
Neural Enquirer: Learning to Query Tables in Natural Language

Pengcheng Yin1 Zhengdong Lu2 Hang Li2 Ben Kao1

1 Department of Computer Science, The University of Hong Kong
2 Noah’s Ark Lab, Huawei Technologies

1{pcyin,kao}@cs.hku.hk 2{Lu.Zhengdong,HangLi.HL}@huawei.com

Abstract
We propose NEURAL ENQUIRER — a neural net-
work architecture for answering natural language
(NL) questions based on a knowledge base (KB)
table. Unlike existing work on end-to-end train-
ing of semantic parsers [Pasupat and Liang, 2015;
Neelakantan et al., 2015], NEURAL ENQUIRER is
fully “neuralized”: it finds distributed representa-
tions of queries and KB tables, and executes queries
through a series of neural network components
called “executors”. Executors model query oper-
ations and compute intermediate execution results
in the form of table annotations at different levels.
NEURAL ENQUIRER can be trained with gradient
descent, with which the representations of queries
and the KB table are jointly optimized with the
query execution logic. The training can be done in
an end-to-end fashion, and it can also be carried out
with stronger guidance, e.g., step-by-step supervi-
sion for complex queries. NEURAL ENQUIRER is
one step towards building neural network systems
that can understand natural language in real-world
tasks. As a proof-of-concept, we conduct experi-
ments on a synthetic QA task, and demonstrate that
the model can learn to execute reasonably complex
NL queries on small-scale KB tables.

1 Introduction
Natural language dialogue and question answering often in-
volve querying a knowledge base [Wen et al., 2015; Berant
et al., 2013]. The traditional approach involves two steps:
First, a given query ˜Q is semantically parsed into an “exe-
cutable” representation, which is often expressed in certain
logical form ˜Z (e.g., SQL-like queries). Second, the repre-
sentation is executed against a knowledge base from which an
answer is obtained. For queries that involve complex seman-
tic constraints and logic (e.g., “Which city hosted the longest
Olympic Games before the Games in Beijing?”), semantic
parsing and query execution become extremely complex. For
example, carefully hand-crafted features and rules are needed
to correctly parse a complex query into its logical form (see
example shown in the lower-left corner of Figure 1). This

complexity often results in poor accuracy of the system. To
partially overcome this difficulty, recent works [Clarke et
al., 2010; Liang et al., 2011; Pasupat and Liang, 2015] at-
tempt to “backpropagate” query execution results to revise
the semantic representation of a query, which is an exam-
ple of learning from grounding [Chen and Mooney, 2008;
Kim and Mooney, 2012]. This approach, however, is greatly
hindered by the fact that traditional semantic parsing mostly
involves rule-based features and symbolic manipulation, and
is subject to intractable search space incurred by the great
flexibility of natural language.

Neural network-based models have enjoyed much suc-
cesses in natural language processing, particularly in ma-
chine translation and syntactic parsing. These successes
are attributable to direct and strong supervision. The re-
cent work on learning to execute simple program codes with
LSTM [Zaremba and Sutskever, 2014] pioneers in the direc-
tion on learning to parse structured objects through executing
it in a purely neural way, while the more recent work on Neu-
ral Turing Machines (NTMs) [Graves et al., 2014] introduces
more modeling flexibility by equipping the LSTM with exter-
nal memory and various means for interacting with it.

Inspired by the above-mentioned research, we aim to de-
sign a neural network system that learns to understand queries
and execute them on a knowledge base table from examples
of queries and answers. We propose NEURAL ENQUIRER, a
fully neuralized, end-to-end differentiable system that jointly
models semantic parsing and query execution. NEURAL EN-
QUIRER encodes queries and KB tables into distributed rep-
resentations, and executes compositional queries against the
KB through a series of differentiable executors. The model is
trained using query-answer pairs, where the distributed repre-
sentations of queries and the KB are optimized together with
the query execution logic in an end-to-end fashion. As the
first step along this line of research, we evaluate NEURAL
ENQUIRER using a synthetic question-answering task as a
proof-of-concept, and demonstrate that our proposed model
is capable of learning to execute complex compositional nat-
ural language questions on small-scale KB tables.

2 Model
Following [Pasupat and Liang, 2015], we study the problem
of question answering on a single KB table. Specifically,
given an NL query Q and a KB table T , NEURAL ENQUIRER

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2308

Which city hosted the longest Olympic Games before the Games in Beijing?

query ෨𝑄 Query Encoder

Executor-1 Memory Layer-1

Executor-2 Memory Layer-2

Executor-3 Memory Layer-3

Executor-4 Memory Layer-4

Executor-5

Athens (probability distribution over table entries)

year host_city #_duration #_medals

2000 Sydney 20 2,000

2004 Athens 35 1,500

2008 Beijing 30 2,500

2012 London 40 2,300

query embedding

table embedding

Tab
le En

co
d

er

where year < (select year, where host_city = Beijing),
argmax(host_city, #_duration)

Find row r1 where host_city=Beijing

Select year of r1 as a

Find row sets R where year < a

Find r2 in R with max(#_duration)

Select host_city of r2

logical form ෨𝑍

Figure 1: An overview of NEURAL ENQUIRER with five executors

executes Q against T and outputs a ranked list of answers.
The execution is done by first using Encoders to encode the
query and table into distributed representations, which are
then sent to a cascaded pipeline of Executors to derive the
answer. Figure 1 gives an illustrative example (with five ex-
ecutors). It consists of the following components:
Query Encoder (Section 2.1), which abstracts the semantics
of an NL query and encodes it into a query embedding.
Table Encoder (Section 2.2), which derives a table embed-
ding by encoding entries in the table into distributed vectors.
Executor (Section 2.3), which executes the query against the
table and outputs annotations that encode intermediate exe-
cution results. Annotations are stored in the memory of each
layer to be accessed by the executor of the next layer. Since
complex compositional queries can be answered in multiple
steps of computation, each executor models a specific type of
operation conditioned on the query. Figure 1 illustrates the
operation each executor is assumed to perform in answering
the example query ˜Q. Different from classical semantic pars-
ing approaches which require a predefined set of all possible
logical operations, NEURAL ENQUIRER learns the logic of
executors via end-to-end training using query-answer pairs.
By stacking several executors, our model is able to answer
complex queries that involve multiple steps of computation.

2.1 Query Encoder
Query Encoder converts an NL query Q into a query embed-
ding q 2 RdQ . Let {x

1

,x
2

, . . . ,xT } be the embeddings
of words in Q, where xt 2 RdW is from an embedding
matrix L. We employ a bidirectional Gated Recurrent Unit
(GRU) [Bahdanau et al., 2015] to summarize the sequence
{x

1

,x
2

, . . . ,xT } in forward and reverse orders. q is formed
by concatenating the last hidden states in the two directions.

It is worth noting that Query Encoder can find the repre-
sentation of a rather general class of symbol sequences, ag-
nostic to the actual representation of the query (e.g., natural

language, SQL, etc). The model is able to learn the seman-
tics of input queries through end-to-end training, making it a
generic model for query understanding and query execution.

2.2 Table Encoder

NN0

field embed. value embed.

composite embed.

Table Encoder converts a KB
table T into a distributed rep-
resentation, which is used as an
input to executors. Suppose T
has M rows and N columns.
In our model, the n-th column
is associated with a field name
(e.g., host city). Each cell
value is a word (e.g., Beijing) in
the vocabulary. We use wmn to
denote the cell value in row m column n, and wmn to denote
its embedding. Let fn be the embedding of the field name for
column n. For each entry (cell) wmn, Table Encoder com-
putes a hfield, valuei composite embedding emn 2 RdE by
fusing fn and wmn using a single-layer Neural Network:

emn = NN
0

(fn,wmn) = tanh(W · [fn;wmn] + b),

where [·; ·] denotes vector concatenation. The output of Table
Encoder is an M ⇥ N ⇥ dE tensor that consists of M ⇥ N
embeddings, each of length dE .

We remark that our Table Encoder is different from clas-
sical knowledge embedding models (e.g., TransE [Bordes et
al., 2013]). While traditional methods learn the embeddings
of entities (cell values) and relations (field names) in an unsu-
pervised fashion via minimizing certain reconstruction errors,
embeddings in Table Encoder are optimized via supervised
learning in end-to-end QA tasks.

2.3 Executor
NEURAL ENQUIRER executes an input query on a KB table
through layers of execution. Each layer consists of an ex-
ecutor that, after learning, performs certain operation (e.g.,

2309

Reader

table embedding
read vectors

pooling

Annotator

row annotations

table annotationMemory Layer-(ℓ-1)

query embedding Memory Layer-ℓ

Figure 2: Overview of an Executor-`

select, max) relevant to the input query. An executor
outputs intermediate execution results, referred to as anno-
tations, which are saved in the external memory of the ex-
ecutor. A query is executed sequentially through a stack of
executors. Such a cascaded architecture enables the model to
answer complex, compositional queries. An example is given
in Figure 1 in which descriptions of the operation each execu-
tor is assumed to perform for the query ˜Q are shown. We will
demonstrate in Section 4 that the model is capable of learning
the operation logic of each executor via end-to-end training.

As illustrated in Figure 2, an executor at Layer-` (denoted
as Executor-`) consists of two major neural network com-
ponents: a Reader and an Annotator. The executor pro-
cesses a table row-by-row. The Reader reads in data from
each row m in the form of a read vector r

`
m, which is then

sent to the Annotator to perform the actual execution. The
output of the Annotator is a row annotation a

`
m, which cap-

tures the row-wise local computation result. Once all row
annotations are obtained, Executor-` generates a table an-
notation g

` to summarize the global computation result on
the whole table by pooling all row annotations. All the row
and table annotations are saved in the memory of Layer-`:
M`

= {a`
1

,a`
2

, . . . ,a`M ,g`}. Intuitively, row annotations
handle operations that require only row-wise, local informa-
tion (e.g., select, where), while table annotations model
superlative operations (e.g., max, min) by aggregating table-
wise, global execution results. A combination of row and ta-
ble annotations enables the model to perform a wide variety
of query operations in real world scenarios.

Reader
As illustrated in Figure 3, for the m-th row with N hfield,
valuei composite embeddings Rm = {em1

, em2

, . . . , emN},
the Reader fetches a read vector r`m from Rm via an attentive
reading operation:

r

`
m = f `

R(Rm,FT ,q,M`�1

) =

NX

n=1

!̃(fn,q,g
`�1

)emn

where M`�1 denotes the content of memory Layer-(�̀1), and
FT = {f

1

, f
2

, . . . , fN} is the set of field name embeddings.
!̃(·) is the normalized attention weights given by:

!̃(fn,q,g
`�1

) =

exp(!(fn,q,g`�1

))

PN
n0

=1

exp(!(fn0 ,q,g`�1

))

(1)

where !(·) is modeled as a Deep Neural Network (denoted as
DNN(`)

1

). Since each executor models a specific type of com-
putation, it should only attend to a subset of entries that are
pertinent to its execution. This is modeled by the Reader. Our

DNN1
+

query embedding

table annotation

read vector

year host_city #_duration #_medalsrow m

year host_city #_duration #_medals

(ℓ)

composite embeddings

Figure 3: Illustration of the Reader in Executor-`.

approach is related to the content-based addressing of Neu-
ral Turing Machines [Graves et al., 2014] and the attention
mechanism in neural machine translation models [Bahdanau
et al., 2015].

Annotator
The Annotator of Executor-` computes row and table anno-
tations based on read vectors fetched by the Reader. The re-
sults are stored in the `-th memory layer M` accessible to
Executor-(`+1). The last executor is the only exception,
which outputs the final answer.
[Row annotations] Capturing row-wise execution result, the
annotation a

`
m for row m in Executor-` is given by

a

`
m = f `

A(r
`
m,q,M`�1

) = DNN

(`)
2

([r

`
m;q;a

`�1

m ;g

`�1

]). (2)

DNN

(`)
2

fuses the corresponding read vector r`m, the results
saved in the previous memory layer (row and table annota-
tions a

`�1

m , g`�1), and the query embedding q. Intuitively,
row annotation a

`�1

m and table annotation g

`�1 summarize
the local and global status of execution up to Layer-(`�1), re-
spectively. DNN

(`)
2

then performs the actual query execution
by combing these annotations with the read vector and query
embedding, and outputs a row annotation a

`
m that encodes the

local execution result on row m.
[Table annotations] Capturing global execution state, a table
annotation summarizes all row annotations via a global max
pooling operation:

g

`
= fMAXPOOL(a

`
1

,a`
2

, . . . ,a`M) = [g
1

, g
2

, . . . , gdG]
> (3)

where gk = max({a`
1

(k),a`
2

(k), . . . ,a`M (k)}) is the maxi-
mum value among the k-th elements of all row annotations.

Last Layer Executor
Instead of computing annotations based on read vectors, the
last executor in NEURAL ENQUIRER directly outputs the
probability of an entry wmn in table T being the answer a:

p(a=wmn|Q,T)=

exp(f `
ANS(emn,q,a

`�1
m ,g`�1

))

PM,N
m0=1,n0=1exp(f

`
ANS(em0n0 ,q,a`�1

m0 ,g`�1
))

(4)

where f `
ANS(·) is modeled as a DNN (DNN

(`)
3

). Note that the
last executor, which is devoted to returning answers, could
still carry out execution in DNN

(`)
3

.

3 Learning
NEURAL ENQUIRER can be trained in an end-to-end (N2N)
fashion on QA tasks. During training, both the representa-
tions of queries and tables, as well as the execution logic cap-
tured by the weights of executors are learned. Given a set of

2310

year host city # participants # medals # duration # audience host country GDP country size population
2008 Beijing 4,200 2,500 30 67,000 China 2,300 960 130

Figure 4: An example table in the synthetic QA task (only one row shown)

1� SELECT WHERE Queries [select F

a

, where F

b

= w

b

] 3� WHERE SUPERLATIVE Queries [where F

a

>|< w

a

,argmax/min(F

b

, F

c

)]
. How many people participated in the Games in Beijing? . How long was the Games with the most medals that had fewer than 3,000 participants?
. In which city was the Games hosted in 2012? . How many medals were in the first Games after 2008?
2� SUPERLATIVE Queries [argmax/min(F

a

, F

b

)] 4� NEST Queries [where F

a

>|< (select F

a

,where F

b

=w

b

),argmax/min(F

c

, F

d

)]
. When was the latest Games hosted? . Which country hosted the longest Games before the Games in Athens?
. How big is the country which hosted the shortest Games? . How many people watched the earliest Games that lasts for more days than the Games in 1956?

Table 1: Example queries for each query type, with annotated SQL-like logical form templates

ND query-table-answer triples D = {(Q(i), T (i), y(i))}, we
learn the model parameters by maximizing the log-likelihood
of gold-standard answers:

LN2N(D) =

NDX

i=1

log p(a = y(i)|Q(i), T (i)
) (5)

In end-to-end training, each executor discovers its operation
logic from training data in a purely data-driven fashion, which
could be difficult for complex queries requiring four or five
sequential operations.

This can be alleviated by softly guiding the learning pro-
cess via controlling the attention weights w̃(·) in Eq. (1). By
enforcing w̃(·) to bias towards a field pertaining to a spe-
cific operation, we can “coerce” the executor to figure out the
logic of this operation relative to the field. For example, for
Executor-1 in Figure 1, by biasing the attention weight of the
host city field towards 1.0, only the value of host city

will be fetched and sent to the Annotator. In this way we can
“force” the executor to learn the where operation to find the
row whose host city is Beijing. This method will be re-
ferred to as step-by-step (SbS) training. Formally, this is done
by introducing additional supervision signal to Eq. (5):

LSbS(D)=

NDX

i=1

[log p(a=y(i)|Q(i), T (i)
) + ↵

L�1X

`=1

log w̃(f?i,`, ·, ·)] (6)

where ↵ is a tuning weight, and L is the number of executors.
f

?
i,` is the embedding of the field known a priori to be used by

Executor-` in answering the i-th example.

4 Experiments
In this section we evaluate NEURAL ENQUIRER on synthetic
QA tasks with NL queries of varying compositional depths.

4.1 Synthetic QA Task
We present a synthetic QA task with a large number of QA
examples at various levels of complexity to evaluate the per-
formance of NEURAL ENQUIRER. Starting with “artificial”
tasks accelerates the development of novel deep models [We-
ston et al., 2015], and has gained increasing popularity in
recent research on modeling symbolic computation using
DNNs [Graves et al., 2014; Zaremba and Sutskever, 2014].

Our synthetic dataset consists of query-table-answer triples
{(Q(i), T (i), y(i))}. To generate a triple, we first randomly
sample a table T (i) of size 10 ⇥ 10 from a synthetic schema

of Olympic Games. The cell values of T (i) are drawn from a
vocabulary of 120 location names and 120 numbers. Figure 4
gives an example table. Next, we sample a query Q(i) gener-
ated using NL templates, and obtain its gold-standard answer
y(i) on T (i). Our task consists of four types of NL queries,
with examples given in Table 1. We also give the logical
form template for each type of query. The templates define
the semantics and compositionality of queries. We generate
queries at various compositional depths, ranging from simple
SELECT WHERE queries to more complex NEST ones. This
makes the dataset have similar complexity as a real-world
one, except for the relatively small vocabulary. The queries
are flexible enough to involve complex matching between NL
phrases and logical constituents, which makes query under-
standing nontrivial: (1) the same field is described by differ-
ent NL phrases (e.g., “How big is the country ...” and “What
is the size of the country ...” for the country size field);
(2) different fields may be referred to by the same NL pattern
(e.g, “in China” for host country and “in Beijing” for
host city); (3) simple NL constituents may be grounded
to complex logical operations (e.g., “after the Games in Bei-
jing” implies comparing between the values of year fields).

To simulate the read-world scenario where queries of var-
ious types are issued to the model, we construct two MIXED
datasets, with 25K and 100K training examples respectively,
where four types of queries are sampled with the ratio 1 : 1 :

1 : 2. Both datasets share the same testing set of 20K exam-
ples, 5K for each type of query. We enforce that no tables
and queries are shared between training/testing sets.

4.2 Setup
[Tuning] We adopt a model with five executors. The lengths
of hidden states for GRU and DNNs are 150, 50. The num-
bers of layers for DNN(`)

1

, DNN(`)
2

and DNN(`)
3

are 2, 3, 3.
The length of word embeddings and annotations is 20. ↵ is
0.2. We train the model using ADADELTA [Zeiler, 2012] on
a Tesla K40 GPU. The training converges fast within 2 hours.
[Metric] We evaluate in terms of accuracy, defined as the
fraction of correctly answered queries.
[Models] We compare the results of the following settings:

• Sempre [Pasupat and Liang, 2015] is a state-of-the-art se-
mantic parser and serves as the baseline;

• N2N, our model trained using end-to-end setting (Sec 4.3);

• SbS, our model trained using step-by-step setting (Sec 4.4);

2311

MIXED-25K MIXED-100K
SEMPRE N2N SbS N2N-OOV N2N SbS N2N-OOV

SELECT WHERE 93.8% 96.2% 99.7% 90.3% 99.3% 100.0% 97.6%
SUPERLATIVE 97.8% 98.9% 99.5% 98.2% 99.9% 100.0% 99.7%
WHERE SUPERLATIVE 34.8% 80.4% 94.3% 79.1% 98.5% 99.8% 98.0%
NEST 34.4% 60.5% 92.1% 57.7% 64.7% 99.7% 63.9%
Overall Accuracy 65.2% 84.0% 96.4% 81.3% 90.6% 99.9% 89.8%

Table 2: Accuracies on MIXED datasets

Q1: How long was the Games with the most medals that had fewer than 3,000 participants?
Z1: where # participants < 3,000, argmax(# duration, # medals)

Q2: Which country hosted the longest Games before the Games in Athens?
Z2: where year < (select year, where host city = Athens), argmax(host country, # duration)

Figure 5: Weights visualization of queries Q
1

and Q
2

• N2N-OOV, a variant of the N2N model to deal with out-
of-vocabulary words (Sec 4.5)

4.3 End-to-End Evaluation
Table 2 summarizes the results of SEMPRE and NEURAL EN-
QUIRER under different settings. We show both the individual
performance for each query type and the overall accuracy. We
evaluate SEMPRE only on MIXED-25K because of its long
training time even on this small dataset (about 3 days).

In this section we discuss the results under end-to-end
(N2N) training setting. On MIXED-25K, the relatively low
performance of SEMPRE indicates that our QA task, al-
though synthetic, is highly nontrivial. Surprisingly, NEU-
RAL ENQUIRER outperforms SEMPRE on all query types,
with a marginal gain on simple queries (SELECT WHERE,
SUPERLATIVE), and significant improvement on complex
queries (WHERE SUPERLATIVE, NEST). We posit that the
low performance of SEMPRE on complex queries is likely due
to the intractable search space incurred by the flexibility of its
float parsing algorithm. On MIXED-100K, our model regis-
ters an overall accuracy of 90.6%. These results show that in
our QA task, NEURAL ENQUIRER is very effective in answer-
ing compositional NL queries, especially those with complex
semantics compared with the state-of-the-art system.

To further understand why our model is capable of answer-
ing compositional queries, we study the attention weights of
Readers (Eq. 1) for intermediate executors, and the answer
probability (Eq. 4) the last executor outputs for each table en-
try. These statistics are obtained on MIXED-100K. We sam-
ple two queries (Q

1

and Q
2

) in the testing set that our model

answers correctly and visualize their corresponding values in
Figure 5. To better understand the query execution process,
we also give the logical forms (Z

1

and Z
2

) of the two queries.
Note that the logical forms are just for reference purpose and
unknown by the model. We find that each executor actually
learns its execution logic in N2N training, which is in accor-
dance with our assumption. The model executes Q

1

in three
steps, with each of the last three executors performs a specific
type of operation. For each row, Executor-3 takes the value
of the # participants field as input, while Executor-4
attends to the # medals field. Finally, Executor-5 outputs
a high probability for the # duration field in the 3-rd row.
The attention weights for Executor-1 and Executor-2 appear
to be meaningless because Q

1

requires only three steps of ex-
ecution, and the model learns to defer the meaningful execu-
tion to the last three executors. Comparing with the logical
form Z

1

of Q
1

, we can deduce that Executor-3 “executes”
the where clause in Z

1

to find row sets R satisfying the con-
dition, and Executor-4 performs the first part of argmax to
find the row r 2 R with the maximum value of # medals,
while Executor-5 outputs the value of # duration in r.

Compared with the relatively simple Q
1

, Q
2

is more com-
plicated. According to Z

2

, Q
2

involves an additional nest
sub-query to be solved by two extra executors, and requires a
total of five steps of execution. The last three executors func-
tion similarly as in answering Q

1

, yet the execution logic for
the first two executors (devoted to solving the sub-query) is a
bit obscure, since their attention weights are scattered instead
of being perfectly centered on the ideal fields as highlighted
in red dashed rectangles. We posit that this is because dur-

2312

ing the end-to-end training, the supervision signal propagated
from the top layer has decayed along the long path down to
the first two executors, which causes vanishing gradients.

4.4 With Additional Step-by-Step Supervision
To alleviate the vanishing gradient problem when training on
complex queries like Q

2

, we train the model using step-by-
step (SbS) setting (Eq. 6), where we encourage each interme-
diate executor to attend to the field that is known a priori to be
relevant to its execution logic. Results are shown in Table 2
(column SbS). With stronger supervision signal, the model
significantly outperforms the N2N setting, and achieves per-
fect accuracy on MIXED-100K. This shows that NEURAL
ENQUIRER is capable of leveraging the additional supervi-
sion signal given to intermediate layers in SbS training. Let
us revisit the query Q

2

in SbS setting. In contrast to the result
in N2N setting (Figure 5) where the attention weights for the
first two executors are obscure, now the weights are perfectly
skewed towards each relevant field with a value of 1.0, which
corresponds with the highlighted ideal weights.

4.5 Dealing with Out-Of-Vocabulary Words
One of the major challenges for applying neural network
models to NLP applications is to deal with out-of-vocabulary
(OOV) words (e.g., new entities for QA). Surprisingly, we
find that a simple variant of NEURAL ENQUIRER is able to
handle unseen entities almost without loss of accuracy.

Specifically, we divide words in the vocabulary into en-
tity words and operation words. Embeddings of entity words
(e.g., Beijing) function like indices to facilitate the matching
between the entities in queries and tables during query exe-
cution, and therefore are not updated once randomly initial-
ized; while those of operation words, i.e., all non-entity words
(e.g., numbers, longest, before, etc), carry semantic meanings
relevant to execution and will be optimized in training. There-
fore, after randomly initializing the embedding matrix L, we
only update the embeddings of operation words in training,
while keeping those of entity words unchanged. To evaluate
the model we modify the queries in the testing set to replace
all entity words (i.e., all country and city names) with those
unseen in training. Results obtained using N2N training, re-
ported in Table 2 (column N2N-OOV), show that the model
yields performance comparable with non-OOV settings.

An interesting question is how the model resolves the types
of OOV entity words (i.e., cities vs. countries) in ambiguous
queries, e.g., Q

3

: “How many people watched the Games in
Macau?”, since the random embeddings of entity words (e.g,
Macau) cannot link them to their corresponding fields. The
model executes Q

3

using the last three executors, with the last
executor attending to the # audience field as expected. In-
terestingly, however, the model attends to the host city

field in Executor-3, and then host country in Executor-
4 (see Figure 6), indicating the model learns to scan all pos-
sible fields to figure out the correct field of an OOV entity.

4.6 Querying Expanded Knowledge Source
We simulate a test case to evaluate the model’s ability to gen-
eralize to an expanded knowledge source. We train a model
on tables whose field sets are either F

1

,F
2

, . . . ,F
5

, where Fi

Figure 6: Weights visualization of query Q
3

Query Type SELECT WHERE SUPERLATIVE WHERE SUPERLATIVE Overall
Accuracy 68.2% 84.8% 80.2% 77.7%

Table 3: Accuracies for querying expanded knowledge source

is a subset of the entire field set FT and |Fi| = 5. We then
test the model on tables with all fields FT and queries whose
fields span multiple subsets Fi. Figure 7 illustrates the set-
ting. Note that all testing queries exhibit field combinations
unseen in training. This is to simulate the difficulty the model
often encounters when scaling to large knowledge sources,
which usually poses a great challenge on model’s general-
ization ability. We evaluate the N2N model on a dataset of
the first three types of relatively simple queries. The sizes of
training/testing splits are 75,000 and 30,000, with equal num-
bers for each query type. Table 3 lists the results. The model
still maintains a reasonable performance even when the com-
positionality of testing queries is previously unseen, showing
the model’s generalization ability in tackling unseen query
patterns through the composition of familiar ones, and hence
the potential to scale to larger and unseen knowledge sources.

5 Related Work
This work is related to semantic parsing, which aims to parse
NL queries into logical forms executable on KBs [Zettle-
moyer and Collins, 2005; Artzi et al., 2015]. Recent stud-
ies take a semi-supervised learning approach, and adopt the
results of query execution as indirect supervision to train a
parser [Berant et al., 2013; Berant and Liang, 2014; Yih et al.,
2015; Pasupat and Liang, 2015; Misra et al., 2015]. Seman-
tic parsers learned in this way can scale to large open domain
KBs, but are inadequate for understanding complex queries
because of the intractable search space incurred by the flexi-
bility of parsing algorithms. Our work follows this approach
in using query answers as indirect supervision, but jointly per-
forms semantic parsing and query execution in distributional
spaces, where the distributed representations of logical forms
are implicitly learned in end-to-end QA tasks.

Our work is also related to the recent research of modeling
symbolic computation using neural networks, pioneered by
the development of Neural Turing Machines (NTMs) [Graves
et al., 2014] and the work of learning to execute (LTE) sim-
ple Python programs using LSTM [Zaremba and Sutskever,
2014]. Our work is related to both lines of research in us-
ing external memories like NTMs and learning by executing
like LTE. As a highlight and difference, our work employs
multiple layers of deep memories, with the neural network
operations highly customized towards querying KB tables.

Perhaps the most related work is the recently proposed

2313

#_audience host_city

75,000 Beijing

year #_participants

2008 2,500

How many audience members were in Beijing?

When was the Games with 2,500 participants?

#_audience host_city year #_participants

65,000 Beijing 2008 2,000

… When was the Games in Beijing?

Training Testing

#_audience host_city year #_participants

50,000 London 2012 3,000

How many people watched the Games with 3,000 participants?

…

Figure 7: Expanded knowledge source querying simulation

NEURAL PROGRAMMER [Neelakantan et al., 2015], which
studies the same task of executing queries on tables using
DNNs. While in NEURAL PROGRAMMER, the query plan-
ning is modeled using DNNs to determine which operation
to execute at each step, the symbolic operations are prede-
fined by users. In contrast our model is fully neuralized: it
models both the query planning and query execution using
DNNs, which are jointly optimized via end-to-end training.
Our model learns symbolic operations using a data-driven ap-
proach. We also present results on NL queries and demon-
strate that a fully neural system is capable of executing com-
positional logic operations up to a certain level of complexity.

6 Conclusion
We propose NEURAL ENQUIRER, a fully neural, end-to-end
differentiable network that learns to execute compositional
natural language queries on knowledge base tables.

References
[Artzi et al., 2015] Yoav Artzi, Kenton Lee, and Luke Zettle-

moyer. Broad-coverage CCG semantic parsing with AMR.
In EMNLP, pages 1699–1710, 2015.

[Bahdanau et al., 2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In ICLR, 2015.

[Berant and Liang, 2014] Jonathan Berant and Percy Liang.
Semantic parsing via paraphrasing. In ACL (1), pages
1415–1425, 2014.

[Berant et al., 2013] Jonathan Berant, Andrew Chou, Roy
Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In EMNLP, pages 1533–
1544, 2013.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier, Al-
berto Garca-Durn, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational
data. In NIPS, pages 2787–2795, 2013.

[Chen and Mooney, 2008] David L. Chen and Raymond J.
Mooney. Learning to sportscast: A test of grounded lan-
guage acquisition. In ICML, pages 128–135, 2008.

[Clarke et al., 2010] James Clarke, Dan Goldwasser, Ming-
Wei Chang, and Dan Roth. Driving semantic parsing from
the world’s response. In CoNLL, pages 18–27, 2010.

[Graves et al., 2014] Alex Graves, Greg Wayne, and
Ivo Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[Kim and Mooney, 2012] Joohyun Kim and Raymond J.
Mooney. Unsupervised pcfg induction for grounded lan-
guage learning with highly ambiguous supervision. In
EMNLP-CoNLL, pages 433–444, 2012.

[Liang et al., 2011] Percy Liang, Michael I. Jordan, and Dan
Klein. Learning dependency-based compositional seman-
tics. In ACL (1), pages 590–599, 2011.

[Misra et al., 2015] Dipendra Kumar Misra, Kejia Tao,
Percy Liang, and Ashutosh Saxena. Environment-driven
lexicon induction for high-level instructions. In ACL (1),
pages 992–1002, 2015.

[Neelakantan et al., 2015] Arvind Neelakantan, Quoc V. Le,
and Ilya Sutskever. Neural programmer: Inducing latent
programs with gradient descent. CoRR, abs/1511.04834,
2015.

[Pasupat and Liang, 2015] Panupong Pasupat and Percy
Liang. Compositional semantic parsing on semi-structured
tables. In ACL (1), pages 1470–1480, 2015.

[Wen et al., 2015] Tsung-Hsien Wen, Milica Gasic, Nikola
Mrksic, Pei hao Su, David Vandyke, and Steve J. Young.
Semantically conditioned lstm-based natural language
generation for spoken dialogue systems. In EMNLP, pages
1711–1721, 2015.

[Weston et al., 2015] Jason Weston, Antoine Bordes, Sumit
Chopra, and Tomas Mikolov. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. CoRR,
abs/1502.05698, 2015.

[Yih et al., 2015] Wentau Yih, Mingwei Chang, Xiaodong
He, and Jianfeng Gao. Semantic parsing via staged query
graph generation: Question answering with knowledge
base. In ACL (1), pages 1321–1331, 2015.

[Zaremba and Sutskever, 2014] Wojciech Zaremba and Ilya
Sutskever. Learning to execute. CoRR, abs/1410.4615,
2014.

[Zeiler, 2012] Matthew D. Zeiler. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701, 2012.

[Zettlemoyer and Collins, 2005] Luke S. Zettlemoyer and
Michael Collins. Learning to map sentences to logical
form: Structured classification with probabilistic catego-
rial grammars. In UAI, pages 658–666, 2005.

2314

