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Abstract
Real-world data are seldom unstructured, yet tra-
ditional Matrix Factorization (MF) models, as one
of the most powerful collaborative filtering ap-
proaches, generally rely on this assumption to re-
cover the low-rank structures for recommenda-
tion. However, few of them are able to explic-
itly consider structured constraint with the under-
lying low-rank assumption to model complex user
interests. To solve this problem, we propose a
unified MF framework with generalized Laplacian
constraint for collaborative filtering. We inves-
tigate the connection between the recently pro-
posed Laplacian constraint and the classical nor-
malized cut problem, and make it possible to ex-
tend the original non-overlapping prior, to cap-
ture the overlapping case via learning the decom-
posed multi-facet graphs. Experiments on real-
world datasets demonstrate the effectiveness of the
proposed method.

1 Introduction
Collaborative Filtering (CF) algorithms [Salakhutdinov and
Mnih, 2007] have been widely applied in various recom-
mender systems. As one of the most powerful CF approaches,
Matrix Factorization (MF) models have become popular and
achieve the state-of-the-art performance [Zhang et al., 2013].
The rationale behind the MF approach is the low-rank as-
sumption, that the observed rating data can be explained
holistically by a small number of latent factors for both users
and items, which, for instance, may be related to user groups
and item topics. However, traditional MF models rarely con-
sider the structured constraint explicitly on this underlying
low-rank structure. In previous studies, incorporating struc-
tured information has been extensively explored based on side
information, such as social network [Purushotham and Liu,
2012] and item content [Wang and Blei, 2011].

However, not much research work has been done towards
directly incorporating the constraint from optimization per-
spective in a fundamental setting [Yuan et al., 2014]. The
reason is that it is hard to optimize with structured constraint
during learning, and it is hard to pre-define a fixed structure
as constraint to capture the complex latent user interests. In
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Table 1: Summary of this work and other related methods
with group-based constraint. Adap.: Adaptive to CF objec-
tive. A.G.: Automatic Grouping. G.O.: Group Overlapping.
GSMF [Yuan et al., 2014]; LMF [Zhang et al., 2013]; HGMF
[Zhang and Wang, 2015].

real applications, one user may have multiple interests, which
is usually characterized by multiple views [Gao et al., 2013].
For example, clustering users based on music reviews can be
clustered by a genre (rock, jazz, hip hop, etc.) or a sentiment
(positive, negative, etc.). This may lead to different solutions
for modeling user hidden structures. Motivated by this obser-
vation, we generalize the recently proposed non-overlapping
Laplacian constraint [Feng et al., 2014] to the overlapping
case, with the ability to automatically capture such multi-
view hidden structures for collaborative filtering. The mech-
anism proposed in this paper is significantly different from
the emerging group-constraint CF methods as shown in Ta-
ble 1, since this work is proposed from an adaptive multi-
view perspective in a joint optimization framework, without
the non-overlapping assumption [Zhang and Wang, 2015] or
pre-partition restriction [Yuan et al., 2014] for hidden group
(community) structures.

2 Problem Formulation and Preliminaries
Definition 1 (Matrix Factorization Models). Given a sparse

rating matrix R = [r
ij

], where the observed r
ij

denotes the

rating of user i on item j, matrix factorization models aim to

factorize R = UV T

, where U and V are low rank matrices

with rows as latent users uT

i

and latent items vT
j

respectively.

Our goal is to predict the missing values in R, by comput-
ing the predicted values r

ij

= uT

i

v
j

.

Laplacian Constraint for Block-diagonality
We introduce the recently proposed structured constraint, i.e.,
Laplacian constraint [Feng et al., 2014], to recommenda-
tion tasks, for explicitly capturing the latent user community
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structures while learning matrix factorization. We first de-
fine Laplacian matrix, and then present its connection with
the structure of affinity matrix.

Definition 2 (Laplacian Matirx). Consider an affinity matrix

W 2 Rn⇥n

of n samples with weights W (i, i0). The Lapla-

cian matrix L
W

2 Rn⇥n

is defined as: L
W

= D�W , where

D = diag(d1, ..., dn) and d
n

= ⌃
i

0W (i, i0). The normalized

version is defined as L
Wsys = D� 1

2L
W

D� 1
2

.

The following well known theorem relates the rank of the
Laplacian matrix to the number of blocks in W .

Theorem 1 ([von Luxburg, 2007]). Let W be an affinity ma-

trix. The multiplicity k of the eigenvalue 0 of the Laplacian

L
Wsys , equals the number of connected blocks in W .

Based on the above theorem, we can enforce a general
square matrix to be k-block-diagonal to represent different
latent communities. For the hidden graph constructed by la-
tent users u

j

, we construct the affinity matrix W (j, j0) us-
ing Gaussian kernel. Then we can define a set of k-block-
diagonal matrix (k-BDMS) as the constraint term in Eq.(2),

K ={W |rank(L
Wsys) = n� k,

W (i, i0) = w
ii

0 = exp(�ku
i

� u
i

0k22
�2

)},
(1)

where k.k22 denotes the `2 norm, and �2 denotes the deviation.

Adaptive Hidden Graph Regularization Framework
To incorporate the above structured constraint, we employ
an adaptive hidden graph regularization framework [Zhang
and Wang, 2015], which is similar to [Purushotham and Liu,
2012], but the graph used for regularization is learnt automati-
cally with structured prior W 2 K, rather than the pre-defined
one based on side information. To achieve the goal, we have
the following optimization objective:

min
U,V,W,S

1
2

X

i,j

cij(rij � uiv
T
j )

2 +
�U

2
kUk2F +

�V

2
kV k2F

+
�W

2

X

i,i0

cwii0 (wii0 � uis
T
i0)

2 +
�S

2
kSk2F ,

s.t. W 2 K

(2)

where k · k
F

is the Frobenius norm; W is the same one in
Eq.(1); c

ij

is a confidence parameter [Wang and Blei, 2011]
for rating r

ij

, and c
wii0 is similarly defined for modeling

w
ii

0 2 W ; �
U,V,S

are used to avoid over-fitting; �
W

con-
trols the effect of hidden graph regularization; The first term
ensures that latent users U and items V can well approximate
the observed ratings r

ij

2 R. Similarly, the fourth term fac-
torizes W into a user-specific matrix U and a factor-specific
matrix s

i

0 2 S, to approximate w
ii

0 with constraint W 2 K.
Previous Non-Overlapping Solution [Feng et al., 2014;

Zhang and Wang, 2015]. To learn W 2 K, after updating U ,
V , S, we can obtain the hidden graph W0 using Gaussian ker-
nel in Eq.(1). However, the variable matrix W0 may move out
of the constraint set and no longer satisfy a k-block-diagonal
structure. To project it back to the k-BDMS constraint set,
we have the following optimization problem via Augmented

Lagrangian Multiplier method [Lin et al., 2011]:

min
W,Z̃

1

2
kW �W0k2

F

+ hJ, Z̃ � L
Wsysi+

�

2
kZ̃ � L

Wsysk2F , s.t. rank(Z̃) = n� k

(3)

where J is the Lagrangian multiplier and � is an increasing
weight parameter for the term of enforcing the auxiliary vari-
able Z̃ = L

Wsys .

3 Generalizing Laplacian Constraint
Although the Laplacian constraint could well capture hidden
group structures, the non-overlapping assumption behind it
may be too strong in real-world scenarios. In real world, data
can often be interpreted in many different ways, which can
have different groupings that are reasonable and interesting
from different perspectives. In this section, we propose a so-
lution to generalize Laplacian constraint, which relaxes the
non-overlapping assumption for real applications.

Connection between Laplacian Constraint and
Normalized Cut
For our extension, we first reveal the connection between the
recently proposed Laplacian constraint as shown in Eq.(3)
and Normalized Cut problem as defined in Def.(3) from opti-
mization perspective.
Definition 3 (Normalized Cut (Ncut)). Given a similarity

graph with affinity matrix W , for two disjoint subsets A, B 2
V , we define cut(A,B) =

P
i2A,j2B

w
ij

. For arbitrary

k disjoint subsets A1, ..., Ak

, we define cut(A1, ..., Ak

) =P
k

i=1 cut(Ai

, A
i

). The normalized cut (Ncut) is defined as:

Ncut(A1, ..., Ak) =
kX

i=1

cut(Ai, Ai)
vol(Ai)

, (4)

where vol(A
i

) =
P

i22Ai,i
02Ai

w
ii

0
, the total weights of the

edges in group A
i

.

The intuition of minimizing Ncut [von Luxburg, 2007] is
to find a partition of the graph, such that the edges between
different groups have low similarity, and those within a group
have high similarity.
Theorem 2 (Rank Constraint Approximation). The solution

to Eq.(3) can be approximated in terms of rank constraint,

through solving minimal Ncut problem, with the original hid-

den affinity matrix W0 in Eq.(3).

Proof. As shown in [von Luxburg, 2007; Shi and Ma-
lik, 2000], solving minimal Ncut problem is equiva-
lent to solving the following trace minimizing problem:
min

U2R

n⇥k
Tr(UTD� 1

2L
W

D� 1
2U) =

P
k

i=1 �i

, with con-

straint UTU = I , where �
i

is the eigenvalue of ma-
trix UTD� 1

2L
WsysD

� 1
2U . Note L

Wsys = D� 1
2L

W

D� 1
2 .

Based on this trace minimizing problem, our goal is to prove
�
i

also to be the ith smallest eigenvalue of matrix L
Wsys .

According to Courant-Fisher theorem [Golub and van Loan,
1996], the optimal U contains the first smallest k eigenvec-
tors of matrix L

Wsys as columns. Now, use the optimal U .
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UTL
WsysU can be written as UTL

WsysU = UTL
Wsys [U(:

, 1), ..., U(:, k)] = UT [L
WsysU(:, 1), ..., L

WsysU(:, k)] =
UT [�1U(:, 1), ...,�

k

U(:, k)] = [�1UTU(:, 1), ...,�
k

UTU(:
, k)] = [�1e1, ...,�k

e
k

] = diag(�1, ...,�k

), where e
k

is a col-
umn vector containing 1 in kth position and zeros for others.
Then, tr(UTL

WsysU) = tr(diag(�1, ...,�k

)) =
P

k

i=1 �i

.,
which shows that minimizing Ncut problem is equivalent to
minimizing the top-k smallest eigenvalues of the Laplacian
L
Wsys . Finally, since the rank of a positive semi-definite

(PSD) matrix is equal to the number of nonzero eigenvalues,
the rank of L

Wsys will approximate n� k to satisfy the con-
straint in Eq.(3), from which the theorem follows.

Theorem 3 (Upper Error Bound). Let W and W0 be an ap-

proximatively projected and original affinity matrix respec-

tively. Then in the sense of approximately minimizing the first

smallest k eigenvalues of the Laplacian matrix L
Wsys , the er-

ror between W and W0 is upper bounded by

kW �W0kF  kW0kF kQ0Q0TW0 � Ik
F

, (5)

where Q0 = [
Q0x�1

�1
, . . . ,

Q0x�k
�k

]. x
�k is a normalized eigen-

vector of W0Q0 with eigenvalue �
k

. Q0 = U0V T

0 . U0 and

V0 are the solutions of computing SVD on WT

0 L
Wsys .

Proof. We first seek to represent W by a certain form involv-
ing W0. Suppose L

Wsys is the normalized Laplacian matrix
of W0. The optimal solution of W is determined by the first
smallest k eigenvectors of L

Wsys for spectral clustering. To
establish the relationship between W and W0, we formulate
the following optimization problem, min

Q0

kL
Wsys�W0Q0kF ,

s.t.QT

0 Q0 = I. This problem can be seen as a orthogo-
nal Procrustes problem [Golub and van Loan, 1996], which
has the optimal solution Q0 = U0V T

0 , where U0 and V0

are the solutions of computing SVD on WT

0 L
Wsys . Since

L
Wsysvi = v

i

�
i

and V = [v1, ..., vk] can be seen as the la-
tent feature matrix, then we can approximatively construct
W using V to obtain W = V ⇤ V T . Using the solution of
the above formulated optimization problem, we can derive
v
k

=
LWsysvk

�k
t W0Q0vk

�k
, by substituting L

Wsys with the

optimal W0Q0. Let Q0 = [
Q0x�1

�1
, . . . ,

Q0x�k
�k

]. Now we can
easily reformulate, kW�W0kF ⇡ kW0Q0Q0TW0�W0kF=
kW0(Q0Q0TW0 � I)k

F

 kW0kF kQ0Q0TW0 � Ik
F

, from
which the theorem follows.

We have proven that solving Ncut problem as spectral clus-
tering objective, can approximate the original problem in
Eq.(3), because it can achieve the same optimization objec-
tive, in terms of approximating the original rank constraint
(Theorem 2), with bounded graph projection error (Theorem
3).

Overlapping Decomposition via Non-overlapping
Multi-facet Graphs
Overlapping is a significant property of real-world structures.
However, the original Laplacian constraint could not capture
this property. Motivated by the established connection be-
tween Laplacian constraint and spectral clustering, we can

extend it to handle the overlapping case from the graph clus-
tering view. Without changing the basic framework in Eq.(2),
we develop a novel structured prior, as constraint s.t. W 2
K0 in Eq.(2) for collaborative filtering. The key idea is to de-
compose a complex real-wold overlapping case, into a series
of non-overlapping cases (K0), as shown in Figure 1.

Figure 1: Modeling Hidden Overlapping Communities via
Multi-facet Graphs. It shows one generalized graph for reg-
ularization, by concatenating two multi-facet graphs directly.
If we permutate the rows to align the two non-overlapping
graphs, by satisfying the same user appearing in the same row,
the concatenated graph could be overlapping.

Definition 4 (Multi-facet Graphs). Consider an affinity ma-

trix W i 2 Rn⇥n

of n samples with weights W i(i, i0). The

Multi-facet Graphs W 1, ...,W i

are defined as: each W i

is a

non-overlapping graph with block-diagonality. For different

graphs, W i

and W j

where i 6= j, are expected to reflect the

different views of the data.

Multi-facet Graphs. We define multi-facet graphs in
Def.(4), using multiple non-overlapping graphs with different
views to capture the original overlapping information. Ide-
ally, these decomposed non-overlapping graphs are expected
to reflect different views of the original graph. We propose to
achieve the goal, through automatic latent factor selection to
construct different views while learning matrix factorization.

3.1 Algorithm

Algorithm 1: Algorithm for Learning Multi-facet Graphs
Input: Number of views Q, latent user embedding matrix U ,

�1 for HSIC penalty, �2 for group sparsity.
Output: U

q

, W
q

, q = 1, 2, ..., Q.
1: while q < Q do
2: Update each W

q

according to Section 3.1;
3: Update each U

q

according to Section 3.1;
4: q = q + 1;
5: end while
6: Return U

q

, W
q

, q = 1, 2, ..., Q;

To acquire such multi-facet graphs, inspired by the re-
search of multi-facet clustering [Niu et al., 2010], which be-
lieves that document is often composed of multiple views. In

this paper, we extend this idea to the hidden graph setting

jointly with feature selection

[Masaeli et al., 2010].
We first define the Hilbert-Schmidt Independence Criterion

(HSIC) [Gretton et al., 2005] between two random variables
(X,Y ). Given n observations, Z := {(x1, y1), ..., (xn

, y
n

)},
HSIC can be empirically estimated by HSIC(X,Y ) = (n�
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1)�2tr(K1HK2H), where K1, K2 2 Rn⇥n are Kernel ma-
trices, (K1)ij = k1(xi

, x
j

), (K2)ij = k2(yi, yj), and where
(H)

ij

= �
ij

� n�1 centers the Kernel matrices to have zero
mean in the feature space, where �

ij

is Kronecker delta. To
achieve learning multi-view hidden structures, we use the
HSIC as a penalty term in our spectral clustering objective
function to ensure that subspaces in different hidden graphs
provide non-redundant information. Moreover, to achieve the
goal of automatic feature selection for each view, we propose
to do feature selection and hidden graph learning simultane-
ously in a joint framework, which is based on l21-norm that
is used on the projection matrix W

q

.

min
Wq ,Uq

X

q

Tr(UT
q D

� 1
2

q Lq
WD

� 1
2

q Uq)

+ �1

X

q 6=r

HSIC(WT
q x,WT

r x) + �2

X

q

kWqk2,1

s.t. UT
q Uq = I, WT

q Wq = I

(6)

Interpretation. In the above equation, the first term with
orthogonal constraint is the spectral clustering objective, to
learn hidden group structures in different views. The second
term with orthogonal constraint is the multi-facet penalty, to
maximize the discrepancy between different views. The third
term is the group sparsity penalty, to automatically select la-
tent factors for learning hidden group structures in different
views. x = UT is the latent embeddings as column vectors
for representing each user in original latent factor space. Note
that the notation U

q

is the spectral embeddings, while U is the
latent user embeddings. Lq

W

is constructed by gaussian kernel
with the projected data in each view WT

q

x. In the following,
we use x

i

to represent the i-th latent user representation.
Discussion on kW

q

k2,1. The l2,1-norm of a matrix was
first introduced in [Ding et al., 2006] as rotational invariant
l2,1-norm and also used as group sparsity penalty for sub-
space learning [Gu et al., 2011]. It is defined as kW

q

k2,1 =
P

n

i=1

qP
m

j=1(w
q

ij

)2 =
P

n

i=1 kwi.

q

k2, where wi.

q

is the ith
row vector. To understand why the proposed kW

q

k2,1 penalty
leads to a feature selection solution, let us consider how the
structure of W

q

should be to achieve feature selection. Let
wq

ij

be the elements of transformation matrix W
q

. If ith fea-
ture in x is not selected by the hidden graph in view q, all
the elements of the ith row of W

q

should be zero. Thus, ith
feature in x will not contribute to the HSIC criterion.

Optimize for W
q

for each view. Fixing U
q

, optimizing
W

q

is challenging, since this optimization problem is gener-
ally difficult to optimize due to the non-convexity of orthog-
onal constraints. To solve this challenge, we employ an effi-
cient feasible method for optimization on the Stiefel manifold
[Bach and Jordan, 2002]. Following the method, we apply a
modified gradient descent on the Stiefel manifold, to ensure
the orthogonal constraints to be preserved in each iteration:

Step1: We project the negative gradient of the objec-
tive function onto the tangent space [Trendafilov, 2010],
�W

Stiefel

= � @f

@Wq
�W

q

(� @f

@Wq
)TW

q

. Step2: We update
W

q

on the geodesic [Trendafilov, 2010] in the direction of
the tangent space. �W

new

= W
old

exp(⌧WT

old

�W
Stiefel

),
where exp means matrix exponential and ⌧ is the step size.

Step3: We use the Armijo rule for a backtracking line search
to find the step size ⌧ at every iteration.

More specifically, the derivative @f

@Wq
is calculated as fol-

lows. There are three terms involved for computing the par-
tial derivative with respect to W

q

, in the objective function
for each view. Note that D� 1

2
q

Lq

W

D
� 1

2
q

= I �D
� 1

2
q

K
q

D
� 1

2
q

.
i) The spectral objective term: We define Lq =

D
� 1

2
q

K
q

D
� 1

2
q

. The spectral objective can be expressed as a
linear combination of each element in matrix Lq with the cor-
responding element in U

q

UT

q

as coefficient. The derivative
of the element lq

ij

in Lq is, (lq
ij

)
0
= (kq

ij

)0(dq
ii

)�
1
2 (dq

jj

)�
1
2 �

1
2 (d

q

ii

)�
1
2 (dq

ii

)0kq
ii

(dq
jj

)�
1
2� 1

2 (d
q

jj

)�
1
2 (dq

jj

)
0
kq
ij

(dq
ii

)�
1
2 ,

where (kq
ij

)0, (dq
ii

)0, (dq
jj

)0 are derivatives of the similarity
degree matrix with respect to W

q

.
ii) The empirical HSIC term: We expand the trace

in the HSIC term, tr(K
q

HK
r

H) = tr(K
q

K
r

) �
2n�11TK

q

K
r

1+n�2tr(K
q

)tr(K
r

), where 1 is the vec-
tor of all ones. Using a Gaussian kernel defined as
k(WT

q

x
i

,WT

q

x
j

) = exp(�kWT

q

�x
ij

)k2/2�2), where

�x
ij

is x
i

� x
j

, the derivative of kq
ij

in K
q

is,
@k

q
ij

@Wq
=

� 1
�

2�x
ij

�xT

ij

W
q

exp(
��x

T
ijWqW

T
q �xij

2�2 ).
iii) The group sparsity term: The derivative of the

column vector in kW
q

k2,1 is, @kWqk2,1

@W

.j
q

= R
q

W .j

q

=

diag(..., 1
kW i.

q k2
, ...)W .j

q

, where R
q

is a diagonal matrix, W .j

q

and W i.

q

are the jth column and ith row vectors respectively.
Note that R

q

is dependent to W
q

, we propose to update R
q

it-
eratively too, using the efficient strategy in [Nie et al., 2010].
In each iteration, R

q

is calculated with the current W
q

, and
then W

q

is updated based on the current calculated R
q

.
Optimize for U

q

in each view. Fixing W
q

, we can opti-
mize U

q

. The solution for U
q

is equal to the first c
q

eigen-
vectors (corresponding to the smallest c

q

eigenvalues) of the
matrix D

� 1
2

q

Lq

W

D
� 1

2
q

, where c
q

is the number of clusters for
view q. Then we normalize each row of U

q

to have unit length
[Ng et al., 2001; Kumar and III, 2011].

Construct W via Multi-facet Graphs. After updating
U , V , S (the update rules are omitted, which is similar to
[Zhang and Wang, 2015]) and running Algorithm 1, we can
update a new hidden graph W as adaptive graph regulariza-
tion term, for the joint optimization problem in Eq.(2). We
construct W via multi-facet graphs, by directly concatenat-
ing W = [W 0

q=1, ...,W
0
q=Q

]. For pursuing the sparsity of

W , to save computing and enlarge discriminative power, we
adopt a discretization way to build the graph W 0

q

in view q.
In this way, we use simple k-means algorithm to partition the
data using each row in U

q

as features, and label each data ac-
cording the group assignment. Then for the data in the same
group, the weights between those are set to 1, or 0 otherwise.

Computational Complexity. For large-scale data, to cal-
culate kernel matrix, we can apply incomplete Cholesky
decomposition as suggested in [Bach and Jordan, 2002],
in which the complexity of eigen-decomposition is O(s2n)
(s ⌧ n), where s is the rank of the approximation matrix,
n is the number of general users. Therefore, the main com-
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Data #User #Item Sparsity #Rating #Avg.R
LastFM 1892 18745 0.28% 92834 49
Delicious 1867 69223 0.08% 104799 56
Epinions 3474 26850 0.12% 111933 32

Table 2: R denotes #rated per user. The rating in LastFM and
Delicious is binary, and that in Epinions is a value [1,5].

putational cost of the algorithm is to calculate the SVD for
U
q

, which can be efficiently solved in O(nmd) (m, d ⌧ n)
[Li et al., 2011], where m is the number of selected subset of
data; d is number of latent factors. Thus, similar to [Niu et al.,
2010], since the complexities of our derivative computation is
O(nsd) (s, d ⌧ n), Algorithm 1 can achieve the linear com-
plexity O(s2n+ nmd+ nsd) with respect to general users.

4 Experiments
We evaluate our method on three public real-world datasets
as shown in Table 2: LastFM and Delicious1 are used for
Top-N recommendation task. Epinions2 is used for rating
prediction task. We use Recall [Purushotham and Liu, 2012]
metric to measure Top-N performance, and use RMSE [Yuan
et al., 2014] metric to measure rating prediction performance.

Baselines and Settings
We compare the following popular and the state-of-the-
art constraint MF models, only using rating information.
WNMF [Zhang et al., 2006] is a popular MF method, us-
ing non-negative matrix factorization. PMF [Salakhutdinov
and Mnih, 2007] is a well-known MF method, with sound
probabilistic interpretation. GSMF [Yuan et al., 2014] is a
constraint MF method, using group sparsity regularization for
modeling multiple user interests. GSMF-K denotes using
k-means to partition the item set into K groups for GSMF.
HGMF [Zhang and Wang, 2015] is a constraint MF method,
in an adaptive graph regularization framework using Lapla-
cian constraint. MHGMF is the proposed method in this pa-
per.

Following [Purushotham and Liu, 2012; Yuan et al., 2014],
we randomly select 90(70, 50)% of the data for training, and
the rest for testing. The random selection was carried out 5
times independently, and we report the average results. Us-
ing the widely adopted strategy in [Hu et al., 2008], all the
baselines can be applied to the both tasks. We implement the
compared methods following the original works. The best pa-
rameters are chosen by held-out validation. For our method,
the kernel parameter �2 is initialized as the median pairwise
distance between original users, and then is well tuned. For
top-N task, the confidence parameters are 0.01 and 1 for un-
observed data and observed data respectively. For rating pre-
diction task, those are 0 and 1 respectively. The number of
multi-facet graphs is 2. The regularization parameters are op-
timized in the range of {0.001, 0.01, ..., 10, 100}. The num-
bers of latent factors, for the original space and the projected

1http://grouplens.org/datasets/hetrec-2011/
2http://www.public.asu.edu/⇠jtang20/datasetcode/epinions.zip

space, are set by searching {50, 150, ..., 350, 400}. We set the
number of maximal iteration to 200.

Results and Analysis

Performance Comparison. Table 3 and Figure 2(a,b) show
that in general, the constraint based models, i.e., MHGMF;
HGMF; GSMF-K, are much better than the non-constraint
models, i.e., WNMF; PMF, which demonstrates the effective-
ness of the underlying structured assumption in real-world
data. In addition, the results show that our method MHGMF
further outperform the existing constraint based models on all
evaluation metrics on all three datasets, which could demon-
strate that it is more reasonable to use the proposed over-
lapping assumption for real-world data from multiple views,
compared with the non-overlapping assumption in HGMF
from a single view. Although GSMF can deal with over-
lapping group structures, it is limited to the need of the pre-
partitioned groups, without adaptive grouping mechanism for
the task objective. In contrast, our method can consider the
structured property jointly with task-oriented objective from
an adaptive multi-view setting. In the following, we show the
parameter sensitivity analysis with 90% training case, due to
the similar findings for other cases and page limitation.

Impact of the Graph Weight and Hidden Group Num-
bers. Table 4 and Figure 3 show that for the dataset LastFM,
higher �

W

suggests good performance. For other two sparser
datasets, using relatively lower value will improve the perfor-
mance. It could be explained that �

W

controls the degree of
group membership. In the sparser cases, each user may rely
on more neighbours which prefers lower value. In the denser
case, it is more likely to introduce more noisy patterns. Thus,
the larger regularization will improve the discriminative per-
formance. Table 5 and Figure 4 show that fixing the optimal
�
W

, setting larger number of hidden groups will achieve bet-
ter results. Intuitively, enlarging the number of hidden groups
will narrow the range of visible neighbours. When the invis-
ible neighbours are beneficial, the non-overlapping assump-
tion will hurt the performance. In contrast, our method can
achieve the same goal of learning discriminative representa-
tion but without the restriction. Our results show good and
more stable performance in that case, which demonstrates the
overlapping assumption is more reasonable for real data.

Impact of Multi-facet Penalty and View Sparsity. Fig-
ure 2(c,d,e) shows that in general, when increasing the value
of multi-facet penalty �1 or view sparsity penalty �2, the per-
formance tends to first increase and then decrease. Among
�1 and �2, the performance is relatively sensitive to �2. It
could be explained that view sparsity controls the discrim-
inative power through automatic latent factor selection. In
this view, the proposed method can be also seen an extension
of GSMF, due to the similar goals to enhance discriminative
power by modeling user interests with different subset of la-
tent factors, but without needing group pre-partition.

Visualization. In addition, we create 2D plots in Figure 5
using MDS [Wang and Boyer, 2013], to illustrate the overlap-
ping decomposition of data on Lastfm dataset.
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Dataset Training WNMF PMF GSMF GSMF-K HGMF MHGMF

Epinions
90% 0.6815 0.6732 0.6923 0.6683 0.6447 0.6209
70% 0.6885 0.6789 0.6993 0.6732 0.6482 0.6313
50% 0.7639 0.7510 0.7721 0.7291 0.7140 0.7004

Table 3: Performance comparison for RMSE on different sparsity cases. The standard deviations are  0.01.

(a) LastFM (b) Delicious (c) LastFM:Recall@50 (d) Delicious:Recall@50 (e) Epinions:RMSE

Figure 2: Subfigure (a),(b): Model comparison for Recall. Subfigure (c),(d),(e): Parameter sensitivity analysis of multi-facet
penalty and view sparsity. We show the value of view sparsity regularization parameter �2 as {0.01, 0.1, 1, 10} and the value of
multi-facet regularization parameter �1 as {0.001, 0.01, 0.1, 1, 10}. For Recall, higher is better, and for RMSE, lower is better.

(a) LastFM �W (b) Delicious �W

Figure 3: Impact of Hidden Graph Weight.

�W/RMSE 0.01 0.1 1 10 100
HGMF 0.6719 0.6447 0.6991 0.7583 0.8321
MHGMF 0.6541 0.6209 0.6474 0.6971 0.7509

Table 4: Impact of Hidden Graph Weight (k=300, Epinions).

5 Related Work
The use of structured information in collaborative filtering is
not new [Purushotham and Liu, 2012; Wang and Blei, 2011;
Yuan et al., 2014]. Recently, several emerging studies have
paid attention to explore implicit or hidden structures for col-
laborative filtering. [Zhang et al., 2013] proposed a gen-
eral pipeline framework (LMF), which is independent of spe-
cific matrix factorization models. Our model might be fur-
ther improved by using that framework. [Wang et al., 2014]
proposed a hierarchical group matrix factorization method,
which needs to obtain the group information in advance,
by using side information or pre-clustering. [Wang et al.,
2015] proposed an implicit hierarchical matrix factorization
approach. It is a direct deeply factorizing approach with
fixed tree structures. In contrast, our method focuses on
modeling hidden group structures in a graph based regular-
ization framework. [Yuan et al., 2014; Zhang and Wang,
2015] are the most similar works to this paper, which ex-
plored modeling hidden group structures by automatic la-
tent factor selection and by Laplacian constraint respectively.
However, they either assume the items have already been

(a) LastFM �W = 1 (b) Delicious �W = 0.1

Figure 4: Impact of the Number of Hidden Groups.

(a) View 1 (b) View 2 (c) Combined View

Figure 5: Case study of overlapping decomposition. Our al-
gorithm can capture the original overlapping case, by learning
the decomposed non-overlapping multi-facet structures.

categorized into multiple semantic groups, or the underlying
structures are non-overlapping. In our method, we relax the
non-overlapping assumption without requiring pre-grouping
in advance, by implicitly seeking the discriminative group-
specific latent factors in an adaptive multi-view setting.

6 Conclusion
In this paper, we present a new viewpoint of hidden graph
regularization for collaborative filtering, to explicitly model
complex hidden structures while learning matrix factoriza-
tion. We developed a novel structured prior as constraint on
the underlying low-rank structures, which generalizes the re-
cently proposed Laplacian constraint via overlapping decom-
position, to automatically capture multi-view hidden struc-
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#k/RMSE 100 300 500 700 800
HGMF 0.6796 0.6447 0.6531 0.6603 0.6684
MHGMF 0.6452 0.6209 0.6142 0.6203 0.6291

Table 5: Impact of Hidden Group Numbers (Epinions).

tures, by solving a constraint optimization problem jointly
with learning user and item representations. Experiments on
real-world datasets exhibit the promising performance, com-
pared with the baseline state-of-the-art methods. Future work
could consider to incorporate explicit social graph into the
proposed framework, to further improve the performance.
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