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Abstract

Traditional metric learning methods usually make
decisions based on a fixed threshold, which may re-
sult in a suboptimal metric when the inter-class and
inner-class variations are complex. To address this
issue, in this paper we propose an effective metric
learning method by exploiting privileged informa-
tion to relax the fixed threshold under the empiri-
cal risk minimization framework. Privileged infor-
mation describes useful high-level semantic infor-
mation that is only available during training. Our
goal is to improve the performance by incorporat-
ing privileged information to design a locally adap-
tive decision function. We jointly learn two dis-
tance metrics by minimizing the empirical loss pe-
nalizing the difference between the distance in the
original space and that in the privileged space. The
distance in the privileged space functions as a lo-
cally adaptive decision threshold, which can guide
the decision making like a teacher. We optimize the
objective function using the Accelerated Proximal
Gradient approach to obtain a global optimum so-
Iution. Experiment results show that by leveraging
privileged information, our proposed method can
achieve satisfactory performance.

1 Introduction

Learning a suitable distance metric from the given training
instances plays an important role in many machine learning
and computer vision tasks. Over the past decades, several dis-
tance metric learning (DML) methods have been proposed,
e.g., information-theoretic metric leaning (ITML) [Davis et
al., 20071, logistic discriminant metric learning (LDML)
[Guillaumin et al., 2009], and discriminative deep metric
learning [Hu er al., 2014]. Existing algorithms for metric
learning have been shown to perform well empirically on
a variety of applications, e.g., classification and clustering.
While, most of them restrict the distance between a pair of
similar/dissimilar instances to be lower/higher than a fixed
threshold. Such fixed threshold based constraints may suffer
from suboptimal performance when coping with some real
world tasks with complex inter-class and intra-class varia-
tions (See Figure 1).

A natural solution to alleviate the limitations of fixed
threshold based DML method is to design a locally adaptive
decision rule. [Li et al., 2013] proposed to learn a second-
order local decision function in the original feature space to
replace the fixed threshold. [Wang et al., 2014] introduced an
adaptive shrinkage-expansion rule to shrink/expand the Eu-
clidean distance as an adaptive threshold. These two earlier
works both leverage the information from the original fea-
ture space to guild the decision making. However, the guid-
ance from the original feature space might be relatively weak,
since original feature is usually noisy and less discriminative.
Another way is to incorporate additional knowledge beyond
the original space.

It has been shown in [Vapnik and Izmailov, 2015] that a
more reliable and effective model can be learned if some
high-level additional knowledge is exploited during the train-
ing stage. Such high-level knowledge is called privileged in-
formation and is only available in training stage. It typically
describes some important semantic properties of the training
instance, such as the attributes, tags, textual descriptions or
other high-level knowledge. This idea of privileged informa-
tion is inspired by the human teaching-learning in which the
students will learn better if a teacher can provide some expla-
nations, comments, comparison or other supervision. It was
first incorporated into SVM in the form of SVM+ [Vapnik
and Vashist, 2009] and has been utilized in object localiza-
tion [Feyereisl er al., 2014] and image categorization [Li et
al., 2014] in recent years.

Motivated by [Vapnik and Izmailov, 2015], in this paper
we develop a new DML method using privileged information
under the generic empirical risk minimization (ERM) frame-
work, termed as ERMML+. First, we represent each train-
ing instance with two forms of feature representations: one
is original feature representation and the other is privileged
information representation. Thereby an emerging problem
is how to exploit privileged information for metric learning.
Generally, there exists a semantic gap between the original
space and the privileged space, since the original feature is
at the low-level space while privileged information is a high-
level semantic knowledge. To bridge the semantic gap, we
jointly learn two Mahalanobis distance metrics with positive
semi-definite (PSD) constraints by minimizing the empiri-
cal loss penalizing the difference between the distance in the
original space and the distance in the privileged information
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space. The distance in the privileged space functions as a
local decision threshold to guide the metric learning like a
teacher, which can effectively relax the fixed threshold. We
optimize the objective function using the Accelerated Prox-
imal Gradient (APG) approach to search a global optimum
solution with a fast convergence rate. We have evaluated
the proposed method on two real world problems: person re-
identification and face verification. Experiment results show
that by leveraging the privileged information, our method out-
performs not only the classical metric learning algorithms,
but also the state-of-the-art methods in the computer vision
community.

2 Related Work

During the past decade, many algorithms have been devel-
oped to learn a Mahalanobis distance metric, e.g., [Wein-
berger and Saul, 2009; Davis et al., 2007; Guillaumin ef al.,
2009; Bian and Tao, 2012]. Here we only briefly review sev-
eral most relevant works.

[Guillaumin er al., 2009] proposed a logistic discriminant
metric learning (LDML) method which is related to our work,
but LDML doesn’t use any regularization term including the
PSD constraint, which easily suffers from overfitting prob-
lem. The PSD constraint can provide a useful regularization
to smooth the solution of the metric. [Bian and Tao, 2012]
developed a loss minimization framework for metric learn-
ing, which is quite rigid since it relies on a strong assumption
that the learned metric is bounded. Besides, [Guillaumin et
al., 2009; Bian and Tao, 2012] both adopt the fixed thresh-
old based constraints. Compared with them, we learn a PSD
metric by exploiting the privileged information to construct a
local decision function, which is more robust and shows bet-
ter performance.

Recently, [Fouad er al., 2013] proposed a two stage strat-
egy to exploit privileged information for metric learning
based on ITML. They first learn a metric using the privileged
information to remove some outlier pairs and then use the re-
maining pairs to learn a metric based on the original feature.
Following [Fouad et al., 20131, [Xu et al., 2015] proposed
a ITML+ method, in which privileged information is used to
design a slack function to replace the slack variables in ITML.
Compared with two ITML based methods [Fouad et al., 2013;
Xu et al., 2015], we provide a new scheme to leverage
privileged knowledge for distance metric learning under the
generic ERM framework, which has good statistical property
and can be extended easily by incorporating different loss
functions and regularization terms. Moreover, we apply low
rank selection for the learned metric in each iteration, which
allows us to work directly with higher dimensional input data.
While ITML based methods aim to learn a full matrix for the
target distance metric that is in the square of the dimension-
ality, making it computationally unattractive for high dimen-
sional data and prone to overfitting [Mignon and Jurie, 2012].
It is shown in the experiments that our method ERMML+ per-
forms better than the ITML+ method.
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dy(a,b) = 0.679 > dy(b,c) = 0.572
dy+(a,b) = 0.586 < dy+ (b, c) = 0.62

du(d, e) = 0.621 > dy(e, f) = 0.592
dy+(d,e) = 0.60 < dy+(e, f) = 0.628

Figure 1: Two examples from the VIPeR dataset where M is
dominated by M*. Note that M is the learned metric based
on a fixed decision threshold (only original feature is used),
while M is learned by incorporating privileged information
to design a local decision function. Here, privileged infor-
mation denotes the pedestrian attributes such as gender, age,
short/long hair, cloth color, etc. (a, b) and (d, e) are two simi-
lar pairs but with large inner-class variations. (b, ¢) and (e, f)
are two dissimilar pairs while sharing large inter-class simi-
larities.

3 ERM for DML

Assume we have a pairwise constrained training instances set
Z = {(xi,2i,4;) i = 1,2,...,n}, where x; € R% z;, € R?
are both defined on the same space, ¢ is the index of the ¢-th
pair of training instance, and ¢; is the label of the pair (x;, z;)
defined by

6= {

where S denotes the set of similar pairs and D denotes the
set of dissimilar pairs. The goal of DML is to learn a Maha-
lanobis distance metric defined by

L,
717

if(x;,2;) € S

if(xiazi) € D7 (1)

dm (x4, 2;) = \/(Xi —2;) TM(x; — 2;), 2

where M € R%*? is the learned PSD metric. The learned
Mahalanobis distance dng(x;,2;) is expected to be small if
x; and z; are similar, or large if they are dissimilar.

Given a metric M, how to determine whether two instances
are similar or dissimilar? A common way is to compare their
distance with a fixed decision threshold o [Mignon and Jurie,
2012], then the decision function f can be defined by

f(xiziM) =0 — (x; —2)"M(x; —z;).  (3)

If they are similar, the decision function f > 0, otherwise
f<o.

The problem of DML can be cast in the generic ERM
framework by minimizing the empirical risk £(M)

min F
M>0

1 n
M) =—>» L(lf(xiz;M)), 4
M) = 53 LS ez M) @
where L(-) is a convex loss function (decrease progressively),
e.g., log loss and smooth hinge loss. Previous DML methods
[Guillaumin et al., 2009] and [Mignon and Jurie, 2012] are
both under this framework.



4 ERM for DML using Privileged information

4.1 Problem Formulation

Traditional pairwise constrained DML methods usually adopt
the fixed threshold based decision function f, which is too
rough to obtain a reasonable metric. In this paper, we aim to
design a locally adaptive decision rule to alleviate the limita-
tions of fixed threshold based methods.

Motivated by the [Vapnik and Izmailov, 2015], we exploit
privileged information to design an adaptive decision func-
tion in the training stage. First, each training instance is
represented with two forms of feature representations: one
is x; € R from the original feature space; the other is
x; € R%" from the privileged space. The training set is refor-
mulated as Z = {(x;,x},2;,27,¢;) i = 1,2,...,n}. Then,
we replace the fixed threshold o in (3) using the squared dis-
tance d (x},z}), where P € R %" is the distance metric
matrix in the privileged information space. d3 (x},z}) func-
tions as the adaptive decision threshold. Our locally adaptive
decision function is formulated by

f(XwZquaZz ) M P)
= di (xz’zz) dM(X“zi)
= (Xf z;) P(x} — 2f) — (x; — 2;) TM(x; — 2;)
&)
To be simplified, we rewrite the decision function as
f(A;,S) =tr(STA;) = (A;,S), ©6)

by introducing two block-diagonal matrices A; and S. (-, -)
denotes the matrix inner product. A; € R(d+d7)x(d+d") apq
S € R(@+d)x(d+d") are defined by

A = diag (x; ) (x; ~20)", ~ (xi=2) (xi=2:)" ), (7)
P 0 )

We also take the severe imbalance of similar/dissimilar
pairs into consideration by weighting each pair in our em-
pirical risk function. Combining the new decision function f
and the pair weight w, our problem can be formulated as

ZwiL(fif(Ai,S)),

where @ = {M = 0;P > 0}, w; is the weight of the sim-
ilar/dissimilar pairs. If ¢; = 1 (—1), w; is defined by the
reciprocal of the number of similar (dissimilar) pairs. Com-
pared with ITML+, our formulation has a general form that
follows the ERM framework.

In our model, d3(x},z}) can effectively guide the deci-
sion making in the original feature space like a feacher by
controlling student’s concept of similarity between training
instances. See Figure 1 for two representative examples from
the VIPeR dataset. In Figure 1, (a, b) and (d, e) are two simi-
lar pairs but with large inner-class variations; (b, ¢) and (e, f)
are two dissimilar pairs while sharing large inter-class simi-
larities. We can see that the learned metric M results in a sub-
optimal metric when only uses original feature for training,
while the metric M performs better by exploiting the priv-
ileged information in the training stage. Note that we don’t
leverage privileged information in the testing stage.

S = diag(P, M) = (

S = arg ggg E(S) = )]
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4.2 Optimization using APG
In this paper, we use the well known log loss function as an

example,! which is defined by L(u) = In(1 + exp(—u)).
Hence, the objective function in (9) is rewritten as

in B(S) = In (1 + e f(A09)), 10

min B(S) = > wiln(1+e ). (10)

i=1
Then, we exploit the APG method [Nesterov, 2004] to solve
the optimization problem. It has been proved that APG
method can achieve the optimal convergence rate at O(1/k?),
where k is the number of iteration steps. However, APG
method requires the condition that the objective function is
Lipschitz continuous with a Lipschitz constant £. According
to Property 1, we know that E(S) in (10) has a Lipschitz-
continuous gradient with a Lipschitz constant.

Property 1 Given any direction A € RHI)x(d+d7) e
empirical risk E(S) satisfies

(VZE(S)A,A) < L]A|E, (1)
where £ = 2 3" w;||A;||%, and || - ||  denotes the Frobenius
norm. =t
Proof. The gradient of E(S) is computed by

—~  —wiliA;
= (12)

VES) =)

T A

Define function as ¢(9) = (VE(S + pA),A) with o > 0,
and we have
A)

o(0) — #(0) =

—z<

Hence,

(VE(S + pA) — VE(S),
—wil; A, (1 — eQMA“A))
1+ elilAi S+,QA>) (1 n efe,;<A7:,S>)’

A>. (13)

d(0) — #(0)

(VZE(S)A,A) ;

= ¢'(0) = lim

0—0
wil?(A;, A)?
(11 ) (1§ o tiAs))
ALY _

w3
<
Z ;
We can see that the log loss based E(S) has a Lipschitz gra-

ES wlA

This completes the proof.

Below, we detail the optimization procedure at step k.

Suppose the latest two approximate solutions Si_; and
S—o are known, we can construct the search point Zj, at cur-
rent step as a linear combination of the latest two approximate
solutions

7 ZSk_1+<

n

-

i=1

(14)

<1 szIIA Al

i=1

dient with a constant £ =

Q1 — 1
Ak

) (Sk—1 — Sk—2), (15)

'"Due to the space limits, we only use one example for analysis.
Other convex loss functions, e.g., smooth hinge loss and squared
loss, can also be used in our model.



Algorithm 1 ERMML+

Input: The training set (x;,x},2;,27,¢;),i=1,2,...,n.
Output: S = diag(P, M), where M is the learned metric.
Initialize: L(), Y, €, O, MO = M,1 = IdXd, PO = P,1 =
Id" ><d*_

Iterative: £k =1,2,---

1: Setoy, = 3 (1 +4/1 +4ai71).
Compute Zj, by (15).
Compute E(Zy) and V E(Zy,) with a loss function.
Setty = 1/£k—1-
Obtain Sy, by solving (18) using (22) and (23).
If the condition in (24) is not satisfied, set L,_1 =
vL},—1 and return to step 4.

7: Set L1, = Lr_1
Until |E(S;) — E(Sk-1)| <e.

A AN A

where o = % (1 +4/1+ 4a%_1). The problem can be

reformulated equivalently as a proximal regularization of the
linearized function E(S) at Zj, as

Sip=arg min Q+, (S, Zy)

. 1
= arg min E(Zy)+(S—Zy,VE(Zy)) +E IS —Z||%,

(16)
where 1, is the step size of the gradient method. The gradient
V E(Zy) is block-diagonal

VE(Zy) = diag (VEp(Zy), VEMm(Zy)) . (A7)
By ignoring the constant term F(Zj) and adding another

constant term % |V E(Zy,)||%., the problem in (16) can be ex-
pressed equivalently as

o1 2
S = arg i 5. IS — (Zy, — th VE(Zy))|| & )

1 2
= arg min S—H
g min o S~ H
where Hj, is a block-diagonal matrix and it can be rewrote as

H, = diag (HY, HY') , (19)

where
P_ ak,1—1
H, =P, +T (Pr—1—Py_2)—t,VEp(Zy),

ap_1—1
HM =M1+ ——= (Mj_1 —My_s)—t, VEm(Zg).

a,
(20)
Since the two diagonal blocks M and P in S are not cou-
pled, M; and Py can be obtained independently. We can
compute My, and Py, by projecting HM and HE into the
positive semi-definite cone, respectively. We take M, as an
example. To obtain My, we conduct singular value decom-
position (SVD) on Hl,:/l and then we have

HM = UMAM (UM)" @1

w ——APG
—+—Gradient descent

Objective Function Value

0 20 40 60 80 100
Iteration Number

Figure 2: Convergence curve of our proposed method with
two kinds of optimization algorithms. The red one is the
APG method and the blue one is the standard gradient de-
scent method.

where UM and AM are obtained from the SVD. Ay is a
diagonal matrix that contains all the singular values of HM.
Since M > 0, we can obtain M, by

M, = UMAM (UM)" (22)

where A} is diagonal with (AM) .

can be obtained in the same way by

= max {O,A%\{I}. Py

P, = UPAP (UP)", (23)

Step Size Estimation

It’s vital to choose an appropriate step size t; for APG al-
gorithm. In [Nesterov, 2004], the reciprocal % of Lipschitz
constant functions as the step size . However, it is too conser-
vative to set ty = % for all k£ and it is also very time consum-
ing to compute the Lipschitz constant directly.

Following [Beck and Teboulle, 20091, we first initialize £
with a small value £, and increase this estimate with a multi-
plicative factor v (v > 1) repeatedly until the following con-
dition is satisfied

E(Sk) < Q+, (Sk,Zy), (24)

This procedure ensures that the step size is suitable. The pro-
cess of the optimization is summarized in Algorithm 1.

Convergence Analysis

We show in the following theorem that by perform the APG
method, the proposed method can achieve the optimal con-
vergence rate at O(1/k?).

Theorem 1 Let {Sy} be generated by the Algorithm 1. Then
for any k > 1 we have

29L|So — S||%

B(Sy) - E(8) < S5 2

(25)
where S is the optimal solution.

The proof of this theorem can follow the same strategy as in
[Beck and Teboulle, 2009]. We omit the proof here for the
space limits. We empirically verify the convergence rate of
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Figure 3: CMC curves of average recognition rates on VIPeR.
Rank-1 recognition rate is used to rank the methods. ER-
MML+ and ERMML are applied with full PCA components.

our method with APG in comparison with the standard gradi-
ent descent method using the same step size estimation strat-
egy in Figure 2. We run this experiment on the LFW dataset
as an example. We can see that the APG method converges
fast than the standard gradient descent method.

S Experiment

To validate the effectiveness of our method, we conduct ex-
periments on three real-world datasets: VIPeR [Gray and Tao,
2008], iLIDS [Zheng erf al., 2009], and LFW [Huang er al.,
2007]. VIPeR and iLIDS are two person re-identification (re-
id) datasets and LFW is a face verification dataset. In each
experiment, we present results by comparing the proposed
ERMML+ method with various methods including LMNN,
ITML, KLFDA [Xiong et al., 2014], KISSME [Kostinger et
al., 2012], SEAML [Wang et al., 2014], and ITML+ [Xu
et al., 2015]. Among them, KLFDA and KISSME are two
state-of-the-art methods proposed recently for person re-id
and face verification. The fixed threshold based method in
section 3 is realized as a baseline, termed as ERMML. For a
fair comparison, similar/dissimilar pairs weighting is also in-
corporated in ERMML. The fixed threshold is set as the mean
of the squared Euclidean distances between all pairs of train-
ing instances. In the following experiments, we implement
ERMML+ and ERMML using the log loss function.

5.1 Person Re-identification on VIPeR and iLIDS

VIPeR is a widely used person re-id dataset containing 632
pedestrians in which each person has a pair of images taken
from widely differing views. The large viewpoint change
of 90 degrees or more as well as huge lighting variations
in VIPeR make it one of the most challenging person re-id
datasets. iLIDS has 476 images of 119 pedestrians, which is
collected at an airport and has severe occlusions.

We adopt the single-shot experiment setting in [Xiong et
al., 2014] for all DML methods. The datasets are randomly
divided into two parts and the testing set has p individuals.
We repeat the random partition 10 times to get an average
performance. For easy comparison, we evaluate the re-id re-
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Table 1: The recognition rate (%) of various metric learning
algorithms on VIPeR with the first 100-D PCA components.

Method Rank=1 | Rank=10 | Rank=20
ERMML+ 35.32 77.94 89.15
ERMML 32.41 77.78 89.46
KLFDA 31.62 75.63 86.87
KISSME 32.67 76.83 87.52
SEAML 27.31 71.36 83.96
ITML+ 26.68 71.95 85.51
LMNN 26.11 70.26 82.58
ITML 24.23 70.64 85.04

Table 2: Comparison of newly reported results (%) on VIPeR.
ERMML+ and ERMML are applied with full PCA compo-
nents.

Method Rank=1 | Rank=10 | Rank=20 Reference
ERMML+ 41.93 82.72 92.44 Ours
ERMML 36.01 80.13 90.95 \
SLKFP 36.8 83.7 91.7 CVPR 2015
QALF 30.17 62.44 73.81 CVPR 2015
XQDA 40 80.51 91.08 CVPR 2015
PRCSL 34.8 82.3 91.8 ICCV 2015
MLAPG 40.73 82.34 92.37 ICCV 2015
CVPDL 33.99 77.53 88.58 1JCAI 2015

sults by the cumulative matching characteristic (CMC) curve,
which is an estimate of finding the correct match in the top n
match. To obtain the privileged information for ERMML+
and ITML+, we have trained several attribute detectors to de-
tect the pedestrian attributes as the privileged information.

We utilize the weighted histograms of overlapping stripes
descriptor? for original feature representation. The descrip-
tor is a 5138 dimensional feature vector. For all methods,
PCA is first used for dimension reduction. ERMML+ and
ERMML are applied with all PCA components, since they
employ the low-rank projection to obtain the PSD constrained
metric. Other algorithms are applied with the first 100 dimen-
sional PCA components.

Figure 3 plots the CMC curves on VIPeR with p = 316
for eight DML methods . We can see from Figure 3 that
ERMML+ achieves the best performances 41.93% at rank=1,
which is better than all the other methods including SEAML,
ITML+ , and two state-of-the-art methods KISSME and
KLFDA. The baseline method ERMML obtains the second
best result 36.01% at rank=1 which can be owing to the ef-
fectiveness of log loss based ERM framework. ERMML+
achieves 5.92% improvement over ERMML and ITML+
achieves 2.45% improvement over ITML, which indicates
that privileged information is helpful to learn a better met-
ric and can play a more effective role in the ERM framework
than the ITML framework. ERMML+ also achieves 14.62%
improvement over the adaptive DML method SEAML at
rank=1. ITML and LMNN perform not very well due to the
complex inter-class and inner-class variations in VIPeR. The
success of ERMML+ mainly benefits from the exploring of

*http://www.micc.unifi.it/lisanti/source-code/whos/
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Figure 4: CMC curves of average recognition rates on iLIDS.
Rank-1 recognition rate is used to rank the methods. ER-
MML+ and ERMML are applied with full PCA components.

privileged information and the ERM framework.

For a fair comparison, we also show the results of all meth-
ods with the same feature at Table 1. We can note that ER-
MML+ still perform the best even with the first 100 dimen-
sional PCA components. We also compare the performance
of ERMML+ with six newly released results on the VIPeR
dataset using the same protocol , including SLKFP [Chen et
al., 2015], QALF [Zheng et al., 2015], XQDA[Liao et al.,
2015], PRCSL [Shen et al., 2015], MLAPG [Liao and Li,
2015], CVPDLILi et al., 2015]. We can see that our method
results in a new state-of-the-art performance on VIPeR.

Figure 4 compares ERMML+ with other DML methods by
plotting the CMC curves on iLIDS with p = 60. It is appar-
ent that by exploiting privileged information, our locally de-
cision function in (5) significantly improves the performance
of traditional method with a fixed threshold. Similarly as in
Figure 3, ERMML+ achieves a significant improvement over
ITML+ again, which shows that we can learn a better met-
ric by incorporating the privileged information into the ERM
framework.

5.2 Face Verification on LFW

LFW is a widely used face images database containing more
than 13000 face images from 5749 individuals. We extract
the 3456 dimensional SIFT descriptors as the original fea-
tures, which are reduced to 200 dimensions using PCA for all
methods. We use the face attribute’® as the privileged infor-
mation for ERMML+ and ITML+.

The dataset is divided into 10 folds, in which each fold
has 300 similar image pairs and 300 dissimilar image pairs.
In this experiment, we randomly choose K folds for training
and the rest is used for testing. The procedure is repeated
10 times to report an average result. We only consider the
pairwise constraints given by the similar/dissimilar pairs.

Figure 5 plots the ROC curves of different DML methods
on LFW. It shows that privileged information based methods
ERMML+ and ITML+ perform better. Our method improves
ERMML by 2.1% and is slightly better than ITML+ by 1.1%.
Note that the improvement brought by the privileged informa-
tion is relatively small on LEFW. It is mainly due to the fact that

3http://www.cs.columbia.edu/CAVE/projects/faceverification/
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Figure 5: The ROC curves of various methods on LFW. Only
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Figure 6: Performance comparison of ERMML+, ITML+,
ERMML, and ITML by varying the number of training folds
from K = 1to K = 6 on LFW.

SIFT is already a strong visual descriptors, which can learn
a good metric independently if sufficient training samples are
provided.

To analyse the influence of privileged information in more
depth, we compare the performance of ERMML+, ITML+,
ERMML, and ITML by varying the number of training folds
from K = 1to K = 6 in Figure 6. Figure 6 shows that
the benefit of privileged information tends to reduce with the
increasing of the size of training set. That is because the met-
ric learning algorithm may suffer from overfitting when the
training samples are too limited while the incorporation of
privileged information can effectively relieve the overfitting
by introducing necessary correcting information. Our method
would be particularly useful if there exist only a few training
data or the original feature is weak.

6 Conclusion

In this paper, we propose to learn an effective metric learning
method by exploiting privileged information in the generic
empirical risk framework. We solve the problem efficiently
by the Accelerated Proximal Gradient method. Our proposed
method ERMML+ generalizes from the traditional metric
learning methods using a fixed threshold by designing a lo-
cally adaptive decision rule based on privileged information.
We apply the proposed method to solve two real world prob-
lems: person re-identification and face verification. Experi-



ment results have shown that our method can outperform the
state-of-the-art metric learning methods.

Acknowledgments

This work is partially supported by Australian Research
Council (ARC) Projects DP-140102164, FT-130101457, and
LE140100061, and the National 973 Program of China un-
der grant 2014CB347600, and the National Nature Science
Foundation of China under grants 61272393, 61322201, and
61432019, and the China Scholarship Council (CSC).

References

[Beck and Teboulle, 2009] Amir Beck and Marc Teboulle. A
fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences,
2(1):183-202, 2009.

[Bian and Tao, 2012] Wei Bian and Dacheng Tao. Constrained
empirical risk minimization framework for distance met-
ric learning. IEEE Transactions on Neural Networks and
Learning Systems, 23(8):1194-1205, 2012.

[Chen et al., 2015] Dapeng Chen, Zejian Yuan, Gang Hua,
Nanning Zheng, and Jingdong Wang. Similarity learning
on an explicit polynomial kernel feature map for person re-
identification. In CVPR, pages 1565-1573, 2015.

[Davis et al., 2007] Jason V. Davis, Brian Kulis, Prateek Jain,
Suvrit Sra, and Inderjit S. Dhillon. Information-theoretic
metric learning. In ICML, pages 209-216, 2007.

[Feyereisl ef al., 2014] Jan Feyereisl, Suha Kwak, Jeany Son,
and Bohyung Han. Object localization based on structural
svm using privileged information. In NIPS, pages 208-216,
2014.

[Fouad et al., 2013] S. Fouad, P. Tino, S. Raychaudhury, and
P. Schneider. Incorporating privileged information through
metric learning. IEEE Transactions on Neural Networks and
Learning Systems, 24(7):1086—-1098, 2013.

[Gray and Tao, 2008] Douglas Gray and Hai Tao. Viewpoint
invariant pedestrian recognition with an ensemble of local-
ized features. In ECCV, pages 262-275. 2008.

[Guillaumin et al., 2009] Matthieu Guillaumin, Jakob Ver-
beek, and Cordelia Schmid. Is that you? metric learning
approaches for face identification. In ICCV, pages 498-505,
2000.

[Hu et al., 2014] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Dis-
criminative deep metric learning for face verification in the
wild. In CVPR, pages 1875-1882, 2014.

[Huang er al., 2007] Gary B. Huang, Manu Ramesh, Tamara
Berg, and Erik Learned-Miller. Labeled faces in the wild:
A database for studying face recognition in unconstrained
environments. Technical Report 07-49, University of Mas-
sachusetts, Amherst, October 2007.

[Kostinger et al., 2012] Martin Kostinger, Martin Hirzer, Paul
Wohlhart, Peter M. Roth, and Horst Bischof. Large scale
metric learning from equivalence constraints. In CVPR,
pages 2288-2295, 2012.

2272

[Li et al., 2013] Zhen Li, Shiyu Chang, Feng Liang, T.S.
Huang, Liangliang Cao, and J.R. Smith. Learning locally-
adaptive decision functions for person verification. In
CVPR, pages 3610-3617, 2013.

[Li et al., 2014] Wen Li, Li Niu, and Dong Xu. Exploiting
privileged information from web data for image categoriza-
tion. In ECCV, pages 437-452. 2014.

[Li et al., 2015] Sheng Li, Ming Shao, and Yun Fu.
Cross-view projective dictionary learning for person
re-identification. In IJCAI, pages 2155-2161, 2015.

[Liao and Li, 2015] Shengcai Liao and Stan Z Li. Efficient
psd constrained asymmetric metric learning for person re-
identification. In ICCV, pages 3685-3693, 2015.

[Liao ef al., 2015] Shengcai Liao, Yang Hu, Xiangyu Zhu, and
Stan Z Li. Person re-identification by local maximal occur-
rence representation and metric learning. In CVPR, pages
2197-2206, 2015.

[Mignon and Jurie, 2012] Alexis Mignon and Frédéric Jurie.
Pcca: A new approach for distance learning from sparse
pairwise constraints. In CVPR, pages 26662672, 2012.

[Nesterov, 2004] Yurii Nesterov. Introductory lectures on con-
vex optimization, volume 87. Springer Science & Business
Media, 2004.

[Shen er al., 2015] Yang Shen, Weiyao Lin, Junchi Yan, Min-
gliang Xu, Jianxin Wu, and Jingdong Wang. Person re-
identification with correspondence structure learning. In
ICCV, pages 3200-3208, 2015.

[Vapnik and Izmailov, 2015] Vladimir Vapnik and Rauf Iz-
mailov. Learning using privileged information: Similarity
control and knowledge transfer. Journal of Machine Learn-
ing Research, 16:2023-2049, 2015.

[Vapnik and Vashist, 2009] Vladimir Vapnik and Akshay
Vashist. A new learning paradigm: Learning using priv-
ileged information.  Neural Networks, 22(5):544-557,
20009.

[Wang er al., 2014] Qilong Wang, Wangmeng Zuo, Lei Zhang,
and Peihua Li. Shrinkage expansion adaptive metric learn-
ing. In ECCYV, pages 456—471. 2014.

[Weinberger and Saul, 2009] Kilian Q. Weinberger and
Lawrence K. Saul. Distance metric learning for large
margin nearest neighbor classification. Journal of Machine
Learning Research, 10(8):207-244, 2009.

[Xiong er al., 2014] Fei Xiong, Mengran Gou, Octavia Camps,
and Mario Sznaier. Person re-identification using kernel-
based metric learning methods. In ECCV, pages 1-16. 2014.

[Xu er al., 2015] Xinxing Xu, Wen Li, and Dong Xu. Distance
metric learning using privileged information for face verifi-
cation and person re-identification. IEEE Transactions on
Neural Networks and Learning Systems, 26(12):3150-3162,
2015.

[Zheng et al., 2009] Wei-Shi Zheng, Shaogang Gong, and Tao
Xiang. Associating groups of people. In BMVC, 2009.

[Zheng et al., 2015] Liang Zheng, Shengjin Wang, Lu Tian,
Fei He, Ziqgiong Liu, and Qi Tian. Query-adaptive late fu-
sion for image search and person re-identification. In CVPR,
pages 1741-1750, 2015.



