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Abstract
In this paper we study the problem of learning
discriminative features (segments), often referred
to as shapelets [Ye and Keogh, 2009] of time se-
ries, from unlabeled time series data. Discover-
ing shapelets for time series classification has been
widely studied, where many search-based algo-
rithms are proposed to efficiently scan and select
segments from a pool of candidates. However, such
types of search-based algorithms may incur high
time cost when the segment candidate pool is large.
Alternatively, a recent work [Grabocka et al., 2014]
uses regression learning to directly learn, instead
of searching for, shapelets from time series. Moti-
vated by the above observations, we propose a new
Unsupervised Shapelet Learning Model (USLM)
to efficiently learn shapelets from unlabeled time
series data. The corresponding learning func-
tion integrates the strengths of pseudo-class label,
spectral analysis, shapelets regularization term and
regularized least-squares to auto-learn shapelets,
pseudo-class labels and classification boundaries
simultaneously. A coordinate descent algorithm
is used to iteratively solve the learning function.
Experiments show that USLM outperforms search-
based algorithms on real-world time series data.

1 Introduction
Time series classification has wide applications in fi-
nance [Ruiz et al., 2012], medicine [Hirano and Tsumoto,
2006] and trajectory analysis [Cai and Ng, 2004]. The main
challenge of time series classification is to find discriminative
features that can best predict class labels. To solve the chal-
lenge, a line of works have been proposed to extract discrimi-
native features, which are often referred to as shapelets, from
time series. Shapelets are maximally discriminative features
of time series which enjoy the merit of high prediction accu-
racy and are easy to explain [Ye and Keogh, 2009]. There-
fore, discovering shapelets has become an important branch
in time series analysis.

The seminal work on shapelet discovery [Ye and Keogh,
2009] resorts to a full-scan of all possible time series seg-
ments where the segments are ranked according to a pre-
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Figure 1: The two blue thin lines represent the time series
data. The upper one is rectangular signals with noise and the
lower one is sinusoidal signals with noise. The curves marked
in bold red are learnt features(shapelets). We can observe that
the learnt shapelets may differ from all candidate segments
and thus are robust to noise.

defined distance metric and the segments which best pre-
dict the class labels are selected as shapelets. Based on the
seminal work, a line of speed-up algorithms [Mueen et al.,
2011] [Rakthanmanon and Keogh, 2013] [Chang et al., 2012]
have been proposed to improve the performance. All these
methods can be categorized as the search-based algorithms
which scan a pool of candidate segments. For example, with
the Synthetic Control dataset [Chen et al., 2015] which con-
tains 600 time series examples of length 60, the number of
candidates for all lengths is 1.098⇥ 106.

On the other hand, a recent work [Grabocka et al., 2014]
proposes a new time series shapelet learning approach. In-
stead of searching for shapelets from a candidate pool, they
use regression learning and aim to learn shapelets from time
series. This way, shapelets are detached from candidate seg-
ments and the learnt shapelets may differ from all the can-
didate segments. More importantly, shapelet learning is fast
to compute, scalable to large datasets, and robust to noise as
shown in Fig. 1.

We present a new Unsupervised Shapelet Learning Model
(USLM for short) that can auto-learn shapelets from unla-
beled time series data. We first introduce pseudo-class label

to transform unsupervised learning to supervised learn-
ing. Then, we use the popular regularized least-squares and
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spectral analysis approaches to learn both shapelets and clas-
sification boundaries. A new regularization term is also added
to avoid similar shapelets being selected. A coordinate de-
scent algorithm is used to iteratively solve the pseudo-class
label, classification boundary and shapelets.

Compared to the search-based algorithms on unlabeled
time series data [Zakaria et al., 2012], our method provides a
new tool that learns shapelets from unlabeled time series data.
The contributions of the work are summarized as follows:

• We present a new Unsupervised Shapelet Learning
Model (USLM) to learn shapelets from unlabeled time
series data. USLM combines pseudo-class label, spec-
tral analysis, shapelets regularization and regularized
least-squares for learning.

• We empirically validate the performance of USLM on
both synthetic and real-world data. The results show
promising results compared to the state-of-the-art unsu-
pervised shapelets selection models.

The remainder of the paper is organized as follows: Sec-
tion 2 surveys related work. Section 3 gives the preliminar-
ies. Section 4 introduces the proposed unsupervised shapelet
learning model USLM. Section 5 introduces the learning al-
gorithm with analysis. Section 6 conducts experiments. We
conclude the paper in Section 7.

2 Related Work
Shapelets [Ye and Keogh, 2009] are time series short seg-
ments that can best predict class labels. The basic idea of
shapelets discovery is to consider all segments of training data
and assess them regarding a scoring function to estimate how
predictive they are with respect to the given class labels [Wis-
tuba et al., 2015]. The seminal work [Ye and Keogh, 2009]
builds a decision tree classifier by recursively searching for
informative shapelets measured by information gain. Based
on information gain, several new measures such as F-Stat,
Kruskall-Wallis and Mood’s median are used in shapelets se-
lection [Hills et al., 2014] [Lines et al., 2012].

Since time series data usually have a large number of can-
didate segments, the runtime of brute-force shapelets selec-
tion is infeasible. Therefore, a series of speed-up techniques
have been proposed. On the one hand, there are smart im-
plementations using early abandon of distance computations
and entropy pruning of the information gain heuristic [Ye
and Keogh, 2009]. On the other hand, many speed-ups
rely on the reuse of computations and pruning of the search
space [Mueen et al., 2011], as well as pruning candidates by
searching possibly interesting candidates on the SAX repre-
sentation [Rakthanmanon and Keogh, 2013] or using infre-
quent shapelets [He et al., 2012]. Shapelets have been applied
in a series of real-world applications.

Shapelet learning. Instead of searching for shapelets ex-
haustively, a recent work [Grabocka et al., 2014] proposes
to learn optimal shapelets and reports statistically significant
improvements in accuracy compared to other shapelet-based
classifiers. Instead of restricting the pool of possible candi-
dates to those found in the training data and simply searching
them, they consider shapelets to be features that can be learnt

through regression learning. This type of learning method
does not consider a limited set of candidates but can obtain
arbitrary shapelets.

Unsupervised feature selection. Many unsupervised fea-
ture selection algorithms have been proposed to select infor-
mative features from unlabeled data. A commonly used cri-
terion in unsupervised feature learning is to select features
best preserving data similarity or manifold structure con-
structed from the whole feature space[Zhao and Liu, 2007]
[Cai et al., 2010], but they fail to incorporate discrimina-
tive information implied within data, which cannot be di-
rectly applied in our shapelet learning problem. Earlier un-
supervised feature selection algorithms evaluate the impor-
tance of each feature individually and select features one by
one [He et al., 2005] [Zhao and Liu, 2007], with a limita-
tion that correlation among features is neglected [Cai et al.,
2010]c̃itezhao2010efficient [Zhang et al., 2015].

State-of-the-art unsupervised feature selection algorithms
perform feature selection by simultaneously exploiting dis-
criminative information and feature correlation. Unsuper-
vised Discriminative Feature Selection (UDFS) [Yang et al.,
2011] aims to select the most discriminative features for data
representation, where manifold structure is also considered.
Since the most discriminative information for feature selec-
tion is usually encoded in labels, it is very important to predict
a good cluster indicators as pseudo labels for unsupervised
feature selection.

Shapelets for clustering. Shapelets also have been uti-
lized to cluster time series [Zakaria et al., 2012]. Zakaria
et al. [Zakaria et al., 2012] have proposed a method to use
unsupervised-shapelets (u-Shapelets) for time series cluster-
ing. The algorithm searches for u-Shapelets which can sep-
arate and remove a subset of time series from the rest of the
dataset, then it iteratively repeats the search among the re-
maining data until no data remains to be separated. It is a
greedy search algorithm which attempts to maximize the gap
between the two groups of time series divided by a u-shapelet.

The k-shape algorithm is proposed in the work [Paparri-
zos and Gravano, 2015] to cluster time series. k-shape is a
novel algorithm for shape-based time series clustering that
is efficient and domain independent. k-shape is based on a
scalable iterative refinement procedure which creates homo-
geneous and well-separated clusters. Specifically, k-Shape
requires a distance measure that is invariant to scaling and
shifting. It uses a normalized version of the cross-correlation
measure as distance measure to consider the shapes of time
series. Based on the normalized cross-correlation, the method
computes cluster centroids in every iteration to update the as-
signment of time series to clusters.

Our work differs from the above research problems. We
introduce a new approach for unsupervised shapelet learning
to auto-learn shapelets from unlabeled time series by com-
bining shapelet learning and unsupervised feature selection
methods.

3 Preliminaries
In this paper, scalars are denoted by letters (a, b, ...;↵,�, ...),
vectors by lower-case bold letters (a, b, ...), and matrices by
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boldfaced upper-case letters (A,B, ...). We use a(k) to denote
the k-th element of vector a, and A(ij) to denote the element
locating at the ith-row and j-th column. A(i,:) and A(:,j) de-
note vectors of the i-th row and j-th column of the matrix
respectively. In a time series example, t

a,b

denotes a segment
starting from a to b.

Consider a set of time series examples T =
{t1, t2, . . . , t

n

}. Each example t
i

(1  i  n) contains an
ordered set of real values denoted as (t

i(1), t
i(2), . . . , t

i(q
i

)),
where q

i

is the length of t
i

. We wish to learn a set of
top-k most discriminative shapelets S = {s1, s2, . . . , s

k

}.
Similar to the shapelet learning model [Grabocka et
al., 2014], we set the length of shapelets to expand r

different length scales starting at a minimum l

min

, i.e.
{l

min

, 2 ⇥ l

min

, . . . , r ⇥ l

min

}. Each length scale i ⇥ l

min

contains k

i

shapelets and k =
P

r

i=1 ki. Obviously,
S 2

S
r

i=1R
k

i

⇥(i⇥l

min

) and r ⇥ l

min

⌧ q

i

to keep the
shapelets compact.

4 Unsupervised shapelet learning
In this section, we aim to formulate the Unsupervised
Shapelet Learning Model (USLM) which is shown in Eq. (7).
It combines with spectral regularization term, shapelet sim-
ilarity regularization term and the regularized least square
minimization term.

To introduce the USLM specifically, we introduce
shapelet-transformed representation [Grabocka et al., 2014]
of time series first, which transfer time series from origi-
nal space to a shapelet-based space. Then we introduce the
pseudo-class label and the three terms of the unsupervised
shapelet learning model respectively.

Shapelet-transformed Representation Shapelet transfor-

mation was introduced by the work[Lines et al., 2012] to
downsize a long time series into a short feature vector in the
shapelets feature space. Time series are ordered sequences
and shapelet-transformation can preserve the shape informa-
tion for classification.

Given a set of time series examples T = {t1, t2, . . . , t
n

}
and a set of shapelets S = {s1, s2, . . . , s

k

}, we use X 2 Rk⇥n

to denote the shapelet-transformed matrix, where each ele-
ment X(s

i

,t
j

) denotes the distance between shapelet s
i

and
time series t

j

. For simplicity, we use X(ij) to represent
X(s

i

,t
j

) which can be calculated as in Eq. (1),

X(ij) = min
g=1,...,q

1

l

i

l

iX

h=1

(t
j(g+h�1) � s

i(h)) (1)

where q = q

j

� l

i

+ 1 denotes the total number of segments
with length l

i

from series t
j

, and q

j

, l

i

are the lengths of time
series t

j

and shapelet s
i

respectively.
Given a set of time series data S, X(ij) is a function with

respect to all candidate shapelets S, i.e. X(S)(ij). For sim-
plicity, we omit the variable S and still use X(ij) instead.

The distance function in Eq. (1) is not continuous and thus
non-differential. Based on the work [Grabocka et al., 2014],
we approximate the distance function using the soft minimum

function as in Eq. (2),

X(ij) ⇡
P

q

q=1 dijq · e↵dijq

P
q

q=1 e
↵d

ijq

(2)

where d
ijq

= 1
l

i

P
l

i

h=1(tj(q+h�1)� s
i(h)), and ↵ controls the

precision of the function. The soft minimum approaches the
true minimum when ↵ ! �1. In our experiments, we set
↵ = �100.

Pseudo-class label Unsupervised learning faces the chal-
lenge of unlabeled training examples. Thus, we introduce the
pseudo-class labels for learning. Consider that we cluster a
time series data set into c categories, the pseudo-class label
matrix Y 2 Rc⇥n contains c labels, where Y(ij) indicates the
probability of the j-th time series example belonging to the i-
th category. Time series examples that share the same pseudo-
class label fall into the same category. If Y(ij) > Y(i,j), 8i,
then the time series example t

j

belong to the cluster i.
Spectral Analysis Spectral analysis was introduced by

[Donath and Hoffman, 1973] and has been widely used in
unsupervised learning [Von Luxburg, 2007]. The princi-
ple behind is that examples that are close to each other are
likely to share the same class label [Tang and Liu, 2014]
[Von Luxburg, 2007]. Assume that G 2 Rn⇥n is the simi-
larity matrix of time series based on the shapelet-transformed
matrix X, then the similarity matrix can be calculated as in
Eq. (3), where � is the parameter of the RBF kernel.

G(ij) = e

�
kX(:,i)�X(:,j)k

2

�

2 (3)

Based on G, we expect the pseudo-class labels of similar
data instances to be the same. Therefore, we can formulate a
spectral regularization term as follows,

1

2

nX

i=1

bX

j=1

G(ij)kY(:,i) � Y(:,j)k22

=
1

2

cX

k=1

nX

i=1

nX

j=1

G(ij)(Y(ki) � Y(kj))
2

=
cX

k=1

Y(k,:)(DG

�G)Y(k,:)

= tr(YL
G

Y)

(4)

where L
G

= D
G

� G is the Laplacian matrix and D
G

is
a diagonal matrix with its elements defined as D

G

(i, i) =P
n

j=1 G(ij).
Least Square Minimization Based on the pseudo-class

labels, we wish to minimize the least square error. Let
W 2 Rk⇥c be the classification boundary under the pseudo-
class labels, the least square error minimizes the following
objective function,

min
W
kWT X� Yk2

F

(5)

Shapelet Similarity Minimization We wish to learn
shapelets that are diverse in shape. Specifically, we penalize
the model in case it outputs similar shapelets. Formally, we
denote the shapelet similarity matrix as H 2 Rk⇥k, where
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each element H(s
i

,s
j

) represents the similarity between two
shapelets s

i

and s
j

. For simplicity, we use H(ij) to represent
H(s

i

,s
j

) which can be calculated as in Eq. (6),

H(ij) = e

� kd
ij

k2

�

2 (6)

where d

ij

is the distance between shapelet s
i

and shapelet s
j

.
d

ij

can be calculated by following Eq. (2).
Unsupervised Shapelet Learning Model Eq. (7) gives

the unsupervised shapelet learning model (USLM). It is a
joint optimization problem with respect to three variables, the
classification boundary W, Pseudo-class label Y and candi-
date shapelets S.

min
W,S,Y

1

2
tr(YL

G

(S)Y>) +
�1

2
kH(S)k2

F

+
�2

2
kWT X(S)� Yk2

F

+
�3

2
kWk2

F

(7)

In the objective function, the first term is the spectral regu-
larization that preserves local structure information. The sec-
ond term is the shapelet similarity regularization term that
prefers diverse shapelets. The third and fourth terms are the
regularized least square minimization.

Note that matrix LG in Eq. (4), matrix H in Eq. (6), and
matrix X in Eq. (2) depend on the shapelets S. We explicitly
write these matrices as variables with respect to shapelets S in
Eq. (7), i.e. LG(S) , H(S) and X(S) respectively. Below, we
propose a coordinate descent algorithm to solve the model.

5 The Algorithm
In this part, we first introduce a coordinate descent algorithm
to solve the USLM, and then analyze its convergence and ini-
tialization methods.

5.1 Learning Algorithm
In the coordinate descent algorithm, we iteratively update one
variable by fixing the remaining two variables. The steps will
be repeated until convergence. Algorithm 1 summarizes the
steps.

Algorithm 1. Unsupervised Shapelet Learning Algo-
rithm (USLA)

1: Input:
• Time series T with c classes
• Length and number of shapelets: l

min

, r, k
• Number of internal iterations i

max

• Learning rate ⌘ and Parameters �1,�2,�3 and ↵,�

2: Output: Shapelets S⇤ and class labels Y⇤

3: Initialize: S0,W0,Y0

4: While Not convergent do
5: Calculate: X

t

(T, S
t

|↵), L
Gt

(T, S
t

|↵,�)
6: and H

t

(S
t

|↵) based on Eqs. (2), (4), and (6);
7: update W

t+1,Y
t+1:

8: Y
t+1  �2WT

t

X
t

(L
Gt

+ �2I)�1

9: W
t+1  (�2X

t

XT

t

+ �3I)�1(�2X
t

YT

t+1).
10: update S

t+1:
11: for i = 1, . . . , i

max

do
12: S

i+1  S
i

� ⌘rS
i

13: rS
i

= @F(S
i

|X
t+1,Yt+1)
@S is from Eq. (17)

14: end for
15: S

t+1 = S
i

max

+1

16: t t+ 1
17: end while
18: Output: S⇤ = S

t

; Y⇤ = Y
t

; W⇤ = W
t

.
• Update Y by fixing W and S By fixing W and S, the

function in Eq. (7) degenerates to Eq. (8),

min
Y

F(Y) =
1

2
tr(YL

G

YT ) +
�2

2
kWT X� Yk2

F

(8)

The derivative of Eq. (8) with respect to Y is,

@FY

@Y
= Y(L

G

� �2I)� �2WT X (9)

Let Eq. (9) equal to 0, we can obtain the solution of Y as in
Eq. (10),

Y = �2WT X(L
G

+ �2I)�1 (10)
where I is an identity matrix. Thus, the update of Y is

Y
t+1 = �2W>

t

X
t

(L
Gt

+ �2I)�1 (11)

• Update W by fixing S and Y By fixing S and Y, Eq. (7)
degenerates to Eq. (12) as below,

min
W

F(W) =
�2

2
kWT X� Yk2

F

+
�3

2
kWk2

F

(12)

The derivative of Eq. (12) with respect to W is,

@FW

@W
= (�2XXT + �3I)W� �2XYT (13)

Let Eq. (13) equal to 0, we obtain the solution of W as in
Eq. (14),

W = (�2XXT + �3I)�1(�2XYT ) (14)

Thus, the update of W is

W
t+1 = (�2X

t

X>
t

+ �3I)�1(�2X
t

YT

t+1) (15)

• Update S by fixing W and Y By fixing W and Y,
Eq. (7) degenerates to Eq. (16) as below,

min
S

F(S) =1

2
tr(YL

G

(S)YT ) +
�1

2
kH(S)k2

F

+
�2

2
kWT X(S)� Yk2

F

(16)

Eq. (16) is non-convex and we cannot explicitly solve S as
in finding W and Y. Instead, we resort to an iterative algo-
rithm by setting a learning rate ⌘, i.e. S

i+1 = S
i

� ⌘rS
i

,
where rS

i

= @F(S
i

)
@S . The iterative steps will guarantee

the convergence of the objective function. The derivative of
Eq. (16) with respect to S(mp) is

@F(S)
@S(mp)

=
1

2
YT Y@L

G

(S)
@S(mp)

+ �1H(S) @H(S)
@S(mp)

+�2W(WT

X � Y )
@X(S)
@S(mp)

(17)

where m = 1, . . . , k, and p = 1, . . . , l
m

.
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Because L
G

= D
G

� G and D
G

(i, i) =
P

n

j=1 G(ij), the
first term in Eq. (17) turns to calculating @G(ij)/@S(mp) as
shown in Eq. (18),

@G(ij)

@S(mp)
= �

2G(ij)

�

2
· (

kX

q=1

(X(qi) � X(qj)))

· (
@X(qi)

@S(mp)
�

@X(qj)

@S(mp)
)

(18)

and

@X(ij)

@S(mp)
=

1

E

2
1

q

ijX

q=1

e

↵d

ijq ((1 + ↵d

ijq

)E1 � ↵E2)
@d

ijq

@S(mp)

(19)
where E1 =

P
q

ij

q=1 e
↵d

ijq , E2 =
P

q

ij

q=1 dijqe
↵d

ijq and q

ij

=

q

j

� l

i

+ 1 and d

ijq

= 1
l

i

P
l

i

h=1(tj(q+h�1) � s
i(h)).

@d

ijq

@S(mp)
=

⇢
0 if i 6= m

2
l

m

(S(mp) � T

j,q+p�1) if i = m

�
(20)

The second term in Eq. (17) turns to calculating Eq. (21),
@H(ij)

@S(mp)
= � 2

�

2
d̃

ij

e

� 1
�

2 d̃

2
ij

@d̃

ij

@S(mp)
(21)

where d̃

ij

is the distance between shapelets s
i

and s
j

. The
calculation of d̃

ij

and @d̃

ij

@S(mp)
is similar to X(ij) and @X(ij)

@S(mp)

respectively.
To sum up, we can calculate the gradient rS

i

= @F(S)
@S

i

by
following Eqs. (17)-(21). In the following, we discuss the
convergence of the coordinate descent algorithm in solving
Eq. (7).

5.2 Convergence
The convergence of Algorithm 1 depends on stepwise de-
scents. When updating Y or W, we know that Y

t+1 =
Y⇤(W

t

, S
t

) and W
t+1 = W⇤(Y

t+1, S
t

). When updating S,
the objective function in Eq. (16) is not convex and a closed-
form derivative is difficult to obtain. Instead, we use a gra-
dient descent algorithm. In the iterations, as long as we set
an appropriate learning rate ⌘ that is usually very small, the
objective function will decrease to convergence.

In addition, the objective function in Eq. (7) is non-convex
but have a lower bound of 0 due to being non-negative, so Al-
gorithm 1 converges to local optima. In our experiments we
run the algorithm several times under different initializations
and choose the best solution as output.

5.3 Initialization
Because the algorithm only outputs local optima, we discuss
how to initialize the variables to improve the performance
of the algorithm. The algorithm expects to initialize S0, Y0

and W0. We first initialize S0 by using the centroids of the
segments having the same length with the shapelets length,
because centroids represent typical patterns behind the data.
Then, we use the results of the shapelet-transformed matrix
of time series based on S0 to obtain X0. Next, the results ob-
tained by k-means based on X0 is used to initialize W0 and
Y0. The initialization enables fast convergence.

6 Experiments
We conduct experiments to validate the performance of
USLM. All experiments are conducted on a Windows 8 ma-
chine with 3.00GHz CPU and 8GB memory. The Matlab
source codes and data are available online1.

6.1 Datasets
Synthetic data: This dataset is generated by following the
work [Shariat and Pavlovic, 2011] and [Zakaria et al., 2012].
The dataset consists of ten examples from two classes. The
first class contains sinusoidal signals of length 200. The sec-
ond class contains rectangular signals of length 100. We
randomly embed Gaussian noise in the data. Heterogeneous
noise is generated from five Gaussian processes with means
⌫ 2 [0, 2] and variances �

2 2 [0, 10] chosen uniformly at
random.

Real-world data: We use seven time series benchmark
datasets download from the UCR time series archive [Chen
et al., 2015] [Cetin et al., 2015]. The datasets are summa-
rized in Table 1. More details of the datasets can resort to
their Website.

Table 1: Statistics of the benchmark time series datasets
Dataset Train/Test Length ] classes

CBF 30/900(930) 128 3
ECG 200 100/100(200) 96 2
Face Four 24/88(112) 350 4

Ita.Pow.Dem. 67/1029(1096) 24 2
Lighting2 60/61(121) 637 2
Lighting7 70/73(143) 319 7
OSU Leaf 200/242(442) 427 6

6.2 Measures
Existing measures used to evaluate the performance of time
series clustering include Jaccard Score, Rand Index, Folkes
and Mallow index [Halkidi et al., 2001] [Zakaria et al., 2012].
Among them, Rand index [Rand, 1971] is the most popular
one, while the remaining measures can be taken as variants of
Rand index. Therefore, we use Rand Index as the evaluation
method.

To calculate Rand index, we compare the cluster labels Y⇤

obtained by the clustering algorithm with the genuine class
labels L

true

as in Eq. (22),

Rand index =
TP + TN

TP + TN + FP + FN

, (22)

where TP is the number of time series pairs which belong to
the same class in L

true

and are assigned to the same cluster
in Y⇤, TN is the number of time series pairs which belong to
different classes in L

true

and are assigned to different clusters
in Y⇤, FP is the number of time series pairs which belong to
different classes in L

true

but are assigned to the same cluster
in Y⇤, and FN is the number of time series pairs which

1https://github.com/BlindReview/shapelet
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belong to the same class in L
true

but are assigned to different
clusters in Y⇤. If Rand index is close to 1, it indicates a
high quality clustering [Zakaria et al., 2012] [Paparrizos and
Gravano, 2015].

6.3 Time series with unequal lengths

Shapelet 2

Shapelet 2

Shapelet 1

Shapelet 1 Shapelet 1

Shapelet 2

Figure 2: An example of the rectangular signals(short blue
thin curves) and the sinusoidal signals (long black thin
curves). The two learned shapelets are marked with bold red
curves.

Fig. 2 shows an example of two shapelets learnt by USLM.
Shapelet 1 is a sharp spike of length 12 which matches the
most prominent spikes of the rectangular signals. Shapelet 2

is a subsequence of length 30 which is very similar to the stan-
dard shape of the sinusoidal signals. From the results, we can
observe that USLM can auto-learn representative shapelets
from unlabeled time series data.

The results in Fig. 3 also show that USLM can handle time
series and shapelets of unequal lengths, where we can obtain
the best Rand index value of 1. In contrast, the work [Shariat
and Pavlovic, 2011] obtains only 0.9 on the dataset even if
they use class label information during training.

6.4 Running time
We test the running time of USLM by changing the number
of shapelets k and the number of clusters c. The results are
given in Fig. 3.

First, we vary the parameter k from 2 to 12 with a step size
of 2. The remaining parameters are fixed as follows, �1 =
�2 = �3 = �4 = 1,� = 1, I

max

= 50, ⌘ = 0.01 and the
length of the shapelets is set to 10. The running time is the
average of ten executions.

From Fig. 3(a), we can observe that the running time gener-
ally increases linearly with respect to the number of shapelets.
Thus, our approach scales well to large datasets.

Then, we let the number of clusters c change from 2 to 7.
The length of shapelets is set to be 10% of the time series
length. We set k = 2 which means that we only learn two
shapelets of equal length. The remaining parameters are the
same as above. Fig. 3(b)
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Figure 3: USLM running time w.r.t. (a) the number of
shapelets k and (b) the number of clusters c. The running
time increases linearly w.r.t. the number of features and re-
mains stable w.r.t. the number of clusters c. Thus, USLM
scales well to large datasets.

6.5 Comparisons with k-Shape
The k-Shape algorithm is proposed in the work [Paparrizos
and Gravano, 2015] to cluster unlabeled time series. In this
part, we compare our algorithm with the k-Shape algorithm.
The source codes for k-Shape are downloaded from the web-
site of the original authors. Table 2 lists the results. We select
the best results obtained by k-Shape after 100 times of re-
peats. We can observe that the results obtained by USLM are
better.

Table 2: Comparison between k-Shape and USLM.

Rand Index k-Shape USLM
CBF 0.74 1.00

ECG200 0.70 0.76
Fac.F. 0.64 0.79

Ita.Pow 0.70 0.82
Lig.2 0.65 0.80
Lig.7 0.74 0.79

OSU L. 0.66 0.82
Average 0.69 0.83

Form Table 2, we can observe that USLM outperforms the
k-Shape algorithm on all the seven datasets. The average im-
provement on the seven datasets is 14% and the best improve-
ment is 26% on the ‘CBF’ dataset. To sum up, the results
show that USLM gains higher accuracy than k-Shape.

7 Conclusions
In this paper, we investigated a new problem of feature learn-
ing from unlabeled time series data. To solve the problem,
we proposed a new learning model USLM by combining the
pseudo-class label, spectral analysis, shapelets regularization
and regularized least-squares minimization. USLM can auto-
learn the most discriminative features from unlabeled times
series data. Experiments on real-world time series data have
shown that USLM can obtain an average improvement of
14% compared to k-Shape.
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