
Sparsity Conditional Energy Label
Distribution Learning for Age Estimation

Xu Yang, Xin Geng⇤, Deyu Zhou
Key Lab of Computer Network and Information Integration (Ministry of Education)

School of Computer Science and Engineering, Southeast University, Nanjing 211189, China.
{x.yang,xgeng,d.zhou}@seu.edu.cn

Abstract
By observing that the faces at close ages are similar,
some Label Distribution Learning (LDL) methods
have been proposed to solve age estimation tasks
that they treat age distributions as the training tar-
gets. However, these existent LDL methods are
limited because they can hardly extract enough use-
ful information from complex image features. In
this paper, Sparsity Conditional Energy Label Dis-
tribution Learning (SCE-LDL) is proposed to solve
this problem. In the proposed SCE-LDL, age dis-
tributions are used as the training targets and en-
ergy function is utilized to define the age distribu-
tion. By assigning a suitable energy function, SCE-
LDL can learn distributed representations, which
provides the model with strong expressiveness for
capturing enough of the complexity of interest from
image features. The sparsity constraints are also
incorporated to ameliorate the model. Experiment
results in two age datasets show remarkable advan-
tages of the proposed SCE-LDL model over the
previous proposed age estimation methods.

1 Introduction
In recent years, a huge number of research about age estima-
tion has been done because of its potential applications, e.g.,
Human Computer Interaction (HCI) [Geng et al., 2006], face
recognition [Lanitis et al., 2002] or security control [Guo et

al., 2009].
In the past few years, some age estimation methods have

been proposed. To name a few, Lanitis et al. [Lanitis et al.,
2002; 2004] exploited a quadratic function called aging func-
tion to predict the ages from facial images. Geng et al. [Geng
et al., 2006; 2007] developed AGES algorithm which is based
on the subspace trained on a data structure called aging pat-
tern vector. Then, multiple linear regression was used to
solve the age estimation problem in [Fu and Huang, 2008;
Fu et al., 2007]. Guo et al. used Biologically Inspired
Features (BIF) [Guo et al., 2009] and Kernel Partial Least
Squares (KPLS) regression [Guo and Mu, 2011] for age esti-
mation. Later, Chang et al. [Chang et al., 2011] transformed
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an age estimation task into multiple cost-sensitive binary clas-
sification subproblems, and solved the problem with an Ordi-
nal Hyperplane Ranking (OHRank) algorithm.

After that, Geng et al.observed that the faces at close ages
look similar since aging is a slow and smooth process, so one
face image can also contribute to the learning of its adjacent
ages. Inspired by this observation, they proposed Label Dis-
tribution Learning (LDL) [Geng et al., 2013], in which an
age distribution is assigned to each face image as the train-
ing target instead of an age alone, to solve age estimation
task. Thus, compared with single label methods, LDL can
exploit a dataset more sufficiently. In the following years,
some LDL methods were proposed, such as IIS-LDL, CPNN-
LDL [Geng et al., 2013], BFGS-LDL [Geng, 2016] etc.

For age estimation, which is also a vision related task, the
used features are usually very complex, thus a model with
strong expressiveness should be used. However, the previ-
ous proposed IIS-LDL and BFGS-LDL are based on max-
imum entropy model and their expressive abilities are lim-
ited. Strong expressiveness usually means that a reasonably-
sized learned representation can capture a huge number of
possible input configurations. One idea which can empower
a model with strong expressiveness is distributed represen-
tations [Hinton, 1986; Bengio et al., 2001]. In this paper,
we propose Sparsity Conditional Energy Label Distribution
Learning (SCE-LDL) method for age distribution learning,
in which the energy function is used to define the age dis-
tribution. Different kinds of energy function can provide the
model great flexibility for defining label distribution [LeCun
and Huang, 2005]. By assigning suitable energy function to
the model, SCE-LDL has the ability of learning distributed
representations.

There are also some other good models which own strong
expressiveness, e.g., Convolutional Neural Network (CNN).
However, it is more convenient to define an age distribution
by using energy based model. Furthermore, some previous
proposed LDL methods can also be treated as energy based
methods by assigning different energy functions. So the uti-
lization of energy based model can provide us a broader per-
spective to compare the differences between these LDL meth-
ods.

Some contributions of this paper are listed as follows:
[1] To the best of our knowledge, this is one of the first

attempts to review and compare the proposed LDL methods
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(IIS-LDL, CPNN-LDL, BFGS-LDL and SCE-LDL) by using
energy function model. From the perspective of energy based
model, we can see that SCE-LDL can learn the distributed
representations while the other LDL methods can hardly do.
Thus SCE-LDL has stronger expressiveness than other LDL
methods.

[2] In this work, the sparsity constraints are also incorpo-
rated to ameliorate the model. According to some existent
research, (e.g., sparse coding [Olshausen and others, 1996;
Lee et al., 2006], ICA [Bell and Sejnowski, 1997] and energy
based models [Poultney et al., 2006]), sparseness can help
the model learn Gabor-like filter, which is helpful in image
analysis.

[3] We compare the performance of SCE-LDL with other
age estimation methods by using different performance mea-
surements on two age datasets. From the results of experi-
ments, the performances of SCE-LDL are the best on both
datasets.

The rest of the paper is organized as follows. Age distribu-
tion learning is introduced in Section 2. CE-LDL and SCE-
LDL are detailed in Section 3 and 4 respectively. Section 5
shows experiment details and the results of experiments. At
last, the conclusion is drawn in Section 6.

2 Age Distribution Learning
For a face image x, its age distribution is defined as a vec-
tor containing the description degrees of a certain number of
neighboring ages. The description degree of age j is a real
number dj

x

2 [0, 1] representing the degree that age j de-
scribes the image x. For a face image, the description degrees
of all the ages sum up to 1, indicating a full class descrip-
tion of the image. So the description degrees of all the ages
constitute a data form similar to the probability distribution.
In this paper, p(y

j

= 1|x) is used to denote the predicted
description degree of age j to image x, where y

j

is the jth

element of an age index vector y. For an age index vector
y, if it indexes the age j, then only y

j

is 1 and the other ele-
ments are all 0. Then, the problem of age distribution learn-
ing can be formulated as follows. Let X denotes the input
space, L = {1, 2, . . . , l} denotes the complete set of ages and
Y denotes the space of age index vector. Given a training
set S = {(x(1), D(1)

), (x(2), D(2)
), ..., (x(n), D(n)

)}, where
x

(i) is an input image and D(i)
= {d1

x

(i) , d
2
x

(i) , . . . , d
l

x

(i)} is
the age distribution associated with x

(i), the goal of age dis-
tribution learning is to learn a conditional probability mass
function p(y|x) from S, where x 2 X and y 2 Y .

Suppose p(y|x) is a parameter model p(y|x;✓), where ✓

is the parameter set which includes all the parameters in the
model. Given the training set S, the goal of age distribution
learning is to find the ✓ that can generate a distribution similar
to D

i

given the image x(i). The KL divergence is used as the
similar measure, then the best parameter set ✓ is determined
by:

✓

⇤
= argmax

✓

nX

i=1

lX

j=1

dj
x

(i) ln p(y
(i)
j

= 1|x(i)
;✓). (1)
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Figure 1: One simple example of the energy based model. In
this model, there are three layers: input layer x, hidden layer
h and label layer y.

3 Conditional Energy Label Distribution
Learning model

3.1 The proposed method
Energy based model associates a scalar energy to each config-
uration of the variables of interest. Given the energy function
E(x,y,h), the joint probability is:

p(x,y,h) =
1

Z
exp(�E(x,y,h)), (2)

where Z is the partition function, which is a normalization
term and is given as Z =

P
x

P
y

P
h

exp(�E(x,y,h)). The

partition function is usually hard to compute. Fortunately,
in the age distribution learning problem, the ultimate goal
is to predict a distribution of description degree p(y|x), we
don’t need to compute this normalization term and the suit-
able model is the conditional energy based model [Bengio et

al., 2001; Schwenk and Gauvain, 2002]. Figure 1 shows a
simple example of the energy based model. The formula of
conditional probability mass function in Conditional Energy
Label Distribution Learning (CE-LDL) model is given as:

p(y|x) =

P
h

exp(�E(x,y,h))

P
y

P
h

exp(�E(x,y,h))
, (3)

where x is the input feature, y is the age index vector and h

is the binary latent vector. The energy function of this model
is set as:

E(x,y,h)

= �
RX

r=1

h
r

f
r

(x;!

r

)�
RX

r=1

lX

j=1

h
r

u
jr

y
j

�
lX

j=1

b
j

y
j

. (4)

The parameter set ✓ is {b
j

, u
jr

,!
r

|j 2 {1, 2, ..., l}, r 2
{1, 2..., R}}. Here l is the number of ages and R is the num-
ber of latent variables. The number of feature extractors R,
which is also the number of latent variables, is specified by
users. Different forms of f

r

(x;!

r

) can be used in this model,
e.g., linear form, quadratic form and sigmoid form.
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By Bayesian rule, we can get:

p(yj = 1|x) = p(x, yj = 1)

p(x)
=

P
h
p(x,h, yj = 1)

P
y

P
h
p(x,h,y)

(5)

=

P
h
exp(

RP
r=1

hr(fr(x;!r) + ujr) + bj)

lP
k=1

P
h
exp(

RP
r=1

hr(fr(x;!r) + ukr) + bk)

(6)

=

exp(bj)
1P

h1=0
· · ·

1P
hR=0

RQ
r=1

exp(hr(fr(x;!r) + ujr))

lP
k=1

exp(bk)
1P

h1=0
· · ·

1P
hR=0

RQ
r=1

exp(hr(fr(x;!r) + ukr))

(7)

=

exp(bj)
RQ

r=1
[exp(fr(x;wr) + ujr) + 1]

lP
k=1

exp(bk)
RQ

r=1
[exp(fr(x;wr) + ujr) + 1]

. (8)

Note that from Equation (5) to (6), we use the property of
label index vector that only one element of this vector is 1,
and the others are all 0. From Equation (7) to (8): we first ex-
pand the sums in Equation (7). Considering all h

r

are binary,
we can then get Equation (8). The terms when h

r

= 0 be-
come the 1 in the brackets. In the Equation (8), exp(b

j

) is the
bias of the jth description degree, exp(f

r

(x;!

r

) + u
jr

) can
be treated as the rth feature extractor. And u

jr

controls the
effect of the rth feature extractor to jth description degree.

The rth feature extractor exp(f
r

(x;!

r

) + u
jr

) will return
approximately 0 if this feature extractor does not fit the input
feature x well. That means f

r

(x;!

r

) + u
jr

will get a very
small value, which is far smaller than 0, then exp(f

r

(x;!

r

)+

u
jr

) will return approximately 0. Otherwise it will return a
value which is larger than 1. For R feature extractors, this
‘0 or larger than 1’ characteristic enables the model to learn
exponential kinds of the input configurations, so CE-LDL can
learn distributed representations.

3.2 The Comparsion of CE-LDL with some
existent LDL methods

In [Geng et al., 2013], IIS-LDL was proposed to solve age
distribution learning and then BFGS-LDL [Geng, 2016] was
developed to accelerate the optimization process. Both of
them are based on maximum entropy model and the p(y

j

=

1|x) is defined as:

p(y
j

= 1|x) =
exp(!

T

j

x)

lP
k=1

exp(!

T

k

x)

, (9)

where !
j

is the parameter which need to be learned. From the
perspective of energy based model, Equation (9) represents
a two-layer energy based model. Compared with IIS-LDL
and BFGS-LDL, the added hidden layer and the specially de-
signed energy function can help CE-LDL extract more infor-
mation from the complex features. Thus, the expressive abil-
ity of CE-LDL is stronger than IIS-LDL and BFGS-LDL.

The p(y
j

= 1|x) used in CPNN-LDL [Geng et al., 2013]
is:

p(y
j

= 1|x) =

RQ
r=1

[�
r

exp(f
r

(x, y
j

;!

r

)]

lP
k=1

RQ
r=1

[�
r

exp(f
r

(x, y
k

;!

r

)]

, (10)

where !
j

and �
r

are the parameters which need to be learned.
CPNN-LDL can be treated as a three-layer model and it can
indeed extract more information from input features than IIS-
LDL and BFGS-LDL. However, compared with CE-LDL, it
can hardly learn distributed representations. In CPNN-LDL,
whether the feature extractor �

r

exp(f
r

(x, y
j

;!

r

)) fit the
feature or not, it will return a value which will affect the
model. When the training images are regular, the perfor-
mance of CPNN-LDL is good. However, when the training
images are not regular, the unfitted feature will return a value
which will disturb the model. And thus, the performance of
CPNN-LDL on some irregular image datasets will decline. In
CE-LDL, the ‘0 or larger than 1’ character enables the model
to filter these unfitted features. So, even the training images
are irregular, the performance of CE-LDL will not decline so
much.

4 Sparsity Conditional Energy Label
Distribution Learning model

Without the sparsity constraint, our model tends to learn dis-
tributed, non-sparse representations. And based on results
from other methods [Olshausen and others, 1996; Lee et

al., 2006; Bell and Sejnowski, 1997; Osindero et al., 2006;
Poultney et al., 2006], sparseness enables the model to form
Gabor-like filters, which is helpful in image analysis. Thus,
the suitable sparsity constraints should be added. In order to
illuminate how the sparsity constraints work, we first explain
the role of binary latent vector h.

From Equation (2) and Equation (4) we can get:

p(y
j

= 1,x,h)

=

1

Z
exp(b

j

)

RY

r=1

exp(h
r

(f
r

(x;!

r

) + u
jr

)). (11)

Since the conditional probability p(y
j

= 1|x,h) is propor-
tion to p(x, y

j

= 1,h), then the conditional probability is
also proportion to the products of a series of exponential
functions (which are also the feature extractors as discussed
in Section 3.1) exp(h

r

(f
r

(x;!

r

) + u
jr

)) and a bias term
exp(b

j

). When binary latent variable h
r

is 1, the rth feature
extractor can contribute to the conditional probability. Other-
wise, the rth feature extractor returns 1 when h

r

is 0, that is
to say, the rth feature extractor makes no contribution to the
conditional probability. So h

r

can be understood as the trig-
ger which controls the switch status of rth feature extractor.

In CE-LDL model, we can learn underlying factors which
are informative to the task of age estimation, and in the spar-
sity amelioration one we want these factors to be more ‘ex-
clusive’. That is to say, we hope only a few feature extractors
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work (more feature extractor triggers h
r

should be ‘off’ sta-
tus) given a feature x. Then the sparsity constraint term is
given as follows:

RX

r=1

nX

i=1

lX

j=1

p(h
r

= 0|x(i), y(i)
j

= 1)dj
x

(i) . (12)

The p(h
r

|x, y
j

= 1) can be computed by using Bayesian rule
and the result is given as follows:

p(h
r

|x, y
j

= 1) =

exp(h
r

(f
r

(x;!

r

) + u
jr

))

exp(h
r

(f
r

(x;!

r

) + u
jr

)) + 1

. (13)

For a given input feature x

(i), we know the description de-
gree dj

x

(i) of each label j. So the weighted average is used
in Equation (12). Then the total objective function is the sum
of Equation (1) and Equation (12) and we hope to find a ✓ to
maximize such objective. That is:

✓

⇤
= argmax

✓

L(✓) (14)

L(✓) =
nX

i=1

lX

j=1

dj
x

(i) ln p(y
(i)
j

= 1|x(i)
;✓)

+ �
RX

r=1

nX

i=1

lX

j=1

dj
x

(i)p(hr

= 0|x(i), y(i)
j

= 1), (15)

where the � controls the importance between the KL diver-
gence with the sparsity constraints.

Batch stochastic gradient descent is used to solve Equa-
tion (15) and the derivatives of parameters of ln[p(y

j

= 1|x)]
are given as follows:
@ln[p(yj = 1|x)]

@bk
= 1(j=k) � p(yk = 1|x); (16)

@ln[p(yj = 1|x)]
@ukr

= [1(j=k) � p(yk = 1|x)] exp(fr(x;!r) + ukr)

exp(fr(x;!r) + ukr) + 1

; (17)

@ln[p(yj = 1|x)]
@!r

= [

exp(fr(x;!r) + ujr)

exp(fr(x;!r) + ujr) + 1

�

lX

k=1

p(yk = 1|x) exp(fr(x;!r) + ukr)

exp(fr(x;!r) + ukr) + 1

]

@fr(x;!r)

@!r
, (18)

where the 1(j=k) is the indicator function which returns 1 when j =

k and 0 otherwise. Derivatives of parameters of p(hr = 0|x, yj =

1) are given as follows:
@p(hr = 0|x, yj = 1)

@ukr
=

� 1(j=k)p(hr = 0|x, yj = 1)(p(hr = 1|x, yj = 1));

(19)

@p(hr = 0|x, yj = 1)

@!r

= �p(hr = 0|x, yj = 1)(p(hr = 1|x, yj = 1))

@fr(x,!r)

@!r
.

(20)

The learning algorithm is given in the Algorithm 1. After
learning the parameters, given a new feature x⇤, the predicted
distribution p

⇤ is computed by Equation (8) and the predicted
age a⇤ is determined by a⇤ = argmax

a

p⇤(y
a

= 1|x⇤
).

Algorithm 1 Learning algorithm of SCE-LDL
Input:

The training set S.
Output:

The parameter set ✓.
1: Initialize the model parameter set ✓.
2: t = 0.
3: Update the parameters as follows until t > t

max

:
b
k

:= b
k

+ ↵@L(✓)
@bk

;
!

r

:= !

r

+ ↵@L(✓)
@!r

;
u
kr

:= u
kr

+ ↵@L(✓)
@ukr

;
t := t+ 1;
where t

max

is the number of maximum iteration and ↵
is the learning rate. The derivatives of different parame-
ters can be got by taking Equations (16)- (20) into Equa-
tion (15).

5 Experiments and analyses
5.1 Datasets used in the experiments
Two datasets are used in our experiments: MORPH [Ri-
canek Jr and Tesafaye, 2006] and the dataset provided by
ChaLearn [Escalera et al., 2015]. There are totally 55,132
face images in the MORPH. The ages of the face images
range from 16 to 77 with a median age of 33. The faces are
from different races, among which the African faces account
for about 77%, the European faces account for about 19%,
and the remaining 4% includes Hispanic, Asian, Indian and
other races. According to the chronological age of each face
image, an age distribution is generated using the Gaussian
distribution as follows:

dj
x

=

1p
2⇡�

exp

✓
�(j � a)2

2�2

◆
, (21)

where the a is the chronological age of the face image x and
the � is the standard deviation which is set as 1 here.

The second dataset used in the experiment is the ChaLearn
dataset. There are totally 3,615 human images can be uti-
lized in this dataset: 2,479 in the training set and 1,136 in the
validation set. The images in this dataset are figure photos
taken under wild condition. In order to get frontal face im-
ages from these human images, we pre-process these images
by three steps. First, we employ DPM model [Mathias et al.,
2014] to detect the main facial region of each image. Then
the detected face is fed into a public available facial point de-
tector software [Sun et al., 2013] to get the corresponding five
facial key points including the left/right eye centers, nose tip
and left/right mouth corners. Finally, based on these facial
points, we utilize face alignment for these facial images.

In the ChaLearn dataset, the age of each image is labeled
by multiple individuals as apparent age rather than its chrono-
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Table 1: MAE of different methods on two datasets.

Methods CE-LDL SCE-LDL BFGS-LDL CPNN-LDL OHR KPLS
MORPH 4.146± 0.080 3.858± 0.090 4.872± 0.055 4.705± 0.159 7.085± 0.009 4.442± 0.084
ChaLearn 6.708 6.432 7.424 12.979 7.578 6.841
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(a) CS of all the algorithms at the error levels 0-10 on the
MORPH dataset.
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(b) CS of all the algorithms at the error levels 0-10 on the
ChaLearn dataset.

Figure 2: The CS on MORPH and the CS on ChaLearn.

logical age. For each image, its mean age and the correspond-
ing standard deviation are given. And in this dataset, these
mean ages and standard deviations are used to generate the
corresponding Gaussian distribution by Equation (21).

The features used for both datasets are Biologically In-
spired Features (BIF) [Guo et al., 2009]. By simulating the
primate visual system, BIF has shown good performance in
facial age estimation [Guo et al., 2009]. In the MORPH
dataset, the dimension of the BIF vectors is further reduced
to 200 by using Marginal Fisher Analysis (MFA) [Yan et al.,
2007]. In the ChaLearn dataset, only 2,479 images can be
used to train our model, so we do not reduce the dimension
of the extracted features. The 7,152 dimensional features are
used in the ChaLearn dataset. In both datasets, the BIF fea-
tures are normalized that the mean of each dimension is 0 and
the variance of each dimension is 1.

5.2 Performance measurement
Two kinds of performance measurements are used in our ex-
periments. The first one is Mean Absolute Error (MAE), i.e.,
the average absolute difference between the predicted age and
the labeled age. The second one is cumulative score (CS),
which is represented as follows:

CS
m

=

N
m

N
⇥ 100%, (22)

where N is the total number of test images, N
m

represents the
number of probe facial images whose absolute error between
the estimated age and the ground truth age is not greater than
m years.

5.3 Experiment details
Three kinds of f

r

(x;!

r

) are attempted in our experiments:
linear function, quadratic function and Sigmoid function.
Similar results are got by using these three kinds of functions,
while linear function have a quicker training speed. So the

results of SCE-LDL reported in this section are computed by
using linear function:

f
r

(x;!

r

) = !

T

r

x+ w
r0. (23)

Some parameters used in the experiments are set as follows:
the number of maximum iteration t

max

is 30 and the learn-
ing rate ↵ is 0.1. Some existing algorithms specially de-
signed for facial age estimation are compared as the base-
line methods, which include CPNN-LDL [Geng et al., 2013],
BFGS-LDL [Geng, 2016], OHRank [Chang et al., 2011] and
KPLS [Guo and Mu, 2011]. The reason of choosing these
methods is that they almost get the best performance com-
pared with some earlier age estimation methods.

And also note that we do not compare our methods with the
results of competition which is held by ChaLearn because all
the top-rank methods of that competition are based on deep
learning [Escalera et al., 2015]. And in the competition, these
deep learning methods collected a huge number of additional
facial images to train their deep architectures. But we only
use the given 2,479 facial images to train our model.

5.4 Experiment results and analyses
In the first experiment, MORPH dataset is randomly split into
10 chunks. Each time, 1 chunk is used as the testing set and
the rest 9 chunks are used as the training set. This procedure
is repeated 10 folds and the mean value and standard devia-
tion of each evaluation measure is computed. The number of
hidden units R is set as 150 and the � is set as 0.005. The first
row of Table 1 reports the MAE of all the compared methods
on the MORPH dataset. Figure 2a shows the CS of all the
compared methods at the Error Levels 0-10 on the MORPH
dataset.

In the second experiment, we use the images in training set
provided by ChaLearn to train our model. And the validation
set provided by ChaLearn is used as the test set in our exper-
iment. The number of hidden units R is set as 150 and the �
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Table 2: MAE of SCE-LDL computed by using different R on two datasets.

R 50 75 100 125 150 175
MORPH 3.963± 0.076 3.905± 0.077 3.868± 0.090 3.874± 0.090 3.858± 0.090 3.842± 0.101
ChaLearn 6.774 6.607 6.577 6.619 6.432 6.473

Table 3: MAE of SCE-LDL computed by using different � on two datasets.

� 0 0.001 0.005 0.01 0.05
MORPH 4.146± 0.118 3.936± 0.127 3.858± 0.090 3.883± 0.089 3.960± 0.080
ChaLearn 6.708 6.666 6.432 6.768 6.784

is set as 0.005. The second row of Table 1 reports the MAE
of all the compared algorithms on the ChaLearn dataset. Fig-
ure 2b shows the CS of all the compared methods at the Error
Levels 0-10 on the ChaLearn dataset.

As can be seen in the Table 1, the performances of CE-
LDL and SCE-LDL are significantly better than other age
estimation algorithms. And after incorporating the sparsity
constraints, the performance improves. Compared with the
MAEs of all methods on the MORPH dataset, the MAEs
computed on ChaLearn dataset are generally worse. This is
because that, in the MORPH dataset, the images are frontal
faces taken indoor with similar lighting, while the images of
another one, ChaLearn, are figure photos taken under wild
condition. Though we have pre-processed these photos, the
pre-processed facial images in ChaLearn are not as regular as
the facial images in MORPH.

From the Figure 2a, we can see that, in the MORPH
dataset, different methods (except OHR) get similar CS val-
ues at high error levels. But at lower error levels, SCE-LDL
obviously owns the highest CS. This also means that SCE-
LDL is more accurate than other age estimation methods on
the MORPH dataset.

In the ChaLearn dataset, only 2,479 images are used to
train each model. And as discussed in Section 1, compared
with single label methods, one major advantage of LDL meth-
ods is that LDL methods can use a dataset more sufficiently.
Thus, the performances of BFGS-LDL, CE-LDL and SCE-
LDL are better than KPLS and OHR, as shown in Figure 2b.

As discussed in Section 3.2, since SCE-LDL can learn
a model with stronger expressiveness, the performance of
SCE-LDL is generally better than BFGS-LDL and CPNN-
LDL. And although CPNN-LDL can extract more informa-
tion from features than BFGS-LDL, some parts of this in-
formation will disturb the model. So when the number of
training images is large and the training images are regular,
such as MORPH dataset, the performance of CPNN-LDL
is good. But when the number of training images becomes
fewer and when the images are took under wild condition,
such as ChaLearn dataset, the performance of CPNN-LDL
declines. Since SCE-LDL can learn distributed representa-
tions, then the unfitted features will be filtered, the perfor-
mance of SCE-LDL will not decrease so much compared with
CPNN-LDL.

Table 2 shows the MAE of SCE-LDL computed by using

different R, and here the � is set as 0.005. This table shows
that the predicted result is not very sensitive to the choice
of R. For both datasets, even in the worst case (when R
is 50), the MAEs of SCE-LDL on both datasets are lower
than the other methods. Table 3 shows the MAE of SCE-
LDL computed by using different �, and here the R is set
as 150. The choice of � is important because it controls the
balance between KL divergence and sparsity constraints. On
the one hand, if � is too small, the SCE-LDL will trend to
learn non-sparse representations, then SCE-LDL degenerates
to CE-LDL. On the another hand, if � is too big, in the Equa-
tion (15), the effect of KL divergence will be weakened, then
the predicted distribution will be less similar with the real dis-
tribution. But if � is chosen from a suitable range, as shown
in Table 3, the performance will not have huge fluctuations.

6 Conclusion
In this paper, SCE-LDL is proposed to estimate ages from
face images. In SCE-LDL, we assign a Gaussian distribu-
tion to each face image and use these age distributions as the
training targets. And energy function is used to define the age
distribution. By assigning a suitable type of energy function
to the model, SCE-LDL can learn distributed representations
while other LDL methods can hardly do. Thus, SCE-LDL
have the ability to learn a model with stronger expressiveness
compared with IIS-LDL, BFGS-LDL and CPNN-LDL. In or-
der to help the model learn distributed sparse representations,
sparsity constraints are also incorporated to improve the per-
formance of the model. At last, the experiment results of two
different datasets show that our proposed SCE-LDL can get
the best performances compared with the baseline algorithms.
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