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Abstract
Spectral clustering has been playing a vital role
in various research areas. Most traditional spec-
tral clustering algorithms comprise two indepen-
dent stages (i.e., first learning continuous labels
and then rounding the learned labels into discrete
ones), which may lead to severe information loss
and performance degradation. In this work, we
study how to achieve discrete clustering as well
as reliably generalize to unseen data. We propose
a unified spectral clustering scheme which jointly
learns discrete clustering labels and robust out-of-
sample prediction functions. Specifically, we ex-
plicitly enforce a discrete transformation on the
intermediate continuous labels, which leads to a
tractable optimization problem with a discrete so-
lution. Moreover, to further compensate the unreli-
ability of the learned labels, we integrate an adap-
tive robust module with `2,p loss to learn prediction
function for unseen data. Extensive experiments
conducted on various data sets have demonstrated
the superiority of our proposal as compared to ex-
isting clustering approaches.

1 Introduction
Clustering [Jain et al., 1999; Rodriguez and Laio, 2014;
Bühler and Hein, 2009; Belkin et al., 2016] has long been
serving as a critical technique in modern research fields, such
as image segmentation [Shi and Malik, 2000; Felzenszwalb
and Huttenlocher, 2004], gene expression analysis [Jiang et

al., 2004], face analysis [Elhamifar and Vidal, 2013], content-
based image retrieval [Gordon et al., 2003], image annota-
tion [Wang et al., 2008], heterogeneous data analysis [Liu et

al., 2015] and image hashing [Shen et al., 2015].
As one of the most classic clustering approaches, k-means

has been extensively applied in practice. The typical proce-
dure of k-means iteratively assigns data points to their clos-
est clusters and updates clustering centers. Nonetheless, k-
means suffers from the problem of “curse of dimensional-
ity” [Ding and Li, 2007]. Recent research endeavors fo-
cus on finding a low-dimensional projection using dimen-
sionality reduction techniques (e.g., PCA) and then perform-
ing k-means. Furthermore, several works have tried to em-

ploy discriminative analysis [De la Torre and Kanade, 2006;
Ye et al., 2007a; Yang et al., 2011] to generate better parti-
tion of data. In [De la Torre and Kanade, 2006; Ding and Li,
2007], k-means and LDA were integrated together to discover
discriminative subspace. In [Ye et al., 2007b], Ye et al. pro-
posed a discriminative k-means (DKM) algorithm to formal-
ize clustering as a trace maximization problem for learning
better clustering labels.

As an alternative promising direction, spectral cluster-
ing [Filippone et al., 2008] has demonstrated its strong ca-
pability in group objects by analyzing complex data struc-
tural information. Spectral clustering has been extensively
used in real-world applications, such as image/video seg-
mentation [Galasso et al., 2014]. The advantage of spec-
tral clustering family lies in the exploration of the intrin-
sic data structures [Xia et al., 2014; Yang et al., 2013;
2015], which are fully employed for predicting clustering
labels by exploiting the different similarity graphs of data
points. For instance, in [Wu and Scholkopf, 2007], an ef-
fective algorithm, termed as local learning based clustering
(LLC), was developed according to the assumption that the
cluster label of a data point can be determined by its neigh-
bors.

It is well-known that optimizing the spectral clustering
models will lead to an NP-hard problem due to the discrete
constraint on the clustering labels. To achieve a feasible ap-
proximate solution, most spectral clustering algorithms fol-
low a common practical paradigm. It first relaxes the dis-
crete constraint to allow the clustering label matrix to be
continuous-valued and performs eigenvalue decomposition
on the specific Laplacian matrix to generate an approximate
indicator with continuous values. Then, we can discretize
the clustering label matrix by employing certain independent
technique, such as k-means. Furthermore, to enable cluster-
ing new unseen data, one may learn an additional prediction
function in an independent stage (module). In [Yang et al.,
2013; Nie et al., 2011], the out-of-sample problem is ad-
dressed by introducing a regression learning module, and dis-
criminative information is injected into the construction of
the similarity matrix to improve clustering performance. Al-
though existing spectral clustering has been applied in prac-
tice widely, they may easily achieve poor performance due to
the following drawbacks:

• High risk of severe deviation of approximate solution
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from the genuine discrete clustering labels;
• Information loss among separate independent stages,

i.e., continuous label generation, label discretization and
prediction function learning;

• Unreliability of the predicted cluster labels leading to
poor prediction functions.

To cope with the aforementioned problems, we propose a
spectral clustering scheme which directly learns discrete clus-
tering labels and robust out-of-sample prediction functions in
a unified manner. Specifically, in order to alleviate the in-
fluence caused by the information loss during the relaxation
of traditional spectral clustering, we deliberately recover the
abandoned discrete constraint with a smooth transformation
(e.g., rotation) from the relaxed continuous clustering labels
to a discrete solution. In this sense, the continuous cluster-
ing label just serves as an intermediate product. We integrate
a discrete rotation functionality, which guarantees a tractable
optimization problem with a discrete solution. Moreover, to
further compensate the unreliability of the learned labels, we
integrate an adaptive robust module to learn prediction func-
tion for unseen data. In particular, we devise a novel noise
modelling approach by utilizing an effective `2,p loss term
over the prediction error residual to capture unreliability of
clustering labels in a more adaptive way. The `2,p loss is ca-
pable of inducing sample-wise sparsity, which naturally iden-
tifies unreliable predicted labels. Besides, different choices of
p enables sufficient control on unpredictable conditions of la-
bel noise.

The rest of this paper is organized as follows. Section 2
elaborates the details of the proposed model, including prob-
lem formulation, introduction of model, an efficient algorithm
and the corresponding analysis. Experimental results are re-
ported and analyzed in Section 3. In the last, we conclude our
work in Section 4.

2 The Proposed Method
In this section, we elaborate the proposed discrete spectral
clustering. We first present the formulation and then develop
an efficient algorithm for optimization.

2.1 Problem Formulation
Given n data points of d dimensions, denoted as X =

[x1,x2, . . . ,xn

] 2 Rd⇥n, we aim to partition X into c groups
{C

j

}c
j=1 according to certain criteria. For instance, data in

the same cluster should be similar to each other while those in
different groups should have dissimilar representations. The
family of spectral clustering algorithms is generally formu-
lated as below:

min

Y
Tr(Y

T

LY) s.t. Y 2 Idx, (1)

where Tr(·) computes the trace of a matrix and L 2 Rn⇥n is
the Laplacian matrix of X. Y = [y1,y2, . . . ,yn

]

T 2 Rn⇥c

is the clustering label matrix, and Y 2 Idx means the cluster-
ing label vector of each sample y

i

2 {0, 1}c⇥1 contains one
and only one element “1”, which indicates the group mem-
bership of x

i

. It is recognized that the problem in Eq.(1) is

NP-hard due to the discrete constraint on Y. A commonly-
used practical way is to relax Y to be continuous-valued and
thus we arrive at

min

F
Tr(F

T

LF) s.t. FT

F = I

c

, (2)

where F 2 Rn⇥c is the relaxed continuous clustering label
matrix. I

c

is an identity matrix of size c⇥ c. The orthogonal
constraint FT

F = I

c

is used to avoid trivial solution. After
solving the above problem via eigenvalue decomposition, we
further use traditional clustering method, e.g., k-means, to
transform clustering labels into discrete ones.

Though the two-stage strategy provides a feasible solution,
it may unpredictably deviate from the genuine discrete clus-
tering labels. To avoid this situation, we intend to devise a
unified spectral clustering model to directly generate the dis-
crete clustering label matrix.

2.2 Model
To bypass the difficulty of the NP-hard problem in Eq.(1),
we propose to re-introduce the “new” discrete clustering in-
dicator Y into Eq.(2). We expect Y has exactly the same
properties as that in Eq.(1). Meanwhile, Y should also be cer-
tain reasonable transformation from F in order to preserve the
structural knowledge derived from data. Based on such anal-
ysis, we employ the following model to achieve these goals:

min

F,Q,Y
Tr(F

T

LF) + ↵kY � FQk2
F

,

s.t. FT

F = I

c

^Q

T

Q = I

c

^Y 2 Idx,

(3)

where Q 2 Rc⇥c is a rotation matrix which adjusts the
continuous-valued clustering label matrix into the real dis-
crete clustering label matrix Y. ↵ is a trade-off parameter.

Recall that existing clustering methods can hardly gen-
eralize to new unseen data. Possible solutions either learn
new prediction functions independently from scratch [Ben-
gio et al., 2004] or incorporate learning model into clus-
tering to generate prediction functions [Nie et al., 2011;
Yang et al., 2013]. Denote prediction function learning com-
ponent as L(W;X,Y). One may choose the following loss
function:

L(W;X,Y) = kY �X

T

Wk2
F

+ �kWk2
F

, (4)

where W 2 Rd⇥c is the mapping variable.
However, integrating the above model into the discrete op-

timization framework as in Eq.(3) suffers from the following
problem. The noise in Y can hardly be captured by Eq.(4).
For example, if the clustering label of a training sample is
incorrectly generated in previous process, then the error will
be inevitably amplified due to the squared residual. The un-
reliability of the learned cluster labels probably in turn jeop-
ardizes the subsequent learning of prediction functions. To
handle the above problem, we propose to utilize a robust `2,p
loss term [Yang et al., 2014] to effectively control different
levels of noise. Also, we also design a mutually reinforc-
ing mechanism to explicitly make generation of clustering la-
bel codes and training of prediction functions interacted with
each other, thereby exerting positive influence to the whole
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learning process. The robust learning model is depicted as
follows:

L2,p(W;X,Y) = kY �X

T

Wk2,p + �kWk2
F

, (5)

where the loss function is changed to `2,p (0 < p < 2) loss,
which is capable of alleviating sample noise:

kMk2,p =

nX

i=1

k(M)

i

kp2, (6)

where (M)

i

is the i-th row of matrix M. The above `2,p loss
not only suppresses the inevitable noise but also enhances the
flexibility for adapting different noise levels.

By substituting the robust learning module in Eq.(4) into
Eq.(3), we have

min
F,Q,Y,W

Tr(FTLF) + ↵kY � FQk2F + �L2,p(W;X,Y),

s.t. FTF = Ic ^QTQ = Ic ^Y 2 Idx,

(7)

where ↵ > 0 and � > 0 are balance parameters.

2.3 Solution
Due to the existence of `2,p loss, direct optimizing the model
(7) turns out to be difficult. In this part, we propose an ef-
ficient and effective algorithm which iteratively solves an al-
ternative optimization problem and guarantees the obtained
solution is the optimal solution to the original problem in (7).
Denote the loss residual as

R = Y �X

T

W, (8)

then we introduce the alternative problem as follows:

min

F,Q,Y,W
Tr(F

T

LF) + ↵kY � FQk2
F

+ �(Tr(R

T

DR) + �kWk2
F

),

s.t. FT

F = I

c

^Q

T

Q = I

c

^Y 2 Idx,

(9)

where D is a diagonal matrix with its i-th diagonal element
computed as

D

ii

=

1

2
p

kr
i

k2�p

2

(10)

where r

i

is the i-th row of R.
We show how to solve the above alternative problem first,

and then explain the obtained solution is the optima of Eq.(7).
Update F: With Q,W,Y fixed, the problem is reduced to

min

F
Tr(F

T

LF) + ↵kY � FQk2
F

,

s.t. FT

F = I

c

.

(11)

The above problem with orthogonal constraint can be effi-
ciently solved using the algorithm [Wen and Yin, 2013].
Update Y: When F,Q,W are fixed, we have

min

Y2Idx

↵kY�FQk2
F

+�Tr((Y�X

T

W)

T

D(Y�X

T

W)),

(12)
Given the facts that Tr(YT

Y) = n and Tr(Y

T

DY) =

Tr(D), we can rewrite the above sub-problem as below:

max

Y2Idx

Tr(Y

T

P), (13)

Algorithm 1 Algorithm for optimizing the proposed spectral
clustering model.
Input: Training data X;
Output: F,Q,W,Y;

1: Randomly initialize F,Q,W,Y;
2: Construct Laplacian matrix L;
3: repeat
4: Update D according to Eq.(10);
5: Update F by solving the problem in Eq.(11);
6: Update Y according to Eq.(14);
7: Update Q by solving the problem in Eq.(15);
8: Update W according to Eq.(17);
9: until there is no change to F,Q,W,Y

10: return F,Q,W,Y

where P = ↵FQ + �DX

T

W. The optimal solution of the
above sub-problem can be easily generated as follows:

Y

ij

=

⇢
1, j = argmax

k

P

ik

0, otherwise
(14)

Update Q: When F,W,Y are fixed, the problem becomes

min

Q
kY � FQk2

F

, s.t. QT

Q = I

c

, (15)

which can be efficiently solved using the algorithm [Wen and
Yin, 2013].
Update W: Fixing F,Q,Y, we arrive at

min

W
Tr((Y�X

T

W)

T

D(Y�X

T

W)) + �kWk2
F

. (16)

Setting the derivative of Eq.(16) w.r.t. W to zero, we have

W = (XDX

T

+ �I

d

)

�1
XDY, (17)

where I

d

is an identity matrix of size d⇥ d.
We summarize the optimization process of Eq.(7) in Al-

gorithm 1. We will show that Algorithm 1 converges to an
optima of the original problem in Eq.(7).

We first introduce two lemmas.
Lemma 1. Let r

i

be the i-th row of the residual R in previous

iteration, and

˜

r

i

be the i-th row of the residual

˜

R in current

iteration, then the following inequality holds:

k˜r
i

kp � p k˜r
i

k2
2kr

i

k2�p

 kr
i

kp � p kr
i

k2
2kr

i

k2�p

. (18)

Proof. Given the following unary function

h(x) = px

2 � 2x

p

+ (2� p), 0 < p < 2. (19)

We have h

0
(x) = 2px � 2px

p�1 and h

00
(x) = 2p � 2p(p �

1)x

p�2. Clearly, h0
(x) = 0 only when x equals to 1. Besides,

when x 2 (0, 1), h0
(x) < 0 and when x > 1, h0

(x) > 0,
which indicates that h(x) is monotonically decreasing as
0 < x < 1 and monotonically increasing when x > 1. Fur-
thermore, we know h

00
(1) = 2p(2� p) > 0. Hence, we have

the conclusion that for 8x > 0, h(x) � h(1) = 0.

2275



Then, by substituting x=

kr̃ik
krik into Eq.(19), we obtain the

conclusion

p

k˜r
i

k2
kr

i

k2 � 2

k˜r
i

kp
kr

i

kp + (2� p) � 0,

, pk˜r
i

k2 � 2k˜r
i

kpkr
i

k2�p

+ (2� p)kr
i

k2 � 0,

, pk˜r
i

k2kr
i

kp�2 � 2k˜r
i

kp + (2� p)kr
i

kp � 0,

, 2k˜r
i

kp � pk˜r
i

k2kr
i

kp�2  (2� p)kr
i

kp,

, k˜r
i

kp � pk˜r
i

k2
2kr

i

k2�p

 kr
i

kp � pkr
i

kp
2kr

i

k2�p

.

Lemma 2. Given R = [r1, r2 . . . , rn]
T

, then we have the

following conclusion:

nX

i=1

k˜r
i

kp �
nX

i=1

pk˜r
i

k2
2 kr

i

k2�p


nX

i=1

kr
i

kp �
nX

i=1

p kr
i

kp
2 kr

i

k2�p

.

(20)

Proof. By summing up the inequalities of all r

i

, i =

1, 2, . . . , n according to Lemma 1, we can easily reach the
conclusion of Lemma 2.

Theorem 1. Each iteration (line 4 to line 8) of Algorithm 1

decreases the value of the objective function in Eq.(7) mono-

tonically.

Proof. Suppose ˜

Y,

˜

F,

˜

Q,

˜

W are the optimized solution of
the alternative problem (9), and we denote

⇢ J = Tr(F

T

LF) + ↵ kY � FQk2
F

+ ��kWk2
F

,

˜J = Tr(

˜

F

T

L

˜

F) + ↵k ˜Y � ˜

F

˜

Qk2
F

+ ��k ˜

Wk2
F

,

then we have
˜J + �Tr(

˜

R

T

D

˜

R)  J + �Tr(R

T

DR)

) ˜J + �

nX

i=1

pk˜r
i

k2
2kr

i

k2�p

 J + �

nX

i=1

pkr
i

k2
2kr

i

k2�p

) ˜J + �

nX

i=1

k˜r
i

kp � �(

nX

i=1

k˜r
i

kp �
nX

i=1

pk˜r
i

k2
2kr

i

k2�p

) 

J + �

nX

i=1

kr
i

kp � �(

nX

i=1

kr
i

kp �
nX

i=1

pkr
i

k2
2kr

i

k2�p

).

Using Lemma 2, we have

˜J + �

nX

i=1

k˜r
i

kp  J + �

nX

i=1

kr
i

kp.

which indicates the monotonic decreasing trend of the objec-
tive function in Eq. (7) in each iteration.

To sum up, we can see that Algorithm 1 will eventually
converge to the optima of the original problem in Eq. (7) ac-
cording to Theorem 1.

3 Experiments
3.1 Experimental Settings
In the experiments, we evaluate our proposed approach on
six UCI datasets [Lichman, 2013], including Image Segmen-
tation, Vehicle, Vote, Ecoli, Solar and Wine. The statistics of
datasets are summarized in Table 1.

Table 1: Statistics of the evaluated data sets.

Number of Samples Number of Dimensions Number of Classes
Segment 2310 19 7
Vehicle 846 18 4
Vote 435 16 2
Ecoli 336 343 8
Solar 323 12 6
Wine 178 13 3

We choose several existing clustering approaches for com-
parison, including k-means clustering (KM), discriminative
k-means clustering (DKM) [Ye et al., 2007b], Spectral
Clustering (SC), Local Learning Clustering (LLC) [Wu and
Scholkopf, 2007], CLGR [Wang et al., 2009] and Spectral
Embedding Clustering (SEC) [Nie et al., 2011]. We set
the number of neighbors k to 5 for all spectral clustering
methods. The parameters of all comparison algorithms are
tested in {10�6

, 10

�4
, 10

�2
, 10

0
, 10

2
, 10

4
, 10

6}. We set p of
`2,p loss in {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}. We randomly
choose 50% of samples for training and the rest are used for
test.

We employ conventional Normalized Mutual Informa-
tion (NMI) and Accuracy (ACC) as evaluation metrics.
• NMI: We first define normalized mutual information of

two distributions A and B as below:

NMI(A,B) =

I(A,B)pH(A)H(B)

, (21)

where I(A,B) computes the mutual information of A and
B. H(·) is the entropy of a distribution. Denote n

i

as
the number of datums in the i-th cluster C

i

generated by a
clustering algorithm, n̂

j

as the number of data points in the
j-th ground truth class G

j

and n

i,j

as the number of data
occurring in both C

i

and G

j

. Then, NMI is calculated as
follows:

NMI =

P
c

i=1

P
c

j=1 ni,j

log(

n⇥ni,j

nin̂j
)

q
(

P
c

i=1 ni

log

ni
n

)(

P
c

j=1 n̂j

log

n̂j

n

)

. (22)

Larger NMI values indicate better clustering performance.
• ACC: Denote o

i

as the resultant clustering label of x
i

us-
ing certain clustering method and g

i

as the ground truth of
x

i

, then we have

ACC =

P
i

�(o

i

,map(g

i

))

n

, (23)

where �(x, y) = 1 if x = y; �(x, y) = 0 otherwise, and
map(g

i

) is the best mapping function that permutes clus-
tering labels to match the ground truth labels. Larger ACC
values indicate better clustering performance.

2276



Table 2: Comparison of our proposed approach and existing methods on six evaluated datasets. (a) ACC on Training set; (b)
NMI on Training set; (c) ACC on Test set; and (d) NMI on Test set.

(a) ACC on Training set.

KM DKM SC LL CLGR SEC Ours

Solar 0.4568 0.5679 0.4444 0.4074 0.5370 0.5802 0.6111
Vehicle 0.4539 0.4539 0.4941 0.5532 0.5177 0.4681 0.6312
Vote 0.7844 0.8624 0.8394 0.8716 0.8440 0.7936 0.8807
Ecoli 0.6488 0.6667 0.3631 0.4286 0.5179 0.6429 0.6607
Segment 0.5610 0.7100 0.5700 0.5960 0.6190 0.6620 0.7720
Wine 0.7079 0.7079 0.7079 0.5843 0.7079 0.7416 0.9101

(b) NMI on Training set.

KM DKM SC LL CLGR SEC Ours

Solar 0.3654 0.4196 0.2361 0.3289 0.3947 0.4194 0.4219
Vehicle 0.2179 0.2179 0.2562 0.3055 0.2562 0.2559 0.4001
Vote 0.2571 0.3943 0.3492 0.4077 0.3585 0.2834 0.4750
Ecoli 0.4630 0.4718 0.2759 0.3362 0.3332 0.4557 0.5498
Segment 0.5167 0.6785 0.5945 0.5360 0.6066 0.6186 0.6899
Wine 0.3743 0.3743 0.3643 0.2834 0.3643 0.4586 0.7678

(c) ACC on Test set.

KM DKM SC LL CLGR SEC Ours

Solar 0.5155 0.5466 0.3043 0.5217 0.6025 0.5776 0.6149
Vehicle 0.4468 0.4586 0.3877 0.5272 0.4894 0.4539 0.5957
Vote 0.8065 0.8433 0.7926 0.8986 0.8525 0.8111 0.9263
Ecoli 0.7321 0.7262 0.6548 0.7202 0.6726 0.7381 0.8036
Segment 0.5855 0.7328 0.6809 0.6496 0.6916 0.7115 0.7511
Wine 0.7079 0.7079 0.6292 0.5393 0.7753 0.6966 0.9101

(d) NMI on Test set.

KM DKM SC LL CLGR SEC Ours

Solar 0.3755 0.3885 0.2402 0.3301 0.3971 0.4055 0.4625
Vehicle 0.1955 0.1955 0.1231 0.2723 0.2401 0.2037 0.3485
Vote 0.3051 0.3678 0.3161 0.5189 0.4362 0.3179 0.6441
Ecoli 0.5242 0.5123 0.4779 0.5567 0.5159 0.6443 0.6710
Segment 0.5452 0.6736 0.6274 0.5697 0.6273 0.6203 0.6991
Wine 0.4601 0.4601 0.2516 0.2324 0.4978 0.5260 0.7525
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Figure 1: Comparison of discrete clustering labels and continuous clustering labels. (a) and (b) illustrate ACC performance and
NMI performance, respectively.

3.2 Comparison
We compare our proposed discrete spectral clustering to sev-
eral existing methods. Table 2 reports ACC and NMI perfor-
mance on training and test sets of six evaluated datasets, from
which we derive the following observation and analysis.

As we can see, our proposed approach significantly out-
performs other comparison methods, including traditional
clustering (KM and DKM), spectral clustering (SC, LL and
CLGR) and clustering with out-of-sample extension (SEC).
On the one hand, our solution is capable of searching “gen-
uine” clustering membership of data, i.e., discrete labels,
which helps to reach the optimal clustering without any extra
discretizing manipulation, thereby leading to minimal loss.

On the other hand, the optimization of the prediction func-
tion learning module helps to control the unreliable factors
in the derived clustering labels, which in turn exerts positive
influence on the learning of the discrete spectral clustering to
further boost the quality of the resultant clustering labels.

In order to further illustrate the efficacy of the discrete clus-
tering, we compare clustering performance of discrete label
matrix Y, original continuous label matrix F with spectral
rotation [Huang et al., 2013] and the rotated continuous label
matrix FQ with maximum value binarization. The ACC and
NMI performance is reported in Figure 1. As we can see, the
discrete clustering label matrix Y always achieves the best
performance, and FQ performs slightly better than F. This
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Figure 2: Parameter sensitivity on dataset Wine (Train ACC).
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Figure 3: Convergence analysis on six datasets.

phenomenon again implies that our discrete solution is closer
to the real partition of data than the relaxed continuous clus-
tering labels.

3.3 Parameter Sensitivity
We further study how our approach performs when us-
ing different settings of parameters. As stated before,
we tune trade-off parameter ↵, � and � in the range of
{10�6

, 10

�4
, 10

�2
, 10

0
, 10

2
, 10

4
, 10

6}, and p from 0.25 to
1.75. Figure 2 illustrates the experimental results.

• Joint effects of ↵ and �. ↵ and � controls the contribu-
tions of continuous label generation, label rotation and
prediction learning. When ↵ and � are neither too large
nor too small (e.g., ↵ = 1 and � = 0.01), our approach
can achieve satisfactory performance. This hints us that
different components should be well balanced in order
to maximize the joint effects.

• Effects of �. � controls the inner balance of prediction
residual error kY �X

T

Wk2,p and regularizer kWk2
F

.
As � increases from 10

�6 to 10

�2, our approach per-
forms gradually better. When � keeps going up, we see
a decreasing trend instead. If � is small, the regular-
izer will be easily ignored, which may lead to overfit-
ting problem. In contrary, when we use large �, the pre-
diction residual error will not be well controlled, which
makes our approach to produce poor prediction func-
tions and clustering labels.

• Effects of p. The performance of our approach fluctu-
ates (from 0.5 to 0.9) when p varies from 0.25 to 1.75.
For both training and test settings, the best performance
is gained when p is not close to 2, which indeed reflects

the ability of `2,p loss handling unreliable clustering la-
bels.

3.4 Convergence Study
As aforementioned, we have shown that Algorithm 1 is guar-
anteed to converge to an optima when we iteratively solve the
alternative problem (9). In this part, we empirically test the
convergence and the efficiency of the proposed algorithm. As
illustrated in Figure 3, we conduct experiments on six evalu-
ated datasets. For illustration purpose, we consistently fix the
values of all parameters to 1. As we can see, our algorithm
is able to achieve a very rapid convergence within only a few
iterations (less than 10). In this sense, it is reasonable for us
to set the number of iterations to 10, which provides sufficient
efficiency for the learning.

4 Conclusion
In this work, we coped with the problem existing in most tra-
ditional spectral clustering algorithms, i.e., relaxing discrete
constraints to continuous one, which consists of two inde-
pendent stages (i.e., first learning continuous labels and then
rounding the learned labels into discrete ones). In order to re-
duce information loss and performance degradation, we pro-
posed a unified spectral clustering approach to directly learn
discrete clustering labels and robust out-of-sample prediction
functions. To be more specific, our proposed approach can
explicitly rotate continuous labels to discrete ones. Mean-
while, to the end of handling the noisy clustering labels, we
integrated an adaptive robust module to learn prediction func-
tion for unseen data. Extensive experiments on six data sets
demonstrated the promising performance of our proposal as
compared to existing clustering approaches.
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