Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Weight Features for Predicting Future Model
Performance of Deep Neural Networks

Yasunori Yamada, Tetsuro Morimura
IBM Research - Tokyo
19-21 Nihonbashi, Hakozaki-cho, Chuo-ku, Tokyo, Japan
{ysnr,tetsuro } @jp.ibm.com

Abstract

Deep neural networks frequently require the care-
ful tuning of model hyperparameters. Recent re-
search has shown that automated early termina-
tion of underperformance runs can speed up hyper-
parameter searches. However, these studies have
used only learning curve for predicting the eventual
model performance. In this study, we propose us-
ing weight features extracted from network weights
at an early stage of the learning process as expla-
nation variables for predicting the eventual model
performance. We conduct experiments on hyper-
parameter searches with various types of convolu-
tional neural network architecture on three image
datasets and apply the random forest method for
predicting the eventual model performance. The
results show that use of the weight features im-
proves the predictive performance compared with
use of the learning curve. In all three datasets, the
most important feature for the prediction was re-
lated to weight changes in the last convolutional
layers. Our findings demonstrate that using weight
features can help construct prediction models with
a smaller number of training samples and termi-
nate underperformance runs at an earlier stage of
the learning process of DNNs than the conventional
use of learning curve, thus facilitating the speed-up
of hyperparameter searches.

1 Introduction

Deep neural networks (DNNs) continue to deliver state-of-
the-art performances on a variety of machine learning tasks
such as image processing [Krizhevsky et al., 2012] and
speech recognition [Hinton er al., 2012a]. The parameters
of the DNN, called network weights, are trained using back-
propagation, unsupervised learning, or other discriminative
algorithms [Schmidhuber, 2015].

While DNNs have enjoyed many successes, it is well
known that they are difficult to optimize, especially for non-
experts. The difficulty mostly comes from the fact that
the performance of the DNN heavily depends on the set-
ting of model hyperparameters [Snoek er al., 2012] that in-
clude the learning rate, the number of layers, the dropout pa-

2231

rameters [Hinton et al., 2012b], and the selection of activa-
tion functions [Nair and Hinton, 2010]. One needs to care-
fully tune the hyperparameters by either manual control or
an automated method. There are already several approaches
to automated hyperparameter optimization, including a sim-
ple grid search, the gradient search [Bengio, 2000], random
search with a low effective dimensionality [Bergstra and Ben-
gio, 2012], and Bayesian optimization [Snoek et al., 2012;
Bergstra et al., 2013]. While these automated methods can
outperform human experts in terms of optimization of the
model performance, they require many long training runs un-
til they are convergent and usually come at a high computa-
tional cost.

In contrast, human experts can make the optimization more
efficient by terminating a simulation run as soon as possible
if the run seems to do poorly. In recent years, an automated
early termination approach has been proposed in which the
eventual model performance at the end of the learning pro-
cess is predicted [Hara et al., 2014; Swersky et al., 2014;
Domhan et al., 2015]. This previous study reported that
early termination combined with hyperparameter optimiza-
tion methods can speed up hyperparameter searches almost
two-fold [Domhan et al., 2015]. However, previous research
on this topic has been limited to use of the model performance
history, which is called the learning curve, and has not ex-
amined any other features related to neural networks such as
network weights or their changes.

In this study, we propose the use of features extracted from
network weights for predicting the eventual model perfor-
mance of DNNs and compare the prediction performance
with the use of learning curve. We conducted hyperparam-
eter searches of DNNs with various types of hyperparameter
on three popular datasets for image recognition: the MNIST
[LeCun et al., 1998], CIFAR-10 [Krizhevsky, 20091, and Im-
ageNet 2012 datasets [Russakovsky er al., 2015]. Through
the experiments, we demonstrate how the use of weight fea-
tures improves the prediction performance and what kinds of
weight feature mainly contribute to this improvement.

2 Prediction of future model performance

We predict the eventual model performance of DNNs using
features that can be calculated from the DNNs at an early
stage of the learning process. We train n DNNs with differ-
ent hyperparameters until epoch 7', where 7' is the last epoch

w

L L g.w") z!=9.w) ha(z)
‘ Node j I Node i I Node j I Median
T Kl/ SD
MXN K| — w! Row-vector of | I i ¥ | T, 7 — 1
Fitter | K5 i MN elements w'=[...,wh,...] whi=[wi,...,wh,...] z'=[..., z),...]

Figure 1: Proposed network weight features in the case of convolutional layer. (A) Definition of wﬁj using K f] B)O)
Examples of weight features calculated by Eqs. (1) and (3), respectively.

of the learning iterations for updating weight parameters. We
then obtain n pairs of the eventual model performances at
epoch 7' and features calculated from the DNNs until epoch
t (t < T). Here, n is the training sample number for a
prediction model and ¢ is the pre-run epoch for DNNs. We
next construct a model that predicts the eventual model per-
formance using the features as explanation variables. In this
study, we propose novel features for the explanation variables
of the prediction model for the eventual model performance,
which are extracted from network weights. We finally evalu-
ate the predictive performance by comparing this model with
the conventional approach in which the prediction model uses
learning curves as the explanation variables. Better features
for the prediction model make it possible to save the number
of training samples n and accomplish target predictive accu-
racies at an earlier stage of the learning process ¢ of DNN,
which will enable more efficient search of the hyperparame-
ters of DNNs.

Here, we describe how to extract the proposed weight fea-
tures from the DNSs. The weight features were calculated
in each layer of DNNs. We first define weight vector w! ;in
layer [that connects between node ¢ and node j (Figure 1A).
In the case of convolutional layers, w! ; 1s a weight row-vector
of M N elements, which consists of weight parameter M x N

l l _ il : l
filter K;; and wy; (, 1)y, = Kjj - Using KG;, convolu-
tional layer output yé b 10 the (a, b) component of node j is

calculated as

1 _
yj,ab - f (
where f is activation function, x, ,, is input to convolutional

M—-1N-1

1 l 1

Do D Kljeati areyoray + Y
i =0 d=0

L
1,
layer { in (a, b) component of node 7, and bé is bias input. In
the case of fully connected layers, w! ; 1s a scalar value and
!

i

weight between neuron 7 and neuron j. Let w', w

and wl;
! l Ul
[y w ix — (W15 -

oy Wi ,wﬁj,...],
ij = ['wllj, ..]. The weight features F'(t) are calcu-
lated using the w' (), wl, (¢), wij(t), and wﬁj (t) of network
weights at epoch t, as (e.g., Figures 1B and 1C)

be defined as w J, w [w

w!

w Wi

ge (w'(1)), (1
ha (0') 0! = [, 0], 0f = ge (wi,(8)) 2)
ha (zl) 2l = [...,zé,],zé = g (wij(t)) , 3)
ha (r') 't =[rly, ol ol = ge (wh(0) . @

2232

where g, for ¢ € {1, e 13} represents functions for calcu-
lating mean, quantiles (0.25, 0.5, 0.75), standard deviation,
skewness, kurtosis, p-th central moment (p=1,2,3,4,5), and
entropy estimated using histograms with & bins of the same
size (k = 32). The function hq for d € {1,...,5} calcu-
lates mean, median, standard deviation, maximum value, and
minimum value. In the case of fully connected layers, we
did not calculate weight features using wéj (t) in the manner

of Eq. (4) because w!;
the wl, (t) and w' (t), we calculated vectors m! and n' con-
sisting of pair-wise Kolmogorov-Smirnov distances between
all possible pairs in w}, (t) and wl;(t), respectively, and ob-
tained weight features as hq (m') and hq (n'). In total, we
extracted 218 and 153 weight features from one convolutional
layer and one fully connected layer, respectively. We also
calculated weight features using the weight changes between
two epochs Aw! (t) = w'(t) —w!(t—7) in the same manner.

Regarding learning curves, we used two standard measures
that have been used for evaluating the model performance
during the learning process: training errors and validation
score [Swersky ef al., 2014; Dombhan et al., 2015]. Training
errors are computed using an output layer with softmax acti-
vation followed by cross-entropy on training data, where the
neural networks learn to minimize the training errors [Bottou,
2012; Schmidhuber, 2015]. Validation score is defined as the
accuracy on test data. In this study, we utilized datasets for
image recognition and then used, as the validation score, the
top-1 classification accuracy that is the proportion of correctly
classified images. The eventual model performance was also
judged using this top-1 classification accuracy after all learn-
ing processes had been completed. For predicting the even-
tual model performance, we used the history of both training
errors and validation scores until epoch t as the explanation
variables.

For the prediction model, we used the random forest algo-
rithm [Breiman, 2001], which is implemented in MATLAB
(MathWorks Inc., Natick, MA). To evaluate prediction per-
formance, we trained the prediction model using n training
samples and calculated root mean square errors (RMSEs) for
the other samples to evaluate prediction performance.

(t) is a scalar value. In addition, for

3 Experiments

3.1 Experimental setup

To investigate the relationship between eventual model per-
formance and weight features extracted in partially trained

Table 1: All hyperparameters of DNNs on MNIST and

CIFAR-10 datasets. Init.: initialization.

Hyperparameter Value

0.05,0.01,0.005, ...,5 x 10=°
{fixed, exp. decay}

0.001, 0.0005, 0.0001,,5 x 107°
1.0,0.75,0.5

Initial learning rate (Ir)
Ir schedule (choice)

v (exp. decay)

p (exp. decay)

Momentum 09,038,0.7,...,0.1,0
Weight decay 0.05,0.01,0.005, ...,1 x 10~°
Batch size 300, 200, 100, 50, 20, 10
No. of conv. layers 6,5,4,3
No. of filters 128, 64, 32, 16
Filter size 7,5,3

{ReLU, Sig, TanH, Abs}
0.75,0.7, 0.65, ..., 0.05, 0
{Max, Average}
0.001,0.0001, ...,1 x 1077
{Constant, Gaussian }
0.1,0.01,...,1 x 107°

Act. func. (choice)
Dropout ratio

Pooling func. (choice)
Initial bias value
Weight init. (choice)
Gaussian init. o

DNNs, we performed hyperparameter searches on the typical
image recognition benchmarks MNIST [LeCun er al., 1998],
CIFAR-10 [Krizhevsky, 2009], and ImageNet 2012 datasets
[Russakovsky ef al., 2015]. The MNIST dataset consists of
28 x 28 pixel grayscale images of handwritten digits from
0 to 9. The dataset has 60,000 training and 10,000 valida-
tion examples. The CIFAR-10 dataset consists of 32 x 32
color images in 10 classes such as airplane and bird. The
dataset is divided into 50,000 training images and 10,000 val-
idation images. The ImageNet dataset consists of 227 x 227
color images in 1,000 classes and contains about 1.3 million
training images and 50,000 validation images. We prepro-
cessed the images by subtracting the mean values of each
pixel of the training images. The number of training itera-
tions for DNNs, 7', was set to 2,000, 40,000, and 250,000 for
the MNIST, CIFAR-10, and ImageNet datasets, respectively.
All experiments in this study were performed using the soft-
ware package Caffe [Jia et al., 2014].

We did hyperparameter searches using a convolutional type
of DNN [Deng and Yu, 2014]. To explore a broad range of
network types, we targeted the following 17 hyperparame-
ters. The hyperparameters related to network weight updates
are learning rate and its schedule, momentum, weight decay,
and batch size. The learning rate was either fixed or decay-
ing exponentially at a rate defined as oy = ag(l + v t)7?,
where o is learning rate at ¢ and v and p are hyperparame-
ters. We applied stochastic gradient descent [Bottou, 2012]
with momentum in all simulations at the end of each batch.
We also examined three hyperparameters related to network
architectures: the number of convolutional layers, the number
of filters, and the size of filters. Activation functions for con-
volutional layers and fully connected layers were also con-
sidered hyperparameters and we chose within four functions:
rectified linear (ReLU) [Nair and Hinton, 2010], Sigmoid
(Sig), hyperbolic tangent (TanH), and absolute value (Abs).
Dropout [Hinton et al., 2012b] was optionally used on the
convolutional layers including the input of the network and
its ratio was also one of the hyperparameters examined in this

2233

Table 2: All hyperparameters of DNNs on ImageNet dataset.
Hyperparameter Value
Initial learning rate 0.05,0.02,0.01, 0.005, 0.002
Weight decay 0.005, 0.0025, 0.0005, 0.00025, 0.00005
No. of conv. layers 6,5,4,3
Dropout ratio 0.75, 0.5, 0.25
Act. func. (choice) {ReLU, Sig, TanH}

study. In the pooling layers, max or average type of pooling
was selected by one hyperparameter. Weights for convolu-
tional and fully connected layers were initialized with either
constant values determined by the method [Glorot and Ben-
gio, 2010] or Gaussian distribution, whose standard deviation
was also one of the searched hyperparameters. Bias inputs for
each layer were initialized to a constant value.

For the MNIST and CIFAR-10 datasets, we changed all of
the above 17 hyperparameters (Table 1). The neural networks
contain from three to six convolutional layers and one fully
connected layer. After each convolutional layer, we set lay-
ers for normalizing over local input regions within channels
for suppressing extremely large or small outputs. We gener-
ated neural networks by changing one hyperparameter within
its range while all others were given randomly selected fixed
values. We repeated these procedures 20 and 10 times and
trained a total of 2,640 and 1,320 DNNs for the MNIST and
CIFAR-10 datasets, respectively.

For ImageNet datasets, we used the AlexNet convolutional
neural network architecture [Krizhevsky et al., 2012] and
changed five hyperparameters: learning rate, weight decay,
number of convolutional layers, dropout ratio, and activation
functions (Table 2). The DNNs had from three to six convo-
lutional layers and three fully connected layers. We generated
a total of 120 DNNs with different hyperparameters.

Because the number of convolutional layers was different
between the DNNs, we extracted weight features from net-
work weights of the first, second, and last convolutional lay-
ers, which can be defined in all trained DNNs in this study.
In addition, we extracted all fully connected layers. We
extracted weight features from these layers using both raw
weight values and weight changes. For calculating weight
changes, we set the parameter 7 as 10, 100, and 100 for the
MNIST, CIFAR-10, and ImageNet datasets, respectively.

The results of training DNNs showed a broad range of
eventual model performance up to 0.996, 0.804, and 0.566
for the MNIST, CIFAR-10, and ImageNet datasets, respec-
tively (Figure 2A). As shown in Figure 2A, there were many
DNNs with low scores. Specifically, the runs that showed
lower scores less than 0.3 were 40.3%, 49.5%, and 65.8% of
all runs for the MNIST, CIFAR-10, and ImageNet datasets,
respectively. Figure 2B shows time series of the learning
curve (validation scores and training errors) at the early learn-
ing processes in which we investigated the prediction perfor-
mance.

3.2 Prediction performance at each epoch

We constructed prediction models using the random forest al-
gorithm and then evaluated prediction performance by cross-

A 0.2
3 0.2
c
[
>
o
o
0 Eventual model performance 170 Eventual model performance 0.8 % Eventual model performance 0.6
MNIST CIFAR-10 ImageNet
B High 1 3 0.6 3 0.03 10
g 3 § o § = § —
o2 g B g S g S
€ @ o 3 2 El 2 El
ER S @ S 3 S 3
€t @ ot @ e 2 e
- g g 8 S 8 S
w [0} [(o)
Low 0 0 0 1 0 6
10 Epoch 100 10 Epoch 100 100 Epoch 1000 100 Epoch 1000 100 Epoch 1000 100 Epoch 1000
MNIST CIFAR-10 ImageNet

Figure 2: Training results of DNNs. (A) Histograms of eventual model performance on test data. (B) Change in validation
scores and training errors at early stage of learning processes in all DNNs. Row represents each DNN and the order is sorted in

accordance with eventual model performance.

A =— Learning curve (LC) —e— Weight features (WF)
0.22 0.15 0.22
RMSEs of LC with
\ A 75 traing samples
. L T " - - - o
L n w| * L
(%) x] %] 10 20 Training sample 80
™ C 014
™ -
\/AN Bl
\—__~\ _\,\/\’\ E . .
0.13 0.09 0.13 — RMSEs of WF
20 Epoch 100 200 Epoch 1000 200 Epoch 1000 0.1 = ———— — T =*==4 at epoch 200
MNIST CIFAR-10 ImageNet 200 Epoch 1700

Figure 3: Prediction performance for eventual model performance of DNNs using learning curve or proposed weight features
as the explanation variables. (A) RMSEs over the training epoch of DNNs. (B) RMSEs on ImageNet dataset when the number
of training samples varies. The training epoch of DNNs was fixed at 1,000. (C) Epoch needed to achieve RMSEs of weight
features at epoch 200 for the use of learning curve on the CIFAR-10 dataset.

validation. Regarding the parameter for the random forest
algorithm, we set the number of decision trees to 400 through
the experiments. We set the number of training samples n for
the prediction model to 1,200, 400, and 75 for the MNIST,
CIFAR-10, and ImageNet datasets, respectively.

We evaluated the prediction performance over the various
pre-run epochs, at which the features were calculated from
the DNNs. The results in Figure 3A show that the use of
the weight features always provides better prediction perfor-
mance. Compared with the use of the learning curve, the RM-
SEs in the case of the weight features at the same epoch de-
creased by 17-31% over epoch 100 for the MNIST, 10-26%
over epoch 1,000 for the CIFAR-10, and 21-33% over epoch
1,000 for the ImageNet datasets.

3.3 Training sample numbers and pre-run epochs

We showed that using the weight features improves prediction
performance compared with using the learning curve. Next,
we investigated to what extent the use of the weight features
can decrease the number of samples n and pre-run epochs ¢
needed for accomplishing the same prediction performance

2234

with the learning curve.

First, by decreasing the number of samples for training
the prediction model of the weight features, we investigated
how many samples are saved for achieving the same predic-
tion performance using the learning curve. Figure 3B shows
the relationship between the number of training samples and
RMSE:s of the prediction model using the weight features at
epoch 1,000 for the ImageNet dataset. In this example, the
number of required samples declined from 75 for the learn-
ing curve to 20 for the weight features. Similarly, the num-
ber of samples decreased from 1,200 to 500 at epoch 100 for
the MNIST dataset and from 400 to 230 at epoch 1,000 for
the CIFAR-10 dataset. On average, relative to the learning
curves, the use of the weight features decreased the required
sample size by 73% over epoch 100 for the MNIST, 58% over
epoch 1,000 for the CIFAR-10, and 76% over epoch 1,000 for
the ImageNet dataset.

We also investigated how much earlier the use of the
weight features accomplished the same prediction perfor-
mance of the learning curve by increasing the number of
epochs used for the prediction model of the learning curve.

A — Raw weight values: w(t)

— Weight changes: 4w(t) = w(t) - w(t-1)
o 0.8 7 0.6 7 0.4 7 © 0.8
8 @ % 7]
8 o . o8
g > ' £ 2
o © - : o ©
29 . ; : 29
g E ; i : @ E
238 ; Pl Q9 _
S§ . | | &s :
85 I | : i 8% :
EE ’ EE |
== [} ==
) - [)]
o 1T | E | | Il i ¢ 1T

MNIST CIFAR-10 ImageNet

— 1st convolutional layer
= 2nd convolutional layer

MNIST

—— Last convolutional layer
1st fully connected layer
0.4 q

— 2nd fully connected layer
= 3rd fully connected layer
0.6 §

i

ERLLEITY

CIFAR-10 ImageNet

Figure 4: Permutation-based variable importance measures of the weight features for the random forest algorithm. (A) Com-
parison between those of weight features extracted from raw weight values and weight changes. (B) Comparison among those
of features extracted from the weight changes in each layer of DNNss.

For the reference prediction performance, we utilized the
RMSE:s of 0.15 and 0.1 for the MNIST dataset and CIFAR-
10 datasets, respectively. Figure 3C shows the changes in
RMSE:s in accordance with the increase of pre-run epochs
for DNNs on the CIFAR-10 dataset. In this example, the
epoch needed for achieving the target prediction performance
(RMSE = 0.1) increased from epoch 200 for the weight fea-
tures to epoch 1,700 for the learning curve. For the MNIST
dataset, the use of the learning curve also increased the re-
quired pre-run epoch from 20 to 180.

3.4 Important variables in weight features

To gain insight into what kinds of weight feature contribute to
improving the prediction performance, we analyzed variable
importance for each explanation variable using the permuta-
tion accuracy importance measure for the random forest as
a means of variable selection [Breiman, 2001; Strobl et al.,
20071.

First, we compared the importance measures between
weight features extracted from raw weight values and weight
changes. The result shows that features extracted from weight
changes had stronger contributions than those of raw weight
values (Figure 4A). Next, we compared them among layers
and found that weight features extracted from the last convo-
lutional layers showed the highest value compared with those
of the other convolutional layers and fully connected layers
(Figure 4B). This result was common to all three datasets in-
vestigated in this study.

3.5 Weight history and time difference

To clarify the relationship between the prediction perfor-
mance and the weight features, we conducted additional in-
vestigations. First, we compared the prediction performance
between the above weight features and their history until
epoch t. The weigh features F'(t) were calculated from the
two items of weight data at epochs ¢ and t—7. Here, we inves-
tigated the prediction performance using the history of F'(t)
at certain intervals in the same way as the learning curve.
Figure 5A shows RMSEs of the prediction models using the
weight history at intervals of epoch 100 for the CIFAR-10
dataset. For example, the weight history at epoch 400 con-
sists of F'(400), F'(300), and F'(200). The result showed that

2235

A — Fp B —_ = —_ =
— History of F(1) =1, 10, 15,20 =1, 100, 150, 200
0.106 Y 0.15 0.1
w L L
w0 7] 7]
S b S
T [c
0.092 0.134 0.09
200 Epoch 1000 20 Epoch 100 200 Epoch 1000
CIFAR-10 MNIST CIFAR-10

Figure 5: RMSEs of the prediction model associated with
change in the weight features. (A) Comparison of weight
features F'(t) extracted from weights at two epochs and their
history. (B) Changes in RMSEs in accordance with increase
in time difference 7 for calculating weight changes.

there was little improvement of the prediction performance
using the weight history, suggesting that when the weight fea-
tures are extracted in the way proposed in this study, just two
items of weight data might be sufficient to construct the pre-
diction model.

Through the investigation on the variable importance, we
found that weight changes contribute to the better prediction
performance. We investigated whether and how prediction
performance changes in accordance with increasing 7. Figure
5B shows the relationship between the RMSEs of the predic-
tion models and 7 for the MNIST and the CIFAR-10 datasets.
We observed the tendency that increasing 7 improves the pre-
diction performance to a certain degree of .

3.6 Correlation with eventual model performance

We found that the proposed weight features provided better
prediction performance and that the most important features
were related to weight changes in last convolutional layers.
To investigate whether these results depend on the random
forest algorithm, we additionally investigated the correlation
of each variable with the eventual model performance. For
the correlation measure, we utilized Spearman’s rank corre-
lation coefficient, which is more suitable than the Pearson lin-

A 08 0.8
" e
-
-
.5 onFE i -', .S M
© Vd T Ve Se=7
[,/ [7
S L~ S /
(& (&) 7
'—/m
0.4 0.5
200 Epoch
B 08 0.8

1000

5 5

g 5 Y
2 @ ’

S S 4

1S} o /

1
/
=
/
0.5 14
20 Epoch 100 200 Epoch 1000
MNIST CIFAR-10

0.7 — Learning curve
N~ ~——— == Training error
_5 L L= Validation score
= e]
‘7,_‘3 ST i Weight features
3 = Raw weight values: w(®)
O .
= Weight changes:
Aw(t) = w(t) - w(t-t)
0
200 Epoch 1000
0.7 Learning curve
== Training error
Validation score
5 Phals Weight features
SN~ IS~ = 1st convolutional layer
§ == 2nd convolutional layer

Last convolutional layer

1st fully connected layer
2nd fully connected layer
3rd fully connected layer

0
200 Epoch 1000

ImageNet

Figure 6: Correlations of each weight feature group with eventual model performance compared with those of learning curve.
(A) Comparison between features of raw weight values and weight changes. (B) Comparison among weight features of each
layer of DNNs. Each plot for weight features shows time series of correlation of one feature that exhibits maximal value among

feature groups as shown by legends.

ear correlation coefficient to investigate variable relation that
is not necessarily linear. We used the maximal correlation
coefficient among each feature group and compared them.

In all three datasets, the weight features showed higher cor-
relation coefficients than learning curve from the early learn-
ing process of DNNs (Figure 6). Comparing them between
features of raw weight values and weight changes, we found
that the features extracted from weight changes are more
highly correlated with the eventual model performance of
DNNs in all tested epochs (Figure 6A). In addition, we com-
pared correlation coefficients between the features of each
layer (Figure 6B). For the MNIST and CIFAR-10 datasets,
the features extracted from last convolutional layers always
showed the highest values in all tested epochs. For the Ima-
geNet dataset, features in the last convolutional layers were
also the greatest numbers of the highest correlation values
over the epoch (4 out of 9), although the difference of corre-
lation values with the other layers was comparatively small.

4 Conclusion

Deep neural networks currently deliver a strong performance
in many areas such as image recognition and natural language
processing. However, they require careful tuning of hyper-
parameters, which can dramatically affect the model perfor-
mance. To speed up the hyperparameter searches by predict-
ing the eventual performance at an early stage of the learn-
ing process and terminating underperformance runs, we pro-
posed the use of network weight features for the prediction.
We changed various types of hyperparameter in DNNs and
gathered sets of the eventual model performance and features
calculated from the network weights at early stages of the

learning processes. Using the weight features as explanation
variables, we constructed the prediction model using the ran-
dom forest algorithm for predicting the eventual model per-
formance of DNNS.

We first showed that the use of the proposed weight fea-
tures provided better prediction accuracy compared with the
use of the learning curve in all three tested datasets. Further-
more, we demonstrated that the use of the weight features
decreased the training samples for the prediction model to,
at a maximum, one-fourth the number required for achiev-
ing the same predictive performance using the learning curve.
Regarding the number of pre-running epochs of DNNs, the
weight features also accomplished the specific prediction per-
formance at approximately 8 to 9 times earlier training epoch
of DNNE.

We also investigated important variables within the weight
features using the permutation accuracy importance mea-
sure for the random forest algorithm and correlation of each
variable with the eventual model performance. The results
showed the stronger contribution of weight changes than raw
weight values in all three tested datasets. We also found that
among the weight features, the weight changes in the last con-
volutional layers seem to be most important for prediction.

Taken together, our results demonstrate that the use of
weight features can help construct prediction models with a
smaller number of samples and terminate underperformance
runs at an earlier stage of the training process of DNNs than
the conventional use of learning curve, thus facilitating the
speed-up of hyperparameter searches.

2236

Acknowledgments
This research was partially supported by CREST, JST.

References

[Bengio, 2000] Yoshua Bengio.
mization of hyperparameters.
12(8):1889-1900, 2000.

[Bergstra and Bengio, 2012] J. Bergstra and Y. Bengio. Ran-
dom search for hyper-parameter optimization. Journal of
Machine Learning Research, 13, 2012.

[Bergstra et al., 2013] James Bergstra, Daniel Yamins, and
David Cox. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision
architectures. In Proceedings of The 30th International
Conference on Machine Learning, pages 115-123, 2013.

[Bottou, 2012] Léon Bottou. Stochastic gradient descent
tricks. In Neural Networks: Tricks of the Trade, pages
421-436. Springer, 2012.

[Breiman, 2001] Leo Breiman. Random forests. Machine
Learning, 45(1):5-32, 2001.

[Deng and Yu, 2014] L. Deng and D. Yu. Deep learning:
Methods and applications. Foundations and Trends in Sig-
nal Processing, 7, 2014.

[Domhan er al., 2015] T. Domhan, J. T. Springenberg, and
F. Hutter. Speeding up automatic hyperparameter op-
timization of deep neural networks by extrapolation of
learning curves. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, 2015.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feed-
forward neural networks. In International conference on
artificial intelligence and statistics, pages 249-256, 2010.

[Hara et al., 2014] S. Hara, R. Raymond, T. Morimura, and
H. Muta. Predicting halfway through simulation: Early
scenario evaluation using intermediate features of agent-
based simulations. In Proceedings of the Winter Simula-
tion Conference, pages 334-343, 2014.

[Hinton et al., 2012a] Geoffrey Hinton, Li Deng, Dong Yu,
George E Dahl, Abdelrahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Tara N Sainath, et al. Deep neural networks for acous-
tic modeling in speech recognition: The shared views of
four research groups. IEEE Signal Processing Magazine,
29(6):82-97, 2012.

[Hinton et al., 2012b] Geoffrey E Hinton, Nitish Srivastava,
Alex Krizhevsky, Ilya Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[Jia et al., 2014] Yangging Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of

the ACM International Conference on Multimedia, pages
675-678, 2014.

Gradient-based opti-
Neural computation,

2237

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097-1105, 2012.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Master’s thesis, Univer-
sity of Toronto, 2009.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Confer-
ence on Machine Learning, pages 807-814, 2010.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, et al. ImageNet large scale vi-
sual recognition challenge. International Journal of Com-
puter Vision, 115(3):211-252, 2015.

[Schmidhuber, 2015] J. Schmidhuber. Deep learning in neu-
ral networks: An overview. Neural Networks, 61:85-117,
2015.

[Snoek et al., 2012] Jasper Snoek, Hugo Larochelle, and
Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural informa-
tion processing systems, pages 2951-2959, 2012.

[Strobl et al., 2007] Carolin Strobl, Anne-Laure Boulesteix,
Achim Zeileis, and Torsten Hothorn. Bias in random forest
variable importance measures: Illustrations, sources and a
solution. BMC Bioinformatics, 8(1):1-21, 2007.

[Swersky er al., 2014] Kevin Swersky, Jasper Snoek, and
Ryan Prescott Adams. Freeze-thaw bayesian optimization.
arXiv preprint arXiv:1406.3896, 2014.

