3 Convergence analysis

In this section, we discuss the convergence of the proposed
MEUDR algorithm. Let the initialized value of the objec-
tive Eq.(6) be F (B!, P!, @"). Since Eq.(7) is convex and



Algorithm 1 The efficient iterative algorithm for solving

Eq.(6)

Input: A matrix of the concatenated features X
[XW, .., XV e R4,

Output: A low-dimensional consensus pattern matrix
B € R™7", and a set of mapping matrices P
(PO ..., PV)] € RxT,

1: Set t = 0. Initialize P° as random matrix, and 6
Lo=1,.,V.

While not converge do

2: Calculate B! = UV, where U and V are obtained by
SVDon E = X(0%)T P*.

3: Sett =0.

4: Repeat

5 Fori=1,..r

6: Calculate the diagonal matrix D%, based on bt
and p} _;

7: Update p} -1 = (3 ((677)"671)(05(0))") +
yDi, 1) OLX T

8:  End for

90 T=71+41.

10: Until converge

11: Update Pt+1 = [p§,7'+1’ "'apf",fr#»l]’

12: Calculate 8" by using the update rule Eq.(14).
13: t=t+1.
End while

can be solved analytically, we have F(B'*! P! @') <
F (B!, Pt,0"). The problem in Eq. (8) is solved alternatively
for each p; with all the other p;,, k # i fixed. Let F(p!) and
G(p!) be the objectives of Eq.(9) and (10) respectively at the
t-th alternating step. Similar to [Kong er al., 2014], we can
prove that by using the updating rules for calculating p,, the
following inequalities hold:

G(p} ;1) < G(p!,). (15)

and

(F(p;r41) — F(p;,) < (G ,11) — G ,))-

Therefore, we have F(pj ;) < F(p} ). This indicates that
F(pf,T-&-lu{pfc,T}k?ﬁi) S F({pf,r}:zl) = F(Pt) Because
F(P) = F({p! ., }1_y), we have F(B'1, P11, 61) <
F(B'*', P!, 0"). Lastly, because Eq.(13) is a convex prob-
lem, we have F(B*t! pttl @'t!) < F(Bt! Pttl 9.
This completes the proof.

(16)

2.4 Induction for out-of-sample data

In this section, we extend MEUDR to the out-of-sample data.

We use z = [z, ..., 2(V)] € R? to signify the new multi-
view data point. And we expect to find its low-dimensional
representation b € R". Since the mapping matrices P and
view combination coefficients § = [, 65, ..., fy] have been
derived based on the ever-known data, they can be used di-
rectly for the following solution. Based on the same strategy,
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which we have used in MEUDR, we expect b to be the solu-
tion to the following problem:

min F(b) = ||z — bPTO,|%,

1
st.BTB=1,. (17
where & = [vB1z™, ..., /Oy z(V)]. After applying SVD to
E = :%@gP, i.e., E = USV, we obtain the solution for b as
b=UV.

It can be seen from the above analysis that the consensus
representation for an out-of-sample data can be obtained eas-

ily.
2.5 Related work

Multi-view learning [Wang er al., 2013b; Luo er al., 2015;
Xu et al., 2015; Cai et al., 2014] has received much attention
recently. The multiple views we refer to here are the multiple
distinct feature sets used to describe a given sample, which
are different from the multiple viewpoints in the traditional
multi-view FER [Moore and Bowden, 2011]. We can roughly
group the multi-view learning algorithms into categories ac-
cording to their learning mechanisms, such as weighted view
combination [McFee and Lanckriet, 20111, multi-view di-
mension reduction (MVDR) [Han et al., 2012], and so on.
In MVDR, irrelevant or redundant information in the multi-
view data can be removed by leveraging the dependency, co-
herence, and complementarity of the different views.

Canonical Correlation Analysis (CCA) [Luo et al., 2015] is
one of the most representative unsupervised MVDR (UMDR)
methods, but it is limited in that only data from two views
can be handled. Distributed spectral embedding (DSE) [Long
et al., 2008] is a general UMDR approach for handling data
from an arbitrary number of views. Although simple and ef-
ficient, the complementary nature of different views, which
is critical in multi-view learning, is not well explored in
DSE [Han et al., 2012]. To address this issue, structured
sparsity based UMDR (SSMVD) is proposed in [Han er al.,
2012], which is the most similar work to our method. SS-
MVD imposes a structured sparsity-inducing norm on the
projection matrix which maps different patterns to the com-
mon low-dimensional space, and thus allows flexible infor-
mation sharing in certain subsets of patterns across multi-
ple views. In spite of this advantage, SSMVD still has sev-
eral drawbacks: 1) the dimensions of the patterns of different
views in SSMVD must be the same to construct a 2-D grid,
thus a limited (certain and specified) number of relationships
(e.g., rectangular groups) between the feature spaces of multi-
ple views can be exploited; 2) the orthogonality constraint on
the final common representation is replaced by a bound con-
straint in SSMVD for the convenience of optimization. The
explainable efficiency of the factors in the final common sub-
space is not strong enough, and redundancy among the factors
is inevitable; 3) only the information shared across different
views is considered, and the sparsity structure in each view
is ignored. Additionally, most of the existing UMDR meth-
ods (including CCA, DSE, and SSMVD) only consider the
relationships at the inter-view level and ignore those at the
intra-view level. All these problems are specifically tackled
in the proposed MEUDR method.



3 Experiments

In this section, we validate the effectiveness of the proposed
MEUDR method on two challenging FE video datasets. Prior
to the evaluations, we present the datasets and features used,
as well as our experimental settings.

3.1 Datasets

The first dataset is the facial expression (FE) dataset proposed
in [Dollér et al., 2005], which we call “FE05” in this paper.
The FEO5 dataset involves two individuals, each of whom ex-
presses six different emotions under two lighting setups. In
our experiments, we choose two subsets that belong to two
different identities and have different lighting setups, making
the resultant dataset sufficiently challenging. To observe the
performance of the compared algorithms with respect to dif-
ferent numbers of labeled samples, we randomly select 0.25,
0.5, 0.75, 1.0 percent of samples (2, 4, 6, 8 out of 8 samples)
for each expression as the labeled samples from the training
set, and the remaining samples are regarded as unlabeled.

The second FE dataset is the Oulu-CASIA VIS (CASIA for
short) database [Li et al., 2013]. The CASIA dataset contains
80 subjects. We randomly separate these subjects into two
groups: 70 subjects with six expressions (420 samples) for
training, 10 subjects (60 samples) for testing. A further 20,
30, 50, 70 subjects are randomly chosen as labeled samples
from the training set.

The five-fold cross-validation strategy is adopted for both
datasets for tuning the parameters. Both support vector ma-
chine (SVM) [Tao et al., 2006; Liu and Tao, 2015] and
kNN classifiers are tested for recognition, and ultimately we
choose kNN for FEO05 and SVM for CASIA according to
classification accuracy.

3.2 Feature extraction

In our experiment, four different types of visual features have
been extracted: Local Binary Pattern on Three Orthogonal
Planes (LBP-TOP), and three descriptors HOG, HOF, and
MBH combined with dense trajectories. The dimensionality
of the features is 2832, 2000, 2000 and 2000, respectively.

LBP-TOP [Zhao and Pietikainen, 2007] is one of the most
widely used features in texture analysis of image sequences.
It is insensitive not only to translation and rotation, but also
to monotonic gray-scale changes. Dense trajectories [Wang et
al., 2013a] is a state-of-art approach that computes local de-
scriptors for action recognition, and we apply it to FER. We
adopt three types of descriptor to describe the video: HOG,
HOF, and MBH. HOG (histograms of oriented gradients)
captures static appearance information by using the orienta-
tion and magnitude of gradient; HOF (histograms of optical
flow) focuses on the motion information by using the orien-
tation and magnitude of the flow field; MBH (motion binary
histograms) encodes the gradient of horizontal and vertical
components of the flow to capture the relative pixel motion.
Therefore, the different features are complementary to one
another.

3.3 Comparison methods

We compare our method with BSV, CAT, PCA, DSE, and SS-
MVD. The first three are different baseline methods, and the
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experimental setup of the compared approaches is given as
follows:

e BSV: the best single view method, i.e., performing FER
by regarding each single view as the feature representa-
tion, the results of the view that achieves the best perfor-

mance are reported;

CAT: concatenating the normalized features of all differ-
ent views, and then performing FER on the concatenated
features;

dPCA: the distributed PCA method, i.e., reducing the
dimensionality of each view to a pre-defined value (such
as 100 for both datasets in this paper) by PCA, and then
concatenating all the different views as a long vector for
FER.

DSE: the distributed spectral embedding [Long et al.,
2008] method for UMDR. PCA is adopted for finding
the patterns AW 4y =1, ...V, and the reduced dimen-
sionality is 100.

SSMVD: the structured sparsity-based UMDR approach
proposed in [Han et al., 2012]. Similar to DSE, PCA is
adopted to find the patterns, the dimensionality of each
of which is set to be the same (e.g., 100) so that a 2-
D grid can be constructed. The trade-off parameter ~ is
chosen from the set {10¢|i = —5, —4, ..., 3,4}.

MEUDR: the proposed multi-view UDR method based
on exclusive group sparsity. To reduce the time cost and
also avoid over-fitting, since the number of training sam-
ples in both datasets is limited , we also apply PCA
to the original features as in DSE and SSMVD. The
candidate set for both trade-off parameters v and 7 is
{10%)i = —5,—4,...,3,4}.

3.4 Experimental results

The performance of the compared methods in relation to the
dimension of the final (consensus) representation on the FE05
and CASIA dataset is shown in Figure 1 and Figure 2 respec-
tively. Accuracy is averaged over five runs for each dimension
rin {1,2,5,8,10, 15, 20, 30, 50, 80, 100, 150, 200, 300}. We
summarize the performance of the various methods at their
best dimensions in Table 1 and Table 2 respectively on the
two datasets.

On the FEO5 dataset, we observe that: 1) concatenating
all features (CAT) is usually superior to using only a sin-
gle view features (BSV) because more information is uti-
lized by involving more features, although this is not true in
all cases. For example, when the percentage of labeled sam-
ples is 0.5, CAT is a bit worse than BSV. By first applying
PCA on each view and then concatenating, we obtain better
results than BSV. This indicates that the simple concatena-
tion strategy may fail due to over-fitting; 2) all the UMDR
methods (DSE, SSMVD, and MEUDR) can be significantly
better than the baselines (BSV, CAT, and dPCA), if the di-
mensionalities are properly set according to cross-validation.
For DSE, the performance curve stops early because the so-
lution is obtained by the SVD of an n x n matrix, and the
final dimension should be less than n; 3) the accuracy of the
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Figure 1: Classification accuracy vs. the dimensionality of the result data on the FE05 dataset.
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Figure 2: Classification accuracy vs. the dimensionality of the result data on the CASIA dataset.

UMDR approaches increases sharply with an increasing di-
mension 7 and then decreases significantly. The performance
often peaks around the dimension r» = 8. This demonstrates
the effectiveness of the first few factors found by UMDR; 4)
the performance of SSMVD is better than that of DSE be-
cause complementary nature is better explored, and the pro-
posed MEUDR outperforms all the other approaches at their
best dimensions since we allow arbitrary information to be
shared on and between the feature spaces of different views.
Although the performance of SSMVD is higher than that of
MEUDR when 7 is large, the curve line is quite unstable and
has large oscillations.

It can be seen from the results on the CASIA dataset that: 1)
the performance of the simple concatenation strategies (CAT
and dPCA) are quite unstable and are worse than BSV in
many cases; 2) the improvements of the proposed MEUDR
compared to DSE and SSMVD are significant at many di-
mensions, not only the peak of the curve.

Overall, the recognition accuracy of 93.75% on FE dataset
and 88.33% on the CASIA dataset are currently, to the best
of our knowledge, state-of-the-art.

4 Conclusion

Multi-view learning has become an active research topic in
recent years, but few works have addressed the issue of FER.
In this paper, we proposed a new method termed MEUDR
for the dimensionality reduction of multi-view data. The pro-
posed MEUDR exploits arbitrary relationships on and be-
tween the feature spaces of different views. We allow the
uneven contribution of different views to the final consen-
sus representation by learning integration weights for them.
This allows the complementary nature of different views to

Table 1: The average recognition rates and standard devia-
tions (in %) of different approaches at their best dimensions
on the FEQS5 dataset.

Accuracy
Methods | 0.25 0.50 0.75 1.00
BSV 60.83+2.7 73.75+£1.8 75.83+1.8 83.3
CAT 66.25+3.4 71.25+£2.7 80.83+0.9 87.5
dPCA 66.254+3.4 7792+4.1 80.83+0.9 87.5
DSE 70.83£0.0 83.33+0.0 88.33+1.1 93.7
SSMVD | 79.58£1.7 84.58+1.1 88.75+1.8 93.7
MEUDR | 80.42+1.8 90.42+1.1 92.92+1.1 938

Table 2: The average recognition rates and standard devia-
tions (in %) of different approaches at their best dimensions
on the CASIA dataset.

Accuracy

Methods | 20 30 50 70

BSV 60.674£3.0 64.00£2.5 66.00£0.9 80.0
CAT 59.33+1.5 65.67£1.9 70.67+2.2 78.3
dPCA 58.67+2.7 64.00£1.9 67.67+2.5 733
DSE 69.334+3.5 71.33+£0.7 75.00+0.0 83.3
SSMVD | 67.67£09 70.67£0.9 76.67+0.0 81.6
MEUDR | 71.33+0.7 76.33+1.8 82.33+2.2 88.3

be better exploited, hopefully achieving improved perfor-
mance in FER. Two challenging video-based FER datasets
were adopted to demonstrate the advantages of MEUDR. It is
worth noting that the application of MEUDR is suitable for,
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but not limited to, FER. In any scenario that requires the di-
mensionality reduction of multi-view data, MEUDR is a suit-
able candidate.
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