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Abstract
The partition-based clustering algorithms, like K-
Means and fuzzy K-Means, are most widely
and successfully used in data mining in the past
decades. In this paper, we present a robust and
sparse fuzzy K-Means clustering algorithm, an ex-
tension to the standard fuzzy K-Means algorithm
by incorporating a robust function, rather than the
square data fitting term, to handle outliers. More
importantly, combined with the concept of sparse-
ness, the new algorithm further introduces a penalty
term to make the object-clusters membership of
each sample have suitable sparseness. Experimen-
tal results on benchmark datasets demonstrate that
the proposed algorithm not only can ensure the ro-
bustness of such soft clustering algorithm in real
world applications, but also can avoid the perfor-
mance degradation by considering the membership
sparsity.

1 Introduction
The classical K-Means problem is a clustering algorithm
which assigns a set of data points into clusters so that the data
points in the same cluster have high similarity but are dissim-
ilar if they belong to other clusters. The K-Means algorithm
is widely used due to its efficiency. A variety of modifications
and generalizations have been proposed and developed over
the years. Among different variants of K-Means algorithm,
fuzzy K-Means (FKM) algorithm is the most popular. It was
originally proposed by [Ruspini, 1969] and had been mod-
ified by [Bezdek, 1980]. The essential difference between
K-Means and FKM algorithms is FKM allows a data point to
have memberships in all clusters rather than having a distinct
membership to one single cluster. The K-Means problem is
a well-known example for a hard clustering, whereas FKM
is a continuous generalization of the K-Means problem that
is named as a soft clustering. For the reason that ambiguity
exists in real world datasets, FKM clustering has gained more
attention recently.

It can be seen that these K-Means-type (hard or soft) algo-
rithms can effectively tackle numerous problems in various
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fields such as medical imaging, target recognition and image
segmentation. Because the philosophy of K-Means-type al-
gorithms is extensively used, a large number of modifications
had been proposed [Feiping et al., 2011; Cai et al., 2013].
Here we only discuss some of typical algorithms related to
the proposed method.

There are two major issues in the application of FKM al-
gorithms. The first issue is the lack of robustness during clus-
tering. Generally FKM algorithms use a Euclidean distance
measure to assign memberships to each sample for cluster-
ing, which only can provide good clustering result without
outliers. To overcome this drawback, the work [Zhang et

al., 2003] replaced the Euclidean norm with kernel distance
measures. However, this method does not consider any spa-
tial dependence of the data elements, which not only makes it
very sensitive to outliers but also takes more time to converge
the algorithm. Recently, a set of novel FKM algorithms have
been formulated to address this issue by using new techniques
and improve their performance. For instance, [Ji et al., 2011]
introduced the local spatial weights in the objective function,
which allows the suppression of outliers and helps to resolve
ambiguity. [Zhao et al., 2011] introduced a non-local spatial
constraint term into the objective function to deal with image
noise more effectively. [Ji et al., 2012] combined local spa-
tial information embedded in the data to further improve its
robustness to outliers. [Kannan et al., 2012] proposed robust
FKM based kernel function by incorporating normed kernel
function and center initialization algorithm. [Wang et al.,
2013] incorporated an adaptive spatial information-theoretic
fuzzy clustering into the conventional FKM to improve the
robustness.

The second issue is the difficulty of choosing an appropri-
ate regularization for the FKM algorithm. It is well-known
that FKM can be extended with regularization to reduce the
effect of outliers and further improve its performance. In [Li
et al., 2008; Namkoong et al., 2010], the problem can obtain
the desired solution by:

min

x
kx � yk+ ��(x)

where x is the variable to be solved, y is the variable ob-
served, and �(> 0) is a parameter of regularization. �(x)
is used to restrict the admissible solution within the space
of smooth functions. However, there is no rule for selecting
the �(x). In general, the derivative of x is chosen for �(x),
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which measures the roughness of x. Recently, regularization
has been applied to the clustering problem and several ob-
jective functions were formulated using different regulariza-
tion terms such as [Li and Mukaidono, 1995; Miyamoto and
Umayahara, 1998; Özdemir and Akarun, 2002; Yu and Yang,
2007]. Although these regularization-based methods are bet-
ter than previous methods, deciding regularization constant
is an important problem which was set empirically and time
consuming.

On the basis of the above analysis, it can be seen that FKM
is a simple and effective method, however, its membership
values might be inaccurate in an outlier environment. One of
the reasons is the distance measures without robustness used
in clustering. Another reason is the distributions and sparse-
ness on memberships. To address these two weaknesses, we
propose a robust and sparse fuzzy K-Means clustering algo-
rithm by incorporating robust loss function, rather than the
square data fitting term, to handle outliers, and further com-
bining the concept of sparsity, which introduces a regulariza-
tion, to make their memberships of each sample with respect
to different clusters have suitable sparseness.

This paper tends to address the above highlighted draw-
backs by introducing a novel robust objective function of
fuzzy K-Means with a regularization about the concept of
sparsity. Furthermore, the dynamic � strategy is given in this
paper, which suggests that the proposed method can be im-
proved further if the parameter � can be estimated correctly.
A large number of experiments demonstrate that the proposed
method is more powerful in clustering benchmark datasets.

2 Related Work
There is a large number of KM extensions proposed in past
years, such as [Pham, 2001; Stelios and Vassilios, 2010; Nie
et al., 2014a]. Due to the limited space, we only review some
closely relevant work as follows.

2.1 Fuzzy C-Means Algorithm
FCM is one of the most popular fuzzy clustering techniques,
which was proposed by Dunn [Dunn, 1973] and eventually
modified by Bezdek [Bezdek, 1980]. In this approach, the
data points have their membership values with the cluster cen-
ters, which will be updated iteratively.

Let X=[x1, ..., xn] be a set of n objects. To cluster X into
c clusters, the standard fuzzy C-Means algorithm minimizes
the following objective function:

f [U,V]=

nX

i=1

cX

k=1

u

m
ikkxi�vkk2 (1)

where f is called the loss function, m is an appropriate level
of cluster fuzziness, vk is interpreted as the centroid of the
k-th cluster, and uik denotes the grade of membership of the
i-th object in the k-th cluster and satisfies the following con-
ditions:

uik 2 [0, 1], 1  in, 1 kc

cX

k=1

uik=1,

nX

i=1

uik > 0

To minimize (1) subject to
Pc

k=1uik=1 by using Lagrangian
multiplier method, a considered point was demonstrated to be
a local minimum solution of (1) if and only if:

uik =

1

Pc
s=1(

dik
dis

)

2
m�1

(2)

vk =

Pn
i=1 u

m
ikxiPn

i=1 u
m
ik

(3)

where dik=kxi�vkk2.
The iterative FCM algorithm is stopped if max|u(t+1)

ik �
u

(t)
ik | < " where " is a small positive integer and t denotes

number of iterations [Bezdek, 2013; Isazadeh and Ghorbani,
2003]. Noted that for m = 1, FCM algorithm converges in
theory to the traditional K-Means solution [Smyth, 2000].

2.2 Agglomerative Fuzzy K-Means Algorithm
To tackle some issues during clustering, like the number of
clusters and initial cluster centers, [Li et al., 2008] introduced
a penalty term to the objective function of FKM. Clustering X
into c clusters by this algorithm is to minimize the following
objective function:

f [U,V]=

nX

i=1

cX

k=1

uikdik+�

nX

i=1

cX

k=1

uik log uik (4)

subject to
cX

k=1

uik=1, uik2(0, 1], 1  in, 1 kc

where U is an n-by-c partition matrix, V is an c-by-m ma-
trix containing the cluster centers, and dik is a dissimilarity
measure between the k-th cluster center and the i-th object.

The alternating minimization procedure between member-
ship matrix U and cluster center matrix V can be applied to
(4), which follows:

uik =

exp(

�dik
� )

Pc
s=1 exp(

�dis
� )

(5)

vk =

Pn
i=1 uikxiPn
i=1 uik

(6)

The first term in (4) is the cost function of the standard K-
Means algorithm. The second term is added to maximize the
negative objects-to-clusters membership entropy in the clus-
tering process, which can simultaneously minimize the within
cluster dispersion and maximize the negative weight entropy
to determine clusters to contribute to the association of ob-
jects.

3 The Proposed Method
3.1 Formulation
To overcome the outlier sensitivity problem of the data-driven
term and achieve an optimal approximate solution in related
work, we formulate a robust and sparse fuzzy K-Means clus-
tering combined with different kinds of norms, like `2,1-norm
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[Ding et al., 2006] and capped `1-norm [Jiang et al., 2015],
to make the proposed algorithm more robust to outliers. It is
to minimize the following objective function:

f [U,V]=

nX

i=1

cX

k=1

uik
˜

dik+�kUk2F (7)

subject to
U1=1,U � 0

where U is an n-by-c membership matrix. ˜

dik is a measure
which can be flexibly defined as some alternative norms to
measure the dissimilarity by different ways. For instance,
˜

dik = kxi � vkk22 is commonly used in clustering. In this
paper, we replace this Least Square term with Least Absolute

term ˜

dik = kxi�vkk2 (`2,1-norm) and the capped `1-norm
term ˜

dik=min(kxi�vkk2, ") (where " is a threshold), where
they can be more robust to outliers than Least Square.

3.2 The Properties of the Algorithm
Fuzziness
According to [Bauckhage, 2015], traditional K-Means clus-
tering was rigorously established where the membership ma-
trix U is binary such that each row of U contains a single 1

and c�1 elements that are 0. The rows of U sum up to 1 and
its column sums indicate the number elements per cluster.

Differed from hard K-Means clustering, the proposed
method relaxes each element of U into a nonnegative value
less than 1 under the constraint conditions. Note that the pro-
posed method is different from fuzzy C-Means clustering, be-
cause the latter also requires to choose an appropriate level of
cluster fuzziness m � 1 (mostly m=2), and the former pre-
sets m=1.

Robustness
It is well known that the quadratic loss function is not robust
to outliers. To overcome this weakness, the quadratic loss
function should be replaced by an insensitive one to outliers,
e.g. `2,1-norm and capped `1-norm. In this paper, we use the
objective functions based on `2,1-norm and capped `1-norm,
respectively. Based on `2,1-norm which is not squared and
usually used to induce sparsity, outliers have less importance
than the squared one. Based on the capped `1-norm, the loss
function treats r equally if krk2 is bigger than ", which is
more robust to outliers than the squared one.

Sparseness
During clustering, the proposed algorithm tries to minimize
the robust residual term and consider the sparsity of member-
ships of each object being assigned to different clusters simul-
taneously. The importance of each part in the minimization
process of (7) is balanced by the parameter �.

It can be seen that the square of memberships of each ob-
ject measures whether the object is assigned to a single cluster
or several clusters. In the case of assigning to a single cluster,Pc

k=1 u
2
ik is equal to 1. In the case of assigning to several

clusters,
Pc

k=1 u
2
ik is a positive number and much smaller

than 1. Minimization of the sum of memberships of each ob-
ject is to assign each object to more clusters instead of a single
cluster.

If the parameter � is zero, the membership vector of each
object is sparse (Only one element is nonzero and others are
zero). When � is greater than zero, the membership vectors
are less sparse than that in case of � being zero. The sparse-
ness of the membership vectors is a progressive change when
we tune �. Along with the gradual increase of �, member-
ship vectors contain a growing number of nonzero elements.
When � reaches up to a large value, all elements of member-
ship vectors are nonzero, and membership vectors are non-
sparse at this time. Thus, the parameter � controls the sparse-
ness degree of the membership vectors. One of our goals is
to find the reasonable sparseness of membership vectors to
obtain more accurate clustering results.

3.3 The Optimization Procedure
In this paper, we want to find a set of highly accurate cen-
troids to better group objects. An straightforward way is to
use Least Square loss function. However, to provide better
robustness, we go further to use `2,1-norm and capped `1-
norm loss functions, respectively. Concretely, the objective
values of capped `1-norm loss dose not increase any more
if k • k2 is larger than ". Therefore, `2,1-norm loss is more
robust than Least Square loss, but might be less robust than
capped `1-norm. Thus, the objective function of our robust
and sparse fuzzy K-Means clustering algorithms are formu-
lated using different robust norms (`2,1-norm and capped `1-
norm) as follows:

min

U1=1,U�0,V

nX

i=1

cX

k=1

uikkxi�vkk2+�kUk2F (8)

min

U1=1,U�0,V

nX

i=1

cX

k=1

uik min(kxi�vkk2, ")+�kUk2F (9)

Although the norms are different to each other, both of them
can be optimized by using the iterative re-weighted method
proposed in [Nie et al., 2010; 2014b]. These two methods
((8) and (9)) extend FKM with robust norms and regulariza-
tions to reduce the effect of outliers and keep the member-
ships with proper sparsity.

Concretely, U, V and auxiliary variable sik are updated by
following updating rules:

min

U1=1,U�0,V

nX

i=1

cX

k=1

sikuikkxi�vkk22+�kUk2F (10)

For the (8), auxiliary variable sik is defined as 1
2kxi�vkk2

. For
the (9), auxiliary variable sik is defined as follows:

sik =

(
1

2kxi�vkk2
, kxi�vkk2  "

0, kxi�vkk2 > "

(11)

From two definitions of sik, it is obvious that when a sam-
ple is not outlier, namely, kxi�vkk2  ", this sample with
lower reconstruction error has higher weight. At this moment,
our two methods are equivalent. When a sample is a outlier,
namely kxi�vkk2 > ", this sample with higher reconstruction
error has lower weight. Nevertheless, we expect to enhance
the outlier insensitiveness of our method, and even hope the
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weight of outlier to be 0. Thus, to provide better robustness,
we go further to solve the problem of (9).

The (10) is convex separately with respect to U and V, thus
we solve it by updating U and V alternately.

With V fixed, the objective function becomes:

min

U1=1,U�0

nX

i=1

cX

k=1

(sikuikkxi�vkk22+�u

2
ik) (12)

For each xi, (12) can be separated into n subproblems:

min

ui1=1,ui�0

cX

k=1

(hikuik+�u

2
ik) (13)

where ui is the i-th line of matrix U and hik = sikkxi�vkk22
is an element of matrix H. After being simplified, (13) can be
written as:

min

ui1=1,

ui�0

kui � h̃ik22 (14)

where ui is a variable to be optimized and the row vector
h̃i

=

�hi

2� is a constant in this stage. We utilize the technique
of [Huang et al., 2015] to solve (14) that updates the mem-
bership vector. It is the fact that the solution of (14) must be
sparse.

With U fixed, the objective of (10) becomes:

min

V

nX

i=1

cX

k=1

sikuikkxi�vkk22 (15)

which can be decomposed into c independent problems as
follows:

min

vk

nX

i=1

sikuikkxi�vkk22 (16)

Each iteration of (16) involves minimizing a quadratic ob-
jective function. Using the Lagrange multiplier method, the
global optimum can be reached by taking derivatives and set-
ting them to zeros. Thus, there is:

vk=

Pn
i=1 sikuikxiPn
i=1 sikuik

(17)

In addition, assuming that U(t) and V(t) are computed from
the solution of the t-th iteration, we can update the non-
negative auxiliary variable sik according to (11) by the cur-
rent V(t) when we solve (9). When we solve (8), we can
update sik according to 1

2kxi�vkk2
with the current V(t).

The whole algorithm of our method is listed in Algorithm
1. Because the proposed RSFKM meets the conditions of the
references [Nie et al., 2010; 2014b], it can be easily proved
that Algorithm 1 is absolutely converged.

4 Experiments
4.1 Datasets
We evaluate the performance of the proposed method (RS-
FKM) on three benchmark datasets in terms of two standard

Algorithm 1 The algorithm of RSFKM method
Input:

Data matrix X, the number of clusters c, regularization parameter
� and threshold ".

Output:
Clustering indicator matrix U and Cluster centroid matrix V.

Initialization:
Set t = 0. Initialize U, V and auxiliary variable s by U1 = 1,
U � 0, and sik=1 for i = 1, . . . , n; k = 1, . . . , c.

While not converge do
1: Solve U by (14);
2: Update V by (17);
3: Update sik by (11) if solve (9). Update sik using 1

2kxi�vkk2
if

solve (8).
End While, return U, V.

Table 1: Descriptions of benchmark datasets.
Dataset ] Samples ] Dimensions ] Classes

COIL-20 1440 60 20
COIL-100 7200 160 100

MINIST-2K2K 4000 120 10
MINIST-10K 10000 120 10

MINIST-TEST 10000 115 10
MINIST-ORIG 70000 120 10

clustering evaluation metrics, namely, Accuracy (ACC) and
Normalized Mutual Information (NMI) [Cai et al., 2005].
Among those, two datasets are image datasets, COIL-201 and
COIL-1002. The rest is the MNIST3 database of handwrit-
ten digits. We provide here four smaller subsets (MINIST-
2K2K, MINIST-10K, MINIST-TEST and MINIST-ORIG)
from MINIST. Table 1 summarizes the characteristics of these
datasets used in our experiments and Figure 1 shows some ex-
ample images from different datasets.

4.2 Experiment Setup
Comparison Methods
We evaluate the performance of the proposed method on
benchmark datasets. We compare our method RSFKM (with
`2,1-norm and capped `1-norm) with K-means (KM), fuzzy
C-Means (FCM, m > 1), agglomerative fuzzy K-Means
(AFKM), sparse fuzzy K-Means (SFKM). Concretely, KM
and FCM are classic clustering methods. The difference of
AFKM and SFKM is that they are derived from different clus-
ter fuzziness m and different regularization terms. We com-
pare with SFKM due to two reasons. First, it has close rela-
tion with the proposed method. Second, the comparison with
SFKM can show the advantage of robustness in our method.

Parameter Discussion
There are two important parameters in RSFKM, namely reg-
ularization parameter � and threshold value ". Each of them

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-
100.php

3http://yann.lecun.com/exdb/mnist/
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Table 2: ACC(%±std) of different methods on different benchmark datasets.
Method KM FCM AFKM SFKM RSFKM (`2,1) RSFKM (capped`1)

COIL-20 59.71± 4.59 63.96± 1.80 59.08± 2.88 65.03± 3.32 66.63± 2.63 67.06±2.87
COIL-100 47.39± 1.99 48.91± 1.29 41.64± 1.19 48.91± 1.84 49.82± 2.48 51.00±1.16

MINIST-2K2K 50.72± 3.05 49.55± 0.82 49.12± 5.47 52.53± 2.14 52.96± 2.30 53.22±2.81
MINIST-10K 54.45± 3.44 54.15± 0.83 52.54± 3.97 56.20± 3.81 57.32±5.80 56.51± 3.91

MINIST-TEST 55.84± 2.97 55.32± 1.72 52.14± 2.82 55.51± 3.43 55.51± 2.08 56.72±2.76
MINIST-ORIG 55.43± 4.26 54.80± 1.86 50.52± 3.53 56.83± 3.03 57.17± 3.44 57.57±2.64

Table 3: NMI(%±std) of different methods on different benchmark datasets.
Method KM FCM AFKM SFKM RSFKM (`2,1) RSFKM (capped`1)

COIL-20 75.55± 1.73 74.05± 0.79 74.82± 1.95 76.38± 1.96 76.50± 1.75 76.54±1.35
COIL-100 76.65± 0.65 77.11± 0.40 73.82± 0.94 77.27± 0.50 77.62± 0.56 77.70±0.39

MINIST-2K2K 46.10± 1.54 44.25± 1.04 41.92± 3.33 47.32± 1.16 48.10± 1.81 48.38±0.94
MINIST-10K 50.82± 1.50 49.00± 0.92 45.93± 2.91 51.52± 2.18 52.52±1.34 52.27± 1.25

MINIST-TEST 51.97± 1.14 50.78± 0.95 46.11± 1.65 52.60± 1.98 52.92± 1.69 53.17±1.42
MINIST-ORIG 50.46± 1.94 48.92± 0.79 43.29± 1.34 51.38± 1.61 52.23± 1.23 52.42±1.12

Figure 1: Some example images from (a) COIL-20, (b)
COIL-100 and (c) MINIST datasets.

plays an important role in each algorithm and should be de-
termined carefully.

For the regularization parameter �, it puts a restriction on
the minimum distance between a data point and a cluster cen-
ter and prevents membership from having extreme values, 0
and 1. Large � makes the regularization term to dominate
the objective function, and thus makes uik to be approxi-
mately equal to 1

c . Small � makes the residual term to domi-
nate the objective function, and thus makes uik to be sparse.
The value of �, therefore, should be chosen carefully to bal-
ance the residual term and the regularization term. In this pa-
per, the optimal value of � was set empirically using the grid
search method in a range from [10

�1
, 10

1
] every 0.5 step.

For the threshold value ", it mainly controls the number of
outliers and is related to the residuals of representations. If
the residual of a sample to centroid is larger than ", it is re-
garded as outlier and not used to learn centroid matrix V since
the corresponding sik is zero. If the residual of a sample to
centroid is less than ", sik is nonzero. In order to minimize the
objective function uiksikkxi�vkk22+u2

ik, uik should be small,
and there will be two extreme cases. The first case is that one
membership value of the sample xi tends to 1 and others tend
to 0, which makes the membership values too sparse and fi-

nally degrades into a hard clustering. The second case is that
all memberships of the sample xi become equally and their
sum is 1, which makes the memberships not be sparse and fi-
nally degrades into the traditional FKM clustering. In order to
avoid above two extreme cases, we need a tradeoff between
the regularization parameter � and the threshold value " in
capped `1-norm. Here we select " in a range of [0, 3].

In our experiments, we tune � and " appropriately using the
grid search method based on different datasets. For different
sets of (�, "), we calculate average ACC and NMI by repeat
clustering 10 times, and then report the best result for each
method, respectively.

Intuitively, in Figure 2, we show some memberships of
one sample on four methods KM, FCM, AFKM and RSFKM
(with capped `1-norm) to demonstrate the appropriate sparse-
ness of the proposed method.

4.3 Experiment Results
Table 2 and 3 summarize the results of all methods on the
benchmark datasets. We bold the corresponding results if
they are significant better than results from other methods.
It can be observed that the proposed method (RSFKM) out-
performs other methods on all datasets according to metrics
of ACC and NMI.

In particular, our method RSFKM (whether with `2,1-norm
or with capped `1-norm) significantly gets a better result than
K-Means, FCM, AFKM and SFKM on all datasets. It is ob-
vious that compared with SFKM and RSFKM, both K-Means
and FCM cannot obtain good performance during clustering,
due to the lack of robust and sparse information. In addition,
our method RSFKM (with `2,1-norm or capped `1-norm) can
achieve more robustness than SFKM on almost all datasets.
Meanwhile we observe that SFKM has done much better than
K-Means and FCM. It can be seen that adding the regulariza-
tion term into the objective function is essentially necessary.
Finally, although RSFKMs (with `2,1-norm and capped `1-
norm) are all proposed by this paper, the robustness of them is
different and usually depends on the different datasets. Note
that the latter could get better results with proper parameters
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Figure 2: The membership values of each sample for three methods (KM, FCM, AFKM and RSFKM) on COIL-20 dataset.
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Figure 3: The convergence curves of RSFKM on COIL-20, COIL-100 and MINIST datasets.

(regularization parameter � and the threshold " of the capped
`1-norm).

In a word, the experimental results in Table 2 and 3 demon-
strate that our method taking into account both the robustness
of the residual term and the sparseness of membership values
for each sample can achieve better performance comparing
with other state-of-the-art clustering approaches.

Furthermore, we test the convergence of RSFKM on
COIL-20, COIL-100 and MINIST datasets. The results are
shown in Figure 3. (a)-(f) denote the convergence curves of
RSFKM with capped `1-norm. (g)-(l) denote the convergence
curves of RSFKM with `2,1-norm. It is can be seen that RS-
FKM algorithm can absolutely converge with few iteration
steps.

5 Conclusion
In this paper, we have proposed a novel method, called robust
and sparse fuzzy K-Means clustering algorithm, to obtain a
more accurate clustering result. The proposed method min-
imized the objective function to deal with the effect of out-
liers considering sparse membership values by a re-weighted
method, which is the weighted sum of the fuzzy K-Means
with robust norms (`2,1-norm and capped `1-norm) and the
sparse quadratic regularization. The effectiveness of our
method was demonstrated by a number of experiments on
three benchmark datasets. In addition, determination of the
regularization parameter is an important problem, and we an-

alyzed its change strategy and set it empirically under inves-
tigation.
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