
i, Poet: Automatic Poetry Composition through
Recurrent Neural Networks with Iterative Polishing Schema

Rui Yan1,2,3

1Department of Computer Science, Peking University
2Natural Language Processing Department, Baidu Research, Baidu Inc.

3School of Computer, Central China Normal University
yanrui02@baidu.com

Abstract
Part of the long lasting cultural heritage of human-
ity is the art of classical poems, which are created
by fitting words into certain formats and representa-
tions. Automatic poetry composition by computers
is considered as a challenging problem which re-
quires high Artificial Intelligence assistance. This
study attracts more and more attention in the re-
search community. In this paper, we formulate the
poetry composition task as a natural language gen-
eration problem using recurrent neural networks.
Given user specified writing intents, the system
generates a poem via sequential language model-
ing. Unlike the traditional one-pass generation for
previous neural network models, poetry composi-
tion needs polishing to satisfy certain requirements.
Hence, we propose a new generative model with a
polishing schema, and output a refined poem com-
position. In this way, the poem is generated incre-
mentally and iteratively by refining each line. We
run experiments based on large datasets of 61,960
classic poems in Chinese. A comprehensive eval-
uation, using perplexity and BLEU measurements
as well as human judgments, has demonstrated the
effectiveness of our proposed approach.

1 Introduction
Poetry is a special and important cultural heritage with more
than thousands of years in humanity history. Their popular-
ity manifests itself in many aspects of everyday life, e.g., as
a means of expressing personal emotion, political views, or
communicating messages at festive occasions. As opposed to
free language, poems have unique elegance, e.g., aestheticism
and conciseness etc. Composing classic poems is considered
as a challenging task with a set of structural, phonological,
and semantic requirements, hence only few best scholars are
able to master the skill to manipulate or to organize terms.

With the fast development of Artificial Intelligence (A.I.),
we realize that computers might play an important role in
helping humans to create poems: 1) it is rather convenient for
computers to sort out appropriate term combinations from a
large corpus, and 2) computer programs can take great advan-
tage to recognize, to learn, and even to remember patterns or

rules given the corpus. The above observations motivate au-
tomatic poetry generation using computational intelligence.

For people to better inherit this classic art, we introduce
a meaningful task of automatic poetry composition, aiming
to endow the computer with artificial intelligence to mimic
the generation process of human poetry so that it would be
a tool that aids people to master proficiency in poem com-
position. We name the system as iPoet inspired from Yan et
al. [2013], which indicates our goal is that everyone could
announce proudly: “I, a poet”.

To design the automatic poetry composition schema, we
first need to empirically study the generation criteria. We
discuss some of the general generation standards here. Un-
like narratives which follow less strict rules and restrictions,
a classical poem has certain generation standards. For ex-
ample, classic poems generally have rigid formats with fixed
length. Also, semantic coherence is a critical feature in po-
ems. A well-written poem is supposed to be semantically
coherent among all lines.

In this paper we are concerned with generating poems au-
tomatically. Although computers are no substitute for poetic
creativity, they can analyze very large online text repositories
of poems. Computer can extract statistical patterns, maintain
them in memory and use them to generate many possible vari-
ants. Furthermore, it is relatively straightforward for the ma-
chine to check whether a candidate poem conforms to those
requirements. Beyond the long-term goal of building an au-
tonomous intelligent system capable of creating meaningful
poems eventually, there are potential short-term applications
for A.I. augmented human expertise/experience to possibly
enable everyone to be a poet due to entertainment or educa-
tional purpose.

We propose the iPoet system based on recurrent neural
networks for language generation [Zhang and Lapata, 2014;
Li et al., 2015; Mou et al., 2015]. Given a large collection
of poems, we learn representations of individual characters,
and their combinations into one or more lines as well as how
they mutually reinforce and constrain each other. Given the
user specified writing intents, the system could generate a
poem via sequential language modeling. Unlike the tradi-
tional single-pass generation in previous neural networks, our
proposed system will be able to polish the generated poem for
one or more iterations to refine the wording and to be more
poetic, which is quite like a real human writing process. In

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2238

this way, the poem is generated incrementally and iteratively
by refining each line one-by-one. The hidden representations
of the generated lines will be fed into the recurrent language
model to polish the next version of lines in the poem. In con-
trast to previous approaches, our generator makes utilizations
of word dependencies within a line and across lines through
an iterative polishing schema, which is novel. To sum up, our
contributions are as follows:

• For the first time, we propose a recurrent neural
network-based poetry generation model with iterative pol-
ishing schema, which enables more coherent written poems
conformed to poetic requirements. The generation model is
more like a real human poetry composing experience with re-
thinking and re-wording enabled.

• We have formulated a new system framework to take in
human writing intents and to output the composed poems.
The writing intents are encoded, and then decoded via recur-
rent neural networks with hierarchical structure, i.e., repre-
sentations of “characters” and “lines” in two hierarchies.

We build iPoet on the poem dataset to verify its effective-
ness compared with several baselines using automatic and
manual evaluation metrics. We start by reviewing previous
works. In Sections 3 & 4 we formulate a generative system
framework via recurrent neural network generation model
with iterative polishing schema. We describe experiments in
Section 5, and draw conclusions in Section 6.

2 Related Work
As poetry is one of the most significant literature heritage
of various cultures all over the world, there are some formal
researches into the area of computer-assisted poetry genera-
tion. Scientists from different countries have studied the auto-
matic poem composition in their own languages through dif-
ferent ways: 1) Genetic Algorithms. Manurung et al. [2004;
2011] propose to create poetic texts in English based on state
search; 2) Statistical Machine Translation (SMT). Greene et
al. [2010] propose a translation model to generation cross-
lingual poetry, from Italian to English; 3) Rule-based Tem-
plates. Oliveira [2009; 2012] has proposed a system of poem
generation platform based on semantic and grammar tem-
plates in Spanish. An interactive system has been proposed to
reproduce the traditional Japanese poem named Haiku based
on rule-based phrase search related to user queries [Tosa et
al., 2008; Wu et al., 2009]. Netzer et al. [2009] propose an-
other way of Haiku generation using word association rules.

Besides studies in English, Japanese, Spanish and Italian
poetry composition, there is continuing research on Chinese
poetry. Poetry generation is theoretically similar with dif-
ferent adaption for different languages. Since we mainly il-
lustrate Chinese poem generation in this paper, we introduce
more Chinese poetry generation systems here.

There are now several Chinese poetry generators avail-
able, usually template based. Zhou et al. [2010] use a ge-
netic algorithm for Chinese poetry generation by tonal cod-
ings and state search. In a study of Chinese couplet genera-
tion, which could be narrowed down as a minimal poem form
of 2 lines only, a SMT model is proposed to generate the
2nd sentence given the 1st sentence of a couplet [Jiang and

Zhou, 2008]. He et al. [2012] extend the SMT framework to
generate a 4-line poem by giving previous sentences sequen-
tially, considering structural templates. Yan et al. [2013] pro-
posed a generative manner to compose poems, based on the
summarization framework [Yan et al., 2011c; 2011b; 2012;
2011a]. Along with the prosperity of neural networks, a re-
current neural network based language generation is proposed
[Zhang and Lapata, 2014]: the generation is more or less a
translation process. Given the previous line, the system gen-
erates the next line and it is a single-pass generation process.

To the best of our knowledge, we are the first to apply the
recurrent neural network with polishing schema for the lan-
guage generation problem in poetry. We also design a hier-
archical structure for different modelings of lines and charac-
ters. The proposed neural networks with iterative polishing
schema look more like the real poetry process of humans.

3 Overview
One plausible procedure for a poet to create a poem is to first
outline the main writing intents, which could be represented
by a set of keywords. It is an iterative process since the author
can always change part of terms to polish the idea till the
entire poem is finished. iPoet tries to imitate such a process.
Problem formulation. We define the problem as follows:

• Input. Given the keywords of ={k1, k2, . . . , k||} from
an author as the writing intent (i.e., topics, subjects, scenarios,
or themes for the poem to generate), where k

i

is a keyword
term. Each keyword consists of one or more characters, i.e.,
k

i

= {c1, c2, . . . }. We generate a poem from the keywords.
• Output. We generate a poem P = {c1,1, · · · , c1,n; · · · ;

c

m,1, · · · , cm,n

}, c
i,j

2 V , where V is the vocabulary. n is
the number of characters within a line of the poem; m is the
number of lines. For classic Chinese poetry, i.e., quatrains
and regulated verses [Yan et al., 2013], n (either 5 or 7) and
m (either 4 or 8) are fixed numbers.

System Framework. Our system works in an encoding-
decoding fashion, which represents the user intention as a
single vector, and then decodes the vector to a whole poem.
Figure 1 shows the architecture of our iPoet system, which
comprises mainly three parts:

Intention representation. The system accepts a set of user-
specified keywords  as the input. We use either a convo-
lutional neural network (CNN) or recurrent neural network
(RNN) over characters to capture the meaning of a particular
keyword term; then the information of different terms is in-
tegrated by a pooling layer. Thus we obtain a single vector
representation of the user intent.

Sequential generation. Conditioned on the vector represen-
tation of user intention, we use an RNN to compose a poem
in a character by character-wise generation. Note that poems
contain multiple lines, and that each line further contains mul-
tiple characters, we use a hierarchical architecture for poem
generation. Concretely, we have an RNN representing global
information for each line: the global information vector im-
pacts on all character generations in the line. Based on the
global RNN, we also have another RNN representing local
information, which guides the generation of a single charac-
ter within the line. The details is shown in Figure 1.

2239

Figure 1: The illustration of the iPoet system frame including encoding and decoding neural networks. The system takes the
users’ writing intents (k terms, k � 1) as queries, and encodes the intents as a hidden vector. We have two strategies for intent
encoding (in Figure 2). With the hidden vector as a triggering state and the learned embeddings as well as the poetic language
model, we “compose” a poem in a sequential decoding process through recurrent neural networks. The model is based on an
iterative polishing generation schema. The white circles denote generated characters, which are observable. Shaded circles
(grey and black) indicate hidden vectors in local and global hierarchies, which are hidden states to generate characters.

Iterative polishing. To mimic a human poet, who may re-
compose his/her works for multiple times, we develop an it-
erative polishing schema to refine the obtained poem after
one-pass generation. The process is essentially the same as
sequential generation except that the information representa-
tion of the previous draft is utilized as input, serving as addi-
tional information of user intention, as well as facilitating the
overall semantic coherence for the whole poem.

To sum up, the system encodes writing intents, and gen-
erates the poem in accordance with such intents through a
decoding process. The generation is basically a line-by-line
process, with a hierarchical concept incorporated. We polish
the poem to extend the single-pass generation to a multi-pass
generation, which is a novel insight. In the following section,
we further delve into these steps.

4 The iPoet Neural Model
To be self-contained, we firstly briefly overview word em-
beddings, which are the foundation of our proposed neural
networks. Traditional models usually treat a word as a dis-
crete token; thus, the internal relation between similar words
would be lost. Word embeddings [Mikolov et al., 2013] are
a standard apparatus in neural network-based text process-
ing. A word is mapped to a low dimensional, real-valued
vector. This process, known as vectorization, captures some
underlying meanings. Given enough data, usage, and context,
word embeddings can make highly accurate guesses about the
meaning of a particular word. Embeddings can equivalently
be viewed that a word is first represented as a one-hot vec-
tor and multiplied by a look-up table [Mikolov et al., 2013].

In our model, we first vectorize all words using their embed-
dings. Word embeddings are initialized randomly, and then
tuned during training based on the poem collections.

4.1 Intention Representation
In our system, the user intention is specified as  keyword
terms, each comprising one or more characters. We first use
a convolutional neural network or recurrent neural network to
capture the meaning of a keyword term; then a pooling layer
can integrate representations over different terms, serving as
a way of semantic compositionality [Hu et al., 2014].

Without loss of generality, we let a term k have |k| charac-
ters, c1, · · · c|k|. A convolutional neural network (CNN, Fig-
ure 2.a) applies a fixed-size window to extract local (neigh-
boring) patterns of successive characters. Suppose the win-
dow is of size t, the detected features at a certain position
x

i

, · · · , x
i+t�1 is given by

y

i

= f (W [x

i

; · · · ;x
i+t�1] + b) (1)

where x is the vector representation (i.e., embedding) of the
character. W and b are parameters for convolution. Semi-
colons refer to column vector concatenation. f(·) is the non-
linear activation function and we use ReLU [Nair and Hinton,
2010] in the experiment. Note that we pad zero at the end of
the term if a character does not have enough subsequent char-
acters to fill the slots in the convolution window. In this way,
we obtain a set of detected features y1, · · · ,yn

. Then a max
pooling layer aggregates information over different characters
into a fixed-size vector, i.e.,

y[j] = max{y1[i], · · · ,yn

[i]} (2)

2240

(a). CNN-based structure. (b). RNN-based structure.

Figure 2: User intention representation structures.

where [·] indexes a particular dimension in a vector.
Alternatively, we can use a recurrent neural network (RNN,

Figure 2.b) to iteratively pick up information over the charac-
ter sequence x

i

, · · · , x
i+t�1. For each character, the RNN

allocates a hidden state h
i

, which is dependent on the current
character’s embedding x

i

and the previous state h

i�1. Since
a term typically comprises 2–3 characters, which is not actu-
ally a very long sequence, it is sufficient that we use a vanilla
RNN with basic interaction, i.e.,

h

i

= f(W

h

h

i�1 +W

x

x

i

+ b) (3)

We also use a max pooling layer over all hidden states as
in CNNs; this is generally more effective than using the last
hidden state as the sequence’s vector representation.

RNNs can deal with sentence boundary smoothly, as op-
posed to CNNs where 0-padding is needed; thus we shall rea-
sonably expect RNNs are more robust in this scenario [Xu et
al., 2016]. We will verify the performance of both structures
in the experimental section. For unification, we use h

in

to de-
note the encoding of the writing intents given by either CNN
or RNN.

4.2 Sequential Generation
Having represented user intention as a fixed-size vector, we
feed it to a hierarchical natural language generator (similar to
Li et al. [2015]) for poem synthesis.

The global-level RNN (black circles in the right-hand side
of Figure 1) captures the global information representation,
and leads to the generation of a certain line of the poem. The
starting hidden vector of the global RNN chain is given by
the user intention, and then it changes as the RNN generates
new lines. Let h(high)

i

be its hidden vector, we have

h

(global)
i

= f

⇣
W

x

h

(local)
+W

h

h

(global)
i�1

⌘
(4)

Here h

(local) is the last hidden state of the low-level (a.k.a.,
local) RNN (gray circles in Figure 1) in the lower hierar-
chy, which serves as the sentence generator. Each hidden
state controls the generation of one character. Its input is
the word embedding of the previous character, augmented
with the global information vector (black circle in Figure 1),
namely h

(global), as a static attention mechanism. The output
is a softmax classifier predicting the probability of a certain
character at the current step. Formally, we give the formula
for computing the hidden layer as follows.

h

(local)
i

= f

⇣
W

x

x

i�1 +W

g

h

(global)
+W

h

h

(local)
i�1

⌘
(5)

4.3 Iterative Polishing
Inspired by the observation that a human poet shall recom-
pose their poems for several times, we propose a polishing
mechanism for poem generation. Specifically, after a one-
pass generation, the RNN itself shall be aware of the gen-
erated poem. Hence, we regard the global-level RNN’s hid-
den state (corresponding to the last line), as the “gist” of the
overall semantic representation of the poem, functioning sim-
ilar to the user intention. Note that we also feed the original
writing intention representation for further information mix-
ing during each iteration process. The intuition is that we try
not deviate from the original writing intents as polishing goes.

h

(global)
0 =

⇢
f (W

i

h

in

) (1st iteration)
f

�
W

i

h

in

+W

h

h

(global)
�

(Polishings)
(6)

where h

global is the last global information representation in
the RNN chain during the previous iteration. We mix the gen-
erated poem representation with the original writing intents as
the initial global state for each polishing iteration.

We have the stopping criteria as follows.
• After each iteration process, we have the gist represen-

tation of the whole generated poem h

(global) (i.e., the last
black circle for the global RNN chain). We stop the
algorithm iteration when the cosine similarity between
the two h

(global) from two successive iterations exceeds a
threshold � (� = 0.5 in this study).

• It is necessary to incorporate a termination schedule
when the generator polishes for many times. We stop
iPoet system after a fixed number of recomposition.
Here we empirically set the threshold as 10 iterations.

5 Experiments and Evaluations
5.1 Experimental Setups
Datasets. As mentioned, in this paper we generate classic
Chinese poems for experiments. During the Tang Dynasty
(618-907 A.D.) and Song Dynasty (960-1279 A.D.), Chinese
literature reached its golden age. We downloaded “Poems
of Tang Dynasty” (PTD), “Poems of Song Dynasty” (PSD),
which amounts to 61,960 poems. More detailed statistics
are listed in Table 1, which shows the number of total lines,
unique characters in the corpus. There are several writing
formats for Chinese poetry, while quatrain (consisting of 4
lines) and regulated verse (consisting of 8 lines) show dom-
inative culture prominence throughout Chinese history [Yan
et al., 2013]. They both have 5 or 7 characters per line. More
than 90% of the poems in our corpus are written in these two
formats, and we learn to write such poems by iPoet (i.e., 5-
character or 7-character poems). In our datasets, each poem is
associated with a title and the corresponding content. Hence
we regard the titles as the writing intents, which is natural. In
this way, we obtain abundant samples to learn how to generate
poems given the intents. We randomly choose 2,000 poems
for validation and 1,000 poems for testing, other non-overlap
ones for training.

Training. The objective for training is the cross entropy
errors of the predicted character distribution and the actual

2241

Table 1: Detailed basic information of the poem datasets.

#Poem #Line #Character
PTD 42,974 463,825 10,205
PSD 18,986 268,341 6,996

Table 2: Human judgement scoring criteria.

Fluency Is the poem grammatically & syntactically formed?
Poeticness Does the text display the features of a poem?
Coherence Is the poem thematically coherent across lines?
Meaning Does the poem convey meaningful information?

character distribution in our corpus. An `2 regularization term
is also added to the objective. The model is trained with back
propagation through time with the length being the time step.
The objective is minimized by stochastic gradient descent.
During training, the cross entropy error of the output is back-
propagated through all hidden layers to the writing intents.

Hyperparameters and Setups. In this paper, we used
128-dimensional word embeddings through vectorization,
and they were initialized randomly and learned during train-
ing. We use the ReLU function as the activation function in
neural networks. As our dataset is in Chinese, we performed
standard Chinese segmentation into characters. We set the
width of convolution filters as 3. To train the network we use
stochastic gradient descent with shuffled mini-batches (with
a mini-batch size of 100) for optimization. Gradient is com-
puted by standard back-propagation. Initial learning rate was
set to 0.8, and a multiplicative learning rate decay was ap-
plied. The above parameters were chosen empirically. We
used the validation set for early stopping. In practice, the
training converges after a few epochs.

5.2 Evaluation Metrics
It is generally difficult to judge the effect of poem generated
by computers. We propose to evaluate the experimental re-
sults from three instinctively different evaluation metrics.

Perplexity (PPL). For most of the language generation re-
search, language perplexity is a sanity check. Our first set of
experiments involved intrinsic evaluation of the “perplexity”
evaluation for the generated poems. Perplexity is actually an
entropy based evaluation. In this sense, the lower perplexity
for the poems generated, the better performance in purity for
the generations, and the poems are likely to be good ones.

BLEU. The Bilingual Evaluation Understudy (BLEU)
score-based evaluation is generally used for machine trans-
lation: given the reference translation(s), the algorithm eval-
uates the quality of text which has been machine-translated
from the reference translation as groundtruth. We adapt the
BLEU evaluation under the poetry generation scenario. Take
a poem from the dataset, we generate the A.I. authored poem
given the title, and compare it with the original poem written
by the human poet. There is a concern for such an evaluation
metric is that BLEU score can only reflect the partial capabil-
ity of the models; there is (for most cases) only one ground
truth for the generated poems but actually there are more than
one appropriate ways to generate a good poem. The merit of
BLEU evaluation is to examine how likely to approximate the

computer generated poems towards human authored ones.
Human Evaluation. Evaluators are requested to ex-

press an opinion over the automatically composed poems.
A clear criterion is necessary for human evaluation. We
adopt the evaluation standards discussed in [Wang, 2002;
He et al., 2012; Yan et al., 2013; Zhang and Lapata, 2014]:
“Fluency”, “Poeticness”, “Coherence”, and “Meaning”. We
clearly illustrate the criteria in Table 2, so that human evalu-
ators can easily follow. They only need to assign 0-1 scores
according to the four criteria (‘0’-no, ‘1’- yes). After that, the
total score of the poem is calculated by summing up the four
individual scores, in a 5-point scale ranging from 0 to 4. The
evaluation process is conducted as a blind-review.

5.3 Algorithms for Comparisons
We implemented several poetry generation methods as base-
lines. For fairness, we conduct the same pre-generation pro-
cess to all algorithms.

Random. The method randomly chooses characters as a
poem. It is a lower bound for computer-generated poems.

SMT. A Chinese poetry generation method is proposed
based on statistical machine translation [He et al., 2012]. The
process is that given one generated line, the system generates
the next line by translating the previous sentence as a pair of
“couplet” one by one, which is a single-pass generation.

SUM. Given the writing intents, the Sum method first re-
trieves relevant poems from the corpus, and then summarizes
the retrieved poems into a single one based on a generative
summarization framework [Yan et al., 2013].

RNNPG. The RNN-based poem generator (RNNPG) is
proposed to generate a poem: the first line is generated by a
standard recurrent neural network language model [Mikolov
et al., 2010] and then generate all other lines using previously
generated lines as contexts. The generation process is literally
a single-pass manner [Zhang and Lapata, 2014].

LSTM-RNN. LSTM-RNN is basically a recurrent neural
network using the Long Short Term Memory (LSTM) archi-
tecture [Hochreiter and Schmidhuber, 1997]. The RNN with
LSTM units consists of memory cells in order to store infor-
mation for extended periods of time. We first use an LSTM-
RNN to encode the writing inputs to a vector space, and then
use another LSTM-RNN to decode the vector into a gener-
ated poem, which is literally a sequence-to-sequence process
[Sutskever et al., 2014].

iPoet. Here we propose the recurrent neural network-based
poetry generation model with iterative polishing schema.
There are two prominent advantages for the iPoet system:
1) the polishing schema enables better coherence and 2)
two RNNs for characters and lines characterizes hierarchical
modelings. Our proposed system is a multi-pass generation.

5.4 Performance
In Table 3 we show the overall performance of our iPoet sys-
tem compared with strong competing methods as described
above. We see that, for both PPL and BLEU metrics, our
system outperforms all baseline models. The results are also
conservative in both settings of 5-character and 7-character
poem generations.

2242

Table 3: Overall performance comparison against baselines.

Algo. 5-Character 7-Character
PPL BLEU Human PPL BLEU Human

Random – 0.002 0.259 – 0.051 0.135
SMT 126 0.051 1.943 134 0.144 1.957
SUM 149 0.035 2.219 131 0.128 2.013

RNNPG 103 0.053 1.964 119 0.163 2.205
LSTM-RNN 123 0.048 1.762 136 0.159 1.633

iPoet 91 0.088 2.352 96 0.185 2.568
Table 4: Performance comparison from different strategies.

Algo. 5-Character 7-Character
PPL BLEU PPL BLEU

CNN for Intents 95 0.085 103 0.181
RNN for Intents 91 0.088 96 0.185

No Polishing/Hierarchy 121 0.045 132 0.142
No Polishing 105 0.064 116 0.168
No Hierarchy 114 0.049 123 0.161

iPoet 91 0.088 96 0.185

The Random method has the worst performance, since it is
naive without considering any language characteristics. For
standard translation method SMT and summarzation method
SUM, both approaches manipulate characters according to the
poem dataset, either by translation or summarization. In gen-
eral, the SUM performs better due to the optimization for
more poetic characteristics while SMT does not. For the gen-
eration models based on neural networks, RNNPG performs
better than LSTM-RNN. LSTM-RNN is not really a poem-
driven generation method but likely to be an advanced SMT
method. The poems generated by LSTM-RNN are less mean-
ingful to get the decent scorings, since LSTM-RNN better
suits longer sequences in general. RNNPG is strong base-
line which applies both CNN and RNN structures and models
previous lines as contexts. There is a major drawback that a
single-pass generation is insufficient to characterize the gen-
eral process of human composition. We hence introduce the
iterative polishing schema into the natural language genera-
tion process through neural networks. Such a schema enables
the system to revise and refine the generated poem, which
leads to better performance in experimental evaluations.

For evaluations, the perplexity scores and BLEU scores are
quite consistent. We observe that the BLEU scores are quite
low for almost all methods. It is not surprising that these
methods are not likely to generate the exactly same poems as
the ground truth, since that is not how the objective function
works. BLEU can only partially calibrate the capability of po-
etry generation because there are many ways to create poems
which do not look like the ground truth but also make sense
to people. Although quite subjective, the human evaluations
can to some extent show the potentials of all poetry genera-
tors. For the 4 standards, “coherence” and “meaning” criteria
make our iPoet distinguished from other baselines most.

5.5 Analysis and Discussions
There are two different strategies to represent the writing in-
tents through the deep neural networks: 1) CNN-based struc-
ture and 2) RNN-based structure for representations. We

make a direct comparison between such two ways of writ-
ing intents modelings, and list the results in Table 4. As we
expect, the RNN-based structure performs slightly better than
CNN-based one. Thus, we deploy the RNN-based structure
in iPoet system frame in Figure 1.

One of the contributions in this paper is that we propose an
iterative polishing schema, which enables a multi-pass gen-
eration process. The iPoet generator can generate a line uti-
lizing the gist information of the entire poem rather than the
information from generated lines only. It is a major improve-
ment over previous methods. Here we analyze the effect and
benefits of the iterative polishing schema in Table 4. The gen-
erated poem from the first iteration is actually the approach
without polishing schema. In general, the polishing process
stops after several iterations.

In this paper, we also incorporate a hierarchical genera-
tion structure, from characters to lines: the hidden vectors
for characters serve as “local” information to have impacts
on a single character within a line, while the hidden vectors
of lines and writing intents are “global” information to influ-
ence the generation of all characters of a line. We also ex-
amine the effects of such hierarchical modeling of the poem
structure by removing the global hidden vector for the lines.
In this way, the local hidden vector from the previous line di-
rectly links to the first local hidden vector in the next line. We
maintain the iterative polishing schema in the structure with-
out hierarchical modeling: the last local hidden vector in the
last line links to the first local hidden vector in the first line
within the next generation pass. For a complete comparison,
we also show the results of the system with neither polishing
schema or hierarchial structure, which is a plain model. The
results in Table 4 show that both strategies make prominent
contributions to the performance of iPoet system.

6 Conclusions and Future Work
Poetry composition is a difficult task in the field of natural
language generation. We propose a novel approach to model
this problem based on recurrent neural network structures.
Given the user writing intents, we encode the information
and decode it into a poem via a sequential generation. The
two innovative insights are that 1) we incorporate an iterative
polishing schema and 2) a hierarchical structure with local
and global information for characters and lines. The polish-
ing schema utilizes global information of the whole poem,
and enables recomposition, which is a multi-pass generation.

We compare our approach with several baselines. We apply
perplexity and BLEU to evaluate the performance of poetry
generation as well as human judgments of 4 criteria. Through
our experiments, we show that the iPoet neural model can
generate rather good poems and outperform baselines. Be-
sides, both polishing schema and hierarchical structure con-
tribute to the better performance the proposed approach. In
the future, we plan to incorporate more poetic characteristics
such as parallelism and sentiments in the generation process.

Acknowledgments
We thank all the anonymous reviewers for their valuable com-
ments. This paper is partially supported by National Basic

2243

Research Program of China (No. 2014CB340505).

References
[Greene et al., 2010] Erica Greene, Tugba Bodrumlu, and

Kevin Knight. Automatic analysis of rhythmic poetry with
applications to generation and translation. In Proceedings
of the 2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP’10, pages 524–533, 2010.

[He et al., 2012] J. He, M. Zhou, and L. Jiang. Generating
chinese classical poems with statistical machine transla-
tion models. In Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, 2012.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Hu et al., 2014] Baotian Hu, Zhengdong Lu, Hang Li, and
Qingcai Chen. Convolutional neural network architectures
for matching natural language sentences. In NIPS, pages
2042–2050, 2014.

[Jiang and Zhou, 2008] Long Jiang and Ming Zhou. Gen-
erating chinese couplets using a statistical mt approach.
In Proceedings of the 22nd International Conference on
Computational Linguistics - Volume 1, COLING ’08,
pages 377–384, 2008.

[Li et al., 2015] Jiwei Li, Thang Luong, and Dan Jurafsky. A
hierarchical neural autoencoder for paragraphs and docu-
ments. In ACL-IJCNLP, pages 1106–1115, 2015.

[Manurung et al., 2011] R. Manurung, G. Ritchie, and
H. Thompson. Using genetic algorithms to create mean-
ingful poetic text. Journal of Experimental & Theoretical
Artificial Intelligence, 24(1):43–64, 2011.

[Manurung, 2004] H. Manurung. An evolutionary algorithm
approach to poetry generation. University of Edinburgh.
College of Science and Engineering. School of Informat-
ics., 2004.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát,
Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. In INTER-
SPEECH, volume 2, page 3, 2010.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[Mou et al., 2015] Lili Mou, Rui Yan, Ge Li, Lu Zhang,
and Zhi Jin. Backward and forward language model-
ing for constrained sentence generation. arXiv preprint
arXiv:1512.06612, 2015.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E Hinton.
Rectified linear units improve restricted Boltzmann ma-
chines. In ICML, pages 807–814, 2010.

[Netzer et al., 2009] Yael Netzer, David Gabay, Yoav Gold-
berg, and Michael Elhadad. Gaiku: generating haiku with
word associations norms. In Proceedings of the Work-
shop on Computational Approaches to Linguistic Creativ-
ity, CALC ’09, pages 32–39, 2009.

[Oliveira, 2009] H. Oliveira. Automatic generation of po-
etry: an overview. Universidade de Coimbra, 2009.

[Oliveira, 2012] H.G. Oliveira. Poetryme: a versatile plat-
form for poetry generation. Computational Creativity,
Concept Invention, and General Intelligence, 1:21, 2012.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[Tosa et al., 2008] N. Tosa, H. Obara, and M. Minoh. Hitch
haiku: An interactive supporting system for composing
haiku poem. Entertainment Computing-ICEC 2008, pages
209–216, 2008.

[Wang, 2002] Li Wang. A summary of rhyming constraints
of chinese poems. Beijing Press, 2002.

[Wu et al., 2009] X. Wu, N. Tosa, and R. Nakatsu. New hitch
haiku: An interactive renku poem composition supporting
tool applied for sightseeing navigation system. Entertain-
ment Computing–ICEC 2009, pages 191–196, 2009.

[Xu et al., 2016] Yan Xu, Ran Jia, Lili Mou, Ge Li,
Yunchuan Chen, Yangyang Lu, and Zhi Jin. Improved
relation classification by deep recurrent neural networks
with data augmentation. arXiv preprint arXiv:1601.03651,
2016.

[Yan et al., 2011a] Rui Yan, Liang Kong, Congrui Huang,
Xiaojun Wan, Xiaoming Li, and Yan Zhang. Timeline gen-
eration through evolutionary trans-temporal summariza-
tion. In EMNLP ’11, pages 433–443, 2011.

[Yan et al., 2011b] Rui Yan, Jian-Yun Nie, and Xiaoming Li.
Summarize what you are interested in: An optimization
framework for interactive personalized summarization. In
EMNLP ’11, pages 1342–1351, 2011.

[Yan et al., 2011c] Rui Yan, Xiaojun Wan, Jahna Otter-
bacher, Liang Kong, Xiaoming Li, and Yan Zhang. Evolu-
tionary timeline summarization: A balanced optimization
framework via iterative substitution. In SIGIR ’11, pages
745–754, 2011.

[Yan et al., 2012] Rui Yan, Xiaojun Wan, Mirella Lapata,
Wayne Xin Zhao, Pu-Jen Cheng, and Xiaoming Li. Vi-
sualizing timelines: Evolutionary summarization via iter-
ative reinforcement between text and image streams. In
CIKM ’12, pages 275–284, 2012.

[Yan et al., 2013] Rui Yan, Han Jiang, Mirella Lapata, Shou-
De Lin, Xueqiang Lv, and Xiaoming Li. i, poet: automatic
chinese poetry composition through a generative summa-
rization framework under constrained optimization. In
Proceedings of the Twenty-Third international joint con-
ference on Artificial Intelligence, pages 2197–2203, 2013.

[Zhang and Lapata, 2014] Xingxing Zhang and Mirella Lap-
ata. Chinese poetry generation with recurrent neural net-
works. In EMNLP, pages 670–680, 2014.

[Zhou et al., 2010] Cheng-Le Zhou, Wei You, and Xiaojun
Ding. Genetic algorithm and its implementation of auto-
matic generation of chinese songci. Journal of Software,
21(3):427–437, 2010.

2244

