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Abstract

Approximate matrix multiplication (AMM) be-
comes increasingly popular because it makes ma-
trix computation suitable for large-scale datasets.
Most previous AMM methods are based on the
idea of random selection or random projection. In
this paper, we propose a deterministic algorithm
FD-AMM for computing an approximation to the
product of two given matrices. Moreover, the al-
gorithm works in a streaming manner. In particu-
lar, our approach is inspired by a recently proposed
matrix sketching algorithm called Frequent Direc-
tions (FD). FD-AMM has stronger error bound than
both random selection and random projection algo-
rithms with respect to the same space complexity.
Our approach also leads to an algorithm for com-
puting the Canonical Correlation Analysis (CCA)
of two matrices exactly in a streaming way, which
takes less space than the classical method. Ex-
perimental results validate the effectiveness of our
method.

1 Introduction

Modern large data sets are often expressed as large matri-
ces. For example, in the bag-of-words model, each row of
the matrix corresponds to one document; in image analysis,
feature values are represented by a matrix whose rows cor-
respond to images. Therefore, many computational problems
on such data are reduced to standard matrix operations includ-
ing matrix multiplication, ¢s-regression, and low-rank matrix
approximation.

Some data are huge in size and often generated sequen-
tially, e.g., computer network traffic and sensor data. Thus, it
is important to handle them in a streaming fashion. A stream-
ing algorithm only makes a single pass over the data and uses
a small amount of memory. The limited space constraint is
critical when the full data set cannot fit in memory or even
disk. Typically, there is a trade-off between the amount of
space required and the performance of the algorithm.

Approximate matrix multiplication gains significant in-
creases in popularity as the data sets becoming larger
and larger. It is an important approach to fast matrix
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multiplication. =~ Moreover, it can be used in informa-
tion retrieval [Eriksson-Bique ef al., 2011], image process-
ing [Madrid et al., 2012], large scale k-means clustering [Co-
hen et al., 2015], and approximate leverage scores [Drineas
et al., 2012]. The best approximation to the product can
be achieved by truncated SVD under any unitarily invariant
norms. Although SVD methods are polynomial, they are
computation intense when performed exactly.

There are two main approaches for approximate matrix
multiplication. The first approach is referred as random se-
lection since it randomly picks rows, columns, or individ-
ual entries of the matrices. There are two kinds of sampling
methods: uniform sampling and non-uniform sampling. Most
studies focus on the latter which obtains more generality. One
important non-uniform sampling method is called importance
sampling which works with probability proportional to the
row’s squared Euclidean length [Drineas and Kannan, 2001;
Drineas et al., 2006; Eriksson-Bique et al., 2011]. Madrid
et al. (2012) compared different sampling strategies on ill-
conditioned matrices empirically. Pagh (2013) focused on
sparse matrices.

The second approach is referred as random projection
or “sketching.” Many studies are based on the Johnson-
Lindenstrauss (JL) Lemma [Dasgupta and Gupta, 2003]. For
example, Sarlos (2006) achieved a Frobenius norm error
guarantee using the JL transform. Clarkson and Woodruff
(2009) further refined the results, and showed that their space
usage is nearly optimal in a streaming setting. Kane and Nel-
son (2014) gained more speed up by introducing a sparse JL
transform. Clarkson and Woodruff (2013) came up with a
very sparse subspace embedding matrix with modifications
by Nelson and Nguyén (2013). Their work reduced time com-
plexity to O(nnz(A) + nnz(B)). However, random projec-
tion may fail with relatively high probability when sketch size
is small.

Besides these two main kinds, there are also some other
methods. For example, Cohen et al. (2015) proved that us-
ing subspace embedding achieves optimal approximate ma-
trix multiplication in terms of stable rank. Bhojanapalli et al.
(2015) proposed a new method which utilizes sampling and
alternating minimization to directly compute a low-rank ap-
proximation of matrix product. However, those methods can
not be implemented in a streaming way.

In this paper we investigate the streaming memory-limited



matrix multiplication problem. Our work is inspired by
a recently proposed matrix sketching algorithm called the
Frequent-Directions (FD) [Liberty, 2013] which is easy to
implement and deterministic. We propose a new method for
approximate matrix multiplication (AMM) that we call FD-
AMM. To our best knowledge, our method is the first deter-
ministic approach to approximate matrix multiplication. An
error bound in terms of spectral norm is given, and experi-
mental results demonstrate its effectiveness and efficiency.

We also apply our approach to computing Canonical Cor-
relation Analysis (CCA) of two matrices in a streaming way.
CCA is a fundamental statistical tool to capture the rela-
tionship between two multidimensional variables [Hotelling,
1936]. It is analogous to Principal Component Analysis
(PCA). But instead of analyzing a single matrix, it aims to
analyze the relation between a pair of datasets. It has found
its usage in a wide range of applications, e.g., dimensionality
reduction [McWilliams et al., 2013], clustering [Chaudhuri et
al., 2009], and speech recognition [Wang et al., 2015].

The remainder of the paper is organized as follows. We
first define the notation used in this paper and introduce the
background of CCA and FD algorithm. Then we describe our
proposed FD-AMM method and provide theoretical analysis
in section 3. Finally, we provide empirical comparisons with
three most used AMM algorithms to demonstrate the superi-
ority of FD-AMM.

2 Notation and Preliminaries

In this section we give the notation and preliminaries which
will be used in this paper. We use 7 : j to denote the integer
set {i,...,j}, and define [n] = 1 : n. LetI, bethe n X n
identity matrix, and O be the matrix of zeros with appropriate
size. We are given an n X m matrix A = [aj;az;...;a,)
where a; € RY™ is the i-th row of A. Typically the matrix
is assumed to be thin so n > m. When matrices A and B
have the same number of rows, we use [A B] to denote the
matrix obtained by concatenating the columns of B next to
the columns of A. Two vectors x and y are orthogonal is
denoted by x L y.

The squared Frobenius norm of the matrix A is defined as
A% = >0, ||la;]|? where ||a;|| is the Euclidean norm of
row a;. The spectral norm is || A ||z = max,.|jx|=1 ||Ax]|.

The singular value decomposition of A € R™*"™  writ-
ten svd(A), produces three matrices {U, 3, V} so that A =
UXVT where U € R™*™ and V € R™*" satisfy UTU =
UUT = VIV =1,,and Xisann x n diagonal matrix
with singular values o1 > o2 > .- >0, > 0. Let r be the

rank of A. Assume U and V consist of the first r columns of
U and V respectively, and s = diag(o1,09,...,0,), then

UXV = A is the condensed SVD of A. The SVD of an
n X m matrix costs time O(mn min{n, m}).

Then we formally introduce the background of CCA. There
are several equivalent ways to define the canonical correla-
tions of a pair of matrices [Golub and Zha, 1995]. Here
we use the linear algebraic formulation described in Defini-
tion 2.1, which captures the very essence of the procedure,
pursuing the directions of maximal correlations between two
data matrices.

Definition 2.1. [Avronetal., 2014] Let A € R"*"™ and B €
R™* ™2 and assume that p = rank(A) > rank(B) = q.
The canonical correlations 71 (A,B) > m(A,B) > -+ >
7q(A, B) of the matrix pencil (A,B) are defined recurszvely
by the following formula:

1A7B: A7B = AiaBiv
™ (A, B) e m(Ax, By) = m(Ax;, By;)
where
e =1,...,q
o m(u,v) = [u’v[/( ),
o A ={x:Ax#0,Ax | {Axy,...,Ax;_1}},
e Bi={y:By #0,By L {Byi,...,By;-1}}.
The n-dimensional unit vectors
Axi /Ay Axg /| Ax |
By1/IIByil, -, Byg/[IByqll

are called canonical vectors.

There are quite a few methods to compute the canonical
correlations [Golub and Zha, 1995]. For example, Bjorck and
Golub (1973) proposed an algorithm based on Theorem 1,
which needs exactly QR decomposition of original matrices
A and B.

Theorem 2 can be proved directly by the definition of
CCA [Lu and Foster, 2014]. The approach based on The-
orem 2 needs matrix multiplication A” A and B”B with
O(n(m3 + m3)) computat10nal complex1ty and matrix de-

composition to compute S, 2 and Sy 3 with O(m? + m3)
computational complexity. As a result, both two methods
require O(n(m? + m3)) time and O(n(m; + my)) space.
These classical methods are feasible and accurate when the
data matrices are small but they can be slow and unstable for
large-scale datasets.

Theorem 1. [Bjorck and Golub, 1973] Assume that the
columns of Q € R"*P and W € R"™*4 form an orthonormal
basis for the range of A and B, respectively. Let QTW =
UXVT be its condensed SVD. The diagonal elements of >
are the canonical correlations of (A, B) The canonical vec-

tors are given by the first q columns onUfor A and ofWV
for B.

Theorem 2. [Lu and Foster, 2014] Let Sa = ATA/n Sy, =
B”B/n and Sap = ATB/n. Let Sz *SapSy 2 = USVT

be its condensed SVD. Then the diagonal elements of S are
the canonical correlations of (A, B). The canonical vectors

are given by the first q columns ofS;%lNJfor A and ofsgév
for B.

3 Methodology

In this section, we first review the Frequent Directions algo-
rithm. Then we present the main contribution of the paper:
the FD-AMM algorithm. Specifically, given an n X m matrix
A and an n x mg matrix B, FD-AMM computes an approxi-
mation X to the product A7 B so that X ~ AT B. Moreover,
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the algorithm is based on a streaming setting which only re-
quires one pass over the input. Finally, we give a new way to
compute the CCA of two matrices also in a streaming fashion
which is based on FD-AMM.

We describe the procedure of FD algorithm [Liberty, 2013;
Ghashami and Phillips, 2014] in Algorithm 1. FD computes
a sketch of a given matrix. Specifically, it keeps an ¢ x d
(¢ < n) sketch matrix H that is updated every time a new
row from the n X d input matrix G is added. For any unit
vector x € R?, it has

IGx]* — [ Hx||* < |G| [7/¢-

The algorithm maintains an invariant that the last row of the
sketch H is always all-zero valued. During the execution
of the algorithm, rows from G simply replace the all-zero
valued row in H. Then, the last row is nullified by a two-
stage process. First, we rotate the sketch matrix by SVD so
that its rows are in descending order of significance.Then, we
“shrink™ all the rows so that at least one of them becomes
ZEero.

Algorithm 1 Frequent Directions (FD)
Input: /,G € R"*¢
H = 0¢xq
foriel,...,ndo
h, =g;
[Z,S,Y] =svd(H)
M® =8Y7T [only for notation]
§; = s7 [the (th entry of S, squared]

S — /8?5,
H(i) _ SIYT
end for

return H = H®

The computational cost of each iteration comes from the
SVD of an ¢ x d matrix, which is O(d¢?) when ¢ < d. The
total time complexity of FD algorithm is therefore bounded
by O(ndé?).

3.1 FD-AMM

Algorithm 2 FD-AMM
Input: /,A € R"*"™ B € R"*™2

G — [AB]
H - FD(/, G)
C= H[E],l:ml

D= H[f],m1+1im1+m2
return X = CTD

We presents the proposed method FD-AMM in Algo-
rithm 2. It is built upon the FD algorithm, but it focuses on the
approximate product of two given matrices. We provide the
theoretical guarantee of FD-AMM algorithm in Theorem 3.
The proof of the theorem is presented in the appendix.

Theorem 3. If X is the result of applying the FD-AMM al-
gorithm to matrices A, B, and sketch size {, then

|ATB - X|2 < (A% + [BJ2)/*.

Liberty (2013) observed that the time complexity of FD
algorithm can be reduced to O(ndf) at the expense of more
space. More specifically, increasing ¢ by a constant ¢ > 1
and then processing every (¢ — 1) elements in a batch set-
ting (each round results in a ¢/ rows matrix H) can reduce

the overall time to O(%ndﬁ). This trick can be applied to
our algorithm. Let £,.,, = 2{,4 then the time complexity
becomes O(2nmly,e,y). Thus our FD-AMM algorithm can
run in O(nmf), where m = my + ma.

Using FD-AMM for approximate matrix multiplication has
several advantages. First, it is easy to implement. Second,
the error bound given by Theorem 3 is stronger than existing
state-of-art algorithms with the same sketch size ¢. It is worth
pointing out that both sampling and random projection based
algorithms’ error bounds are proportional to 1/+/¢. Third, our
algorithm is deterministic. Hence it is more stable than other
random algorithms.

3.2 Streaming CCA

Based on the FD-AMM algorithm, we come up with a new
way to calculate the canonical correlations of two matrices.
The new method is inspired by a special case of the FD-
AMM algorithm. When ¢ > 2m, we have §; = 0 for all
1 = 1,...,n, which makes the “shrink” step does nothing at
all thus can be omitted. As a result we have H(Y) = M(®)
and HE-DTHGE-D — HOTHO, Therefore, the total error
incurred by FD-AMM is still zero. Corollary 4 gives the for-
mal observation. The proof of Corollary 4 is similar to that of
Theorem 3.

Corollary 4. In Theorem 3, when { > 2m, we will have

6; = 0foralli =1,...,n. Thus the total error incurred by
the FD-AMM algorithm is zero. More specifically,
ATB = C'D.

With the same reason, we have ATA = CTC and BTB =
DTD in this case.

The streaming nature of our FD-AMM algorithm helps es-
pecially when the matrices are too large to fit in memory.
To be specific, when given a pair of matrices (A, B), we
transform the pair to a new pair (C, D) that has much fewer
rows, and then compute the canonical correlations of the new
pair exactly, e.g., using the Bjorck and Golub algorithm. We
present the detailed procedure in Algorithm 3. Theoretical
analysis is given in Theorem 5.

Theorem 5. If the two matrices A and B are tall-and-thin,
that is, n > my, then Algorithm 3 computes the exact canon-
ical correlations of (A, B). That is,

ﬂ'i(A, B) = 7ri(C, D)

fori = 1,...,q. And the canonical vectors returned by Al-
gorithm 3 are the same as the results computed by the Bjorck
and Golub algorithm.

Combining Theorem 2 and Corollary 4 can get Theorem 5
directly. Algorithm 3 has a time complexity of O(nm?) and
space complexity of O(m?), while the Bjorck and Golub al-
gorithm needs O(nm) space.
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Algorithm 3 Streaming CCA

Input: A € R of rank p and B € R"*™2 of rank ¢
(m1 > ma,p>q). m=mqg+mz,{=2m. G=[AB],
H= Og5m-
for:e1,...,ndo

Insert g; into a zero valued row of H
if H has no zero valued rows then
(Z,S,Y] =svd(H)
H=8SY"

end if
end for
return H = [C D]
Compute and return the canonical correlations and the canon-
ical vectors of (C, D) (using classical algorithm).

4 [Experiments

We compare FD-AMM with baselines. The first one is the
brute force approach. The other three are common algorithms
that are used in practice: sampling, random projection, and
sparse random projection. All methods receive the rows of an
n X my matrix A and an n X my matrix B one by one during
the experiments. The brute force method outputs the product
directly, while other methods first compute smaller matrices
C and D for A and B respectively, then compute C*D.
Brute Force (BF): The brute force approach produces the ex-
act result of ATB. It explicitly computes the matrix ATB =
ZZL al'b; by aggregating the outer products of the rows of A
and B. The update time of Brute Forces is O(mym2) and its
space complexity is O(mimz).

Sampling: Let p; = ||a;||||b;]|/S be a probability distri-
bution over [n] where S = Y | ||a;||||b;||. We form an
¢ x my matrix C and an ¢ X mo matrix D by taking ¢ i.i.d.
(row indices) samples with the p;. Since the value of S is
not known a priori, we use ¢ independent reservoir samplers
to implement the streaming algorithm. Therefore, the up-
date for each row requires O(my + mg) time and O(¢(m; +
ms)) space. The reader can refer to [Drineas et al., 2006;
Eriksson-Bique er al., 2011] for a theoretical analysis of this
algorithm.

Random projection (RP): The matrices C and D have the
form of RA and RB respectively, where R is an ¢ x n
matrix and R;; € {—1/v/¢,1/+/¢} uniformly. This is eas-
ily computed in a streaming fashion, while requiring at most
O(£(mq + my)) space and O(¢(m; + ms)) time per row.
For proofs of effectiveness and usage see [Clarkson and
Woodruff, 2009; Cohen et al., 2015].

Sparse Random Projection (SRP): Clarkson and Woodruff
(2013) proposed a very sparse projection matrix S, which has
exactly 1 non-zero element per column. The element can be
-1 or +1 uniformly. To implement this algorithm in streaming
manner, matrices C and D are generated by adding or sub-
tracting the rows of A and B randomly. More specifically,
C and D are initialized to be £ x mj and ¢ X msy all zeros
matrices. When processing rows of A and B, we perform
Ch(i) < Cn(i) T+ s(i)ai and dh(i) — dh(z‘) + S(i)bi, where
h:[n] = [¢] and s: [n] — {—1,1} are perfect hash func-
tions.
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4.1 Approximate Matrix Multiplication

In this section, both A and B are random matrices. Each en-
try of A and of B is independent and uniformly distributed
on [0,1]. For random algorithms, we execute 50 times for
each sketch size and report the corresponding means and vari-
ances. The experiments are conducted in Matlab and run on a
PC with Intel Core i5 CPU,4GB RAM, and Windows 7 64bit
system. The Matlab is set in single thread mode when eval-
uating time. The performance is measured in terms of accu-
racy, stability, and speed.

Accuracy

Accuracy is calculated by ||[ATB — CTD||,. In the first
experiment, the product of two moderately sized matrices
(10000 x 1000 and 10000 x 2000) is approximated by the
algorithms described above. Figure 1 shows the average ac-
curacy with standard deviation over 50 trails when £ is set
to different values. We shift the plots denoted by “Random
Projection” and “Sparse Random Projection” a little bit right
so they would not overlap with each other. Our results are
similar with [Liberty, 2013]. Some key findings are listed
below. First, the plot denoted by “FD-AMM Bound” is the
theoretical worst case guaranteed by FD-AMM. It illustrates
that our algorithm performs significantly better than expected
by its worst case analysis. Second, the “FD-AMM Bound” is
lower than the random methods all the time. It suggests that
even the guaranteed worst case is lower than those of compet-
ing algorithms. Third, the three random algorithms perform
equally well when considering the best results in 50 trials.
The sampling method achieves better average accuracy com-
pared to random projection and sparse random projection.

6l "FD-AMM —<— |
1.6x10 Sampling ——
6 FD E’\rﬂu’\tﬂeBForcS
L - oun
14x10 Random Projection
6 Sparse Random Projection —e—
1.2x10° | b
1x10°
800000 -
600000 -
400000 -
200000 -
0 = R
0 50 100 150 200

Figure 1: Accuracy of different algorithms. The z-axis indi-
cates the value of /. And The y-axis is the accuracy which is
measured by |ATB — CTD|,.

Stability

Now we compare the stability of different algorithms. As
mentioned earlier, FD-AMM is a deterministic method which
returns the same output every time, while the other three
methods are random algorithms. As Figure 1 shown, the ac-
curacy achieved by the random projection and sparse random



projection algorithms fluctuates widely between different tri-
als, while the sampling method is more stable. Also, we can
find the better stability can be achieved with large sketch size
¢, which is consistent with our intuition. Furthermore, we
plot all the computation results of the sampling and FD-AMM
methods in Figure 2. Even though the row sampling method
yields a better approximation to the product compared to ran-
dom projection and sparse random projection, it is still not
deterministic.

700000

§ "FD-AMM x|
Sampling  +
600000 - 1
500000 - ; 1
400000 - " 1
300000 + i ] 1
LI "
200000 - X ¥ﬁﬁ¢$ 1
L B T,
100000 F  x 1
x X
0 >‘< XXX X X X X X X X XX XXX
0 50 100 150 200

Figure 2: Stability of FD-AMM and Sampling.

Speed

The running time of our algorithm is between that of random
projection and sampling. In Figure 3, the running time of
different AMM algorithms are plotted as a function of their
sketch sizes. We have some interesting observations here.
First, the larger the sketch size, the longer the running time.
However, the Brute Force method computes A”B directly,
so its running time is independent of ¢. Second, the Sparse
Random Projection method is fast and independent of ¢, but
it’s only slightly better than the Sampling method. Third, al-
though FD-AMM shares the same theoretical time complex-
ity (O(nf(my + ms))) with random projection, our method
scales better.

4.2 Streaming CCA on Real-life Data

In this section, we test our streaming CCA algorithm
on the annotated video dataset from the Mediamill Chal-
lenge [Snoek et al., 2006]. There are 43907 images in to-
tal. Each image is a representative key frame of a video shot
with 120 features and the whole set is annotated with 101
labels. We perform CCA to analyze the correlation struc-
ture between the features and labels. Figure 4(a) shows the
canonical correlations and 4(b) shows the relative error. From
the Figure 4(a), we can see that a few high correlations ex-
ist between the features and labels, with strong decay after-
ward. Figure 4(b) shows that the results of Streaming CCA
are exactly the same as the results computed by the traditional
method [Bjorck and Golub, 1973]. We compare the running
time with the traditional method and the approximation algo-
rithm in [Avron et al., 2014]. Tt turns out that the Streaming

100 ; T T
BF —e— SRP
RP —*— FD-AMM

—=&— Sampling
80 1

60 [ 1

40+ i

01 00 150 200 250 300 350 400 450 500

Figure 3: Running time in seconds of different algorithms.
The z-axis indicates the value of ¢, and the y-axis is the run-
ning time in seconds.

CCA (taking 4.69 sec) is a little faster than traditional method
(taking 5.93 sec) and slower than the approximation method
(taking 2.51 sec).

0.8 ,
1]
o 06f}° 1
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© :
= 04t %, 1
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O L L L L ]
0 20 40 60 80 100
Canonical Correlation Ordinal
(a)
0.1
0.05 | ) i
Xy RRARH e S PO R o
§ 0 B
L
-0.05 | 1
_01 L L L L
0 20 40 60 80 100
Canonical Correlation Ordinal
(b)

Figure 4: Comparison of streaming CCA and approximate
CCA on the Mediamill data set.



5 Conclusions

In this paper, we have proposed a deterministic algorithm to
compute the approximation of matrix product in a streaming
way and provided theoretical analysis for the approximation
performance. The experiments have shown that our algorithm
is much more accurate than the other three random methods
with an acceptable speed. We have applied our approach to
computing CCA, giving rise to a fast streaming method. The
experiments on real-world dataset have also validated the ef-
fectiveness of the method.
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Appendix: Proof of Theorem 3

Let HY = [C®) D®] and M) = [P®) Q). Let Y =
[Y1;Y2], Where Y is the first m; rows of Y, and Y is the
remaining mo rows of Y. Let a; and b; denote the ¢-th row
of A and B. In what follows, we denote by §;, P(9), Q(¥),
C®, DO the values of §, P, Q, C and D respectively after
the main loop in the algorithm has been executed ¢ times.
Let A = >, §; be the total mass we subtract from the
stream during the algorithm. We start by proving three useful
lemmas.

Lemma 6. (Corollary 3.1.3 of [Horn and Johnson, 2012])
Let A € R" ™ be given, and let A, denote a submatrix of

A obtained by deleting a total of v rows and/or columns from
A. Then

A2 > [|A]2
Lemma 7. For any unit vector x; € R™! and x5 € R™2, we

have xlTP(i)TQ(i)Xg — XlTC(i)TD(i)XQ < 6.

Proof. As P() = SYT, Q) = SYZ, ¢
D® = S'Y?, then

= 8S'Y7, and

TP Qi)x, — xTc® Dlix,
= x7Y;STSYIx, —xTY,STS Y2T Xo
X1 Y10,1, Y2 %,
5ix1TY1Y2TX2
8 Y Y5 |2
il Y ull2l[Y2[2
5.

IANIA A

In the last inequality, we use Lemma 6. O

Lemma 8. For any unit vector x; € R™! and x5 € R™2, we
have 0 < X,{ATBXQ — X,{CTDXQ < A

Proof. Notice that for all 2 < ¢ < n, we have

TP Qx, = xTCE-D Dl-Dx, + xTalh;x,
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By substituting this into inequality from Lemma 7, we get
PRV S PN
XlTC(‘_l) DO Vx, + xlTainixz < xlTC(‘) DWx, + 6;

Subtracting xlTC(i’l)TD(i’l)xQ from both sides and sum-
ming over ¢ reveals

xTATBx,

n
= E X,{ainiXQ
i=1
n

Z(X{C“)TDU)XQ _

i=1

XITC(i_l)TD(i_l)XQ +4;)

IN

— xTc Dy, —xTcOT

O)XQ =+ Z 5
= x]C'Dxy + A
To see the first 1nequahty observe x] Cl~ DIp-Ny, +
xTaTbx, = xIPOTQx, > xTCW DWx, for all
1 <4 < n. Then we can expand
xTATBx,

= Z(xlTP(i)TQ( )xy —x7CU~ ol

i=1

DG- 1)X2)

> S (e Dlx, -
i=1
= x7'C"Dx,.

X{C(i—l)TD(i—l))Q)

With Lemma 8, we are ready to prove the main theorem.
Theorem 3.

|ATB — C"D||; <
Proof. In the i-th round of the algorithm,

([ + IBIIE) /¢
IP@I5 +

1QM13 ||C % + IID(' [ + ¢5; and [POJ3 +
1QWI% = HC DR + \L DN + lladl® + [bil|*. By
solving for ||a; ||? , and summing over i we get
A% + ||B||%
= > (laill® + bl
i=1

= > (ICV)E + DD
i=1
—[IC V7 — DUV + £5:)
= |Cl% + DI + £A.
Usmg that ||C||F + [[D||2 > 0 we obtain A < (||A||Z +

IB||%)/¢. Recall that for any unit vector x; € R™! and
X9 € Rm2,

|ATB — CTD||; = sup |x] (ATB — CTD)x,|.

X1,X2
Combining Lemma 8, we get
0<[[ATB-C'Dlls <A < ([|A[% + B|F)/L.
O
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