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Abstract
Large-scale clustering has found wide applications
in many fields and received much attention in re-
cent years. However, most existing large-scale
clustering methods can only achieve mediocre per-
formance, because they are sensitive to the un-
avoidable presence of noise in the large-scale data.
To address this challenging problem, we thus pro-
pose a large-scale sparse clustering (LSSC) algo-
rithm. In this paper, we choose a two-step opti-
mization strategy for large-scale sparse clustering:
1) k-means clustering over the large-scale data to
obtain the initial clustering results; 2) clustering
refinement over the initial results by developing a
spare coding algorithm. To guarantee the scalabil-
ity of the second step for large-scale data, we also
utilize nonlinear approximation and dimension re-
duction techniques to speed up the sparse coding
algorithm. Experimental results on both synthetic
and real-world datasets demonstrate the promising
performance of our LSSC algorithm.

1 Introduction
Clustering is an important data analysis tool in many areas
of science and technology. Recently, large-scale clustering
is drawing more and more attention because of its effective-
ness and efficiency in coping with large-scale data. A number
of clustering algorithms have been developed to efficiently
group large-scale data [Li et al., 2015; Chen and Cai, 2011;
Zhang and Rudnicky, 2002; Wang et al., 2011; Chitta et al.,
2011; Aggarwal et al., 2003; Guha et al., 2001]. These meth-
ods manage to reduce the computational complexity of clus-
tering algorithm using different strategies. However, most
existing large-scale clustering algorithms can only achieve
mediocre performance, because they are sensitive to the un-
avoidable noise in the real-world data. Considering that the
noise (i.e. an unstructured subset of data points) can disrupt
the cluster structure of the data, detecting the accurate cluster
structure becomes difficult in this case.

In the literature, some robust methods have been devel-
oped for clustering potentially noisy data. For example, us-
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ing trimming to separate clusterable parts of the data from
unstructured ones by fixing some noise-set size, several al-
gorithms have been proposed [Garcı́a-Escudero et al., 2008;
Garcı́a-Escudero and Gordaliza, 1999; Cuesta-Albertos et al.,
1997]. However, these algorithms suffer from exponential
computational complexity, and have to be compromised for
efficient heuristic searches that have no performance guaran-
tees. Moreover, transductive warping is also used in spectral
clustering to reduce the influence of noise [Li et al., 2007].
By applying data warping to reshape the noisy data, the block
structure (destroyed by noise) of the affinity matrix can be re-
covered. However, it is very computationally expensive and is
hard to apply to large-scale data, due to that it requires trans-
ductive warping of each data point.

To cope with large-scale noisy data, we thus propose a
large-scale sparse clustering (LSSC) algorithm. In this pa-
per, we choose a two-step optimization strategy for large-
scale sparse clustering. In the first step, we adopt k-means
clustering to obtain the initial clustering results. The result-
ing indicator matrix C (Cij = 1 if the i-th data point is in
the j-th cluster, and Cij = 0 otherwise) is used as the in-
puts of the second step. In the second step, we formulate
an L1-optimization problem [Wright et al., 2009] over the
indicator matrix based on sparse coding [Lee et al., 2006;
Olshausen and Field, 1997] to rectify the initial clustering re-
sults. Although there exist previous methods [Elhamifar and
Vidal, 2009; Ramirez et al., 2010; Wang et al., 2015] that also
use sparse coding to improve the clustering robustness, they
are very time consuming, especially for large-scale data. In
contrast, our L1-optimization problem defined on the indica-
tor matrix can be solved very efficiently. Specifically, inspired
by the superiority of spectral clustering [Ng et al., 2002;
Filippone et al., 2008; Lu and Peng, 2013], we limit the so-
lution of clustering to the space spanned by a small set of
leading eigenvectors of the Laplacian matrix. Based on this
dimension reduction technique, we thus significantly reduce
the time complexity of our L1-optimization problem.

However, finding the leading eigenvectors of the Laplacian
matrix is still time consuming on large-scale data. We thus
make use of the nonlinear approximation technique to speed
up this step. Specifically, given a limited number of clus-
tering centers (obtained by k-means), we represent each data
point as the nonlinear approximation of these centers and then
derive the Laplacian matrix as a symmetrical decomposition
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form. Based on this special definition of the Laplacian ma-
trix, we are able to find the leading eigenvectors in linear time
complexity. In summary, by combining nonlinear approxima-
tion and dimension reduction together, we develop a large-
scale sparse clustering (LSSC) algorithm of linear time and
space complexity. Experimental results on both synthetic and
real-world datasets demonstrate the promising performance
of the proposed LSSC algorithm.

To emphasize our main contributions, we summarize the
following distinct advantages of our LSSC algorithm:

• We have developed a novel large-scale sparse clustering
algorithm which is shown to be very robust against the
noise in large-scale data. In fact, the challenging prob-
lem of clustering over large-scale noisy data has been
rarely studied in the literature.

• We have proposed a new two-step optimization strategy
for clustering over large-scale noisy data. Since the two
steps (i.e. initial clustering and clustering refinement)
tend to learn the cluster structure from different aspects,
this strategy can detect the cluster structure more accu-
rately for large-scale noisy data.

• Our LSSC algorithm has a wide use in various clustering
applications. Given that there is no single clustering al-
gorithm suitable for all types of clustering applications,
we can choose the suitable fundamental clustering algo-
rithm for the first step of LSSC algorithm depending on
the type of clustering applications.

The remainder of this paper is organized as follows. In
Section 2, we develop our large-scale sparse clustering algo-
rithm. The experimental results on synthetic and real-world
datasets are presented in Sections 3 and 4, respectively. We
give our conclusion in Section 5.

2 Large-Scale Sparse Clustering
In this section, we propose our large-scale sparse clustering
(LSSC) algorithm. We first introduce our two-step optimiza-
tion strategy and give the problem formulation. We further
develop an efficient algorithm by combining the nonlinear ap-
proximation and dimension reduction techniques.

2.1 Problem Formulation
Let X = [x1, · · · , xn] 2 Rm⇥n be a dataset that has l clus-
ters. In the first step of our algorithm, we apply k-means to
obtain the initial clustering results. The resulting clustering
indicator matrix is denoted as C 2 Rn⇥l, where Cij = 1

if the i-th data point is in the j-th cluster and Cij = 0 oth-
erwise. The first step used in our algorithm has the follow-
ing three advantages. Firstly, the initial clustering can give us
rough cluster structures of the data. We can then define an op-
timization problem directly based upon C in the second step.
The optimization problem defined on the indicator matrix C
will help us to develop a very efficient noise-robust cluster-
ing algorithm. Secondly, the final results of our algorithm are
the combination of the initial clustering and clustering refine-
ment. Since both steps tend to learn the cluster structure from
different aspects, our algorithm can thus obtain more supe-
rior performance on detecting the cluster structures. Thirdly,

given that different clustering applications employ very dif-
ferent clustering algorithms, the suitable fundamental clus-
tering method used for the first step can be determined de-
pending on different situations.

In the second step of our algorithm, we perform clustering
refinement over the initial results. Considering the superiority
of spectral clustering, we formulate the clustering refinement
problem based on the graph model. Specifically, we model
the whole dataset X as a graph G = {V,W} with its vertex
set V = X and weight matrix W = [wij ]n⇥n, where wij

denotes the affinity relation of data points xi and xj . In this
paper, the weight of the edge between xi and xj is defined
using the Gaussian kernel function:

wij = exp(�
kxi � xjk22

2�2
) (1)

where the variance � is a free parameter that can be de-
termined empirically. In fact, we can adopt various graph
construction methods [Wang and Zhang, 2008; Cheng et al.,
2010] to eliminate the need to tune this parameter. Let
D 2 Rn⇥n be the degree matrix whose i-th diagonal ele-
ment is dii =

Pn
j=1 wij and I be an n ⇥ n identity matrix.

The normalized Laplacian matrix of the graph G is given by

L = I �D� 1
2WD� 1

2 (2)

As a nonnegative definite matrix, L can be decomposed as

L = V ⌃V T (3)

where V is an n ⇥ n orthogonal matrix with each column
being an eigenvector of L, and ⌃ is an n⇥ n diagonal matrix
with its diagonal element ⌃ii being an eigenvalue of L (sorted
as 0  ⌃11  · · ·  ⌃nn).

In spectral clustering, the k-means clustering is then ap-
plied over the first p smallest eigenvectors (i.e. the first p
columns of V ) to obtain the final results. However, the tra-
ditional spectral clustering algorithm tends to be significantly
affected by the noise which would destroy the cluster struc-
tures of the data. To solve this problem and also keep the
superiority of spectral clustering, we formulate the problem
of clustering refinement as an L1-optimization problem so
that the robustness can be introduced into our algorithm. The
problem formulation is described as follows.

We first denote L as a symmetrical decomposition form
based on the above eigenvalue decomposition:

L = (⌃

1
2V T

)

T
⌃

1
2V T

= BTB (4)

where B = ⌃

1
2V T . Since B is computed with all the eigen-

vectors of L, we can regard B as being explicitly defined
based upon the manifold structure of the data. We further for-
mulate the clustering refinement problem in the second step
of our LSSC algorithm as follows:

min

Y
Q(Y ) =

1

2

kY � Ck2fro + �kBY k1 (5)

where k ⇧ kfro denotes the Frobenius norm of a matrix, �
is a positive regularization parameter, and Y denotes the
optimal probabilistic clustering matrix. The first term of
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the objective function Q(Y ) denotes the reconstruction er-
ror, while the second term of Q(Y ) is closely related to the
well-known Laplacian regularization [Lu and Peng, 2011;
2013] used for graph-based learning.

The above L1-optimization problem formulation for clus-
tering refitment has the following three advantages. Firstly,
we transform the clustering refinement problem into an L1-
optimization problem so that the robustness can be introduced
into our algorithm. Secondly, due to the first step of initial
clustering, we can directly define the objective function on
the indicator matrix C and thus perform noise reduction over
C. Thirdly, by introducing Laplacian regularization, we can
take the advantage of spectral clustering to reveal the clus-
ter structure for large-scale clustering. More notably, we can
readily limit the solution Y to the space spanned by the lead-
ing eigenvectors of the Laplacian matrix and thus transform
the above L1-optimization problem into a general sparse cod-
ing problem. This transformation will be described below.

2.2 The Proposed Algorithm
To keep the scalability of clustering refinement, we can re-
duce the dimension of Y dramatically by requiring it to take
the form of Y = VpHp, where Vp is an n ⇥ p matrix whose
columns are the p leading eigenvectors with smallest eigen-
values (i.e. the first p columns of V ). In fact, such dimen-
sion reduction can ensure that Y is as smooth as possible,
according to spectral theory. Hence, the objective function of
clustering refinement can now be derived from Eq. (5) as:

min

Hp

Q(Hp) =
1

2

kVpHp � Ck2fro + �k⌃ 1
2V TVpHpk1 (6)

To transform this L1-optimization problem into a generalized
sparse coding problem, we then decompose it into the follow-
ing l independent subproblems:

min

H.i

Q(H.i) =
1

2

kVpH.i � C.ik22 + �k⌃ 1
2V TVpH.ik1 (7)

where 1  i  l. Writing out the objective function, we have:

Q(H.i) =
1

2

kVpH.i � C.ik22 + �k
pX

k=1

⌃

1
2
(V TV.k)Hkik1

=

1

2

kVpH.i � C.ik22 + �
pX

k=1

⌃

1
2
kkkHkik1 (8)

The first term of Q(H.i) denotes the reconstruction error,
while the second term denotes the weighted L1-norm spar-
sity regularization over the reconstruction coefficients.

Hence, our original L1-optimization problem has been
transformed into a generalized sparse coding problem H⇤

.i =

argminH.i Q(H.i), which can be solved efficiently by many
standard algorithms. It should be noted that the formulation
Y = VpH.i used in Eq. (8) has two distinct advantages.
Firstly, we can explain our clustering refinement in the frame-
work of sparse coding. In fact, the second term of Q(H.i)

corresponds to both Laplacian regularization and sparsity reg-
ularization. We thus obtain novel noise-robust clustering by
unifying these two types of regularization. Secondly, Since
Q(H.i) is minimized with respect to H.i 2 Rp

(p ⌧ n), we

can readily develop fast sparse coding algorithms for our clus-
tering refinement. Specifically, although many sparse coding
algorithms scale polynomially with respect to p, they only
have linear time complexity with respect to n. More impor-
tantly, we have eliminated the need to compute the full matrix
B in Eq. (5), which is especially suitable for clustering on
large-scale data. In fact, we only need to find the p leading
eigenvectors of L.

However, it is still very time consuming to find the p
leading eigenvectors of L on large-scale data. To keep the
scalability of our algorithm, we thus exploit the following
nonlinear approximation technique. Given k clustering cen-
ters u1, u2, · · · , uk obtained by k-means clustering over the
dataset X , we find the approximation ˆxi of any data point xi
by Nadaraya-Watson kernel regression [Härdle, 1992]:

ˆxi =

kX

j=1

zijuj (9)

where Z = [zij ]n⇥k collects the regression coefficients. A
natural assumption here is that zij should be larger if xi is
closer to uj . We can emphasize this assumption by setting
zij = 0 as uj is not among the r( k) nearest neighbors
of xi. This restriction naturally leads to a sparse matrix Z.
Let U(i) denotes the indexes of r clustering centers that are
nearest to xi. We compute zij(j 2 U(i)) as:

zij =
K�(xi, uj)P

j02U(i) K�(xi, uj0)
(10)

where K�(.) is a kernel function with a bandwidth �. Here,
we adopt the Gaussian kernel K�(xi, uj) = exp(�kxi�ujk2

2
2�2 )

which is one of the most commonly used kernel functions. In
this paper, the same parameter � are selected for the Gaussian
kernels used in both Eq. (1) and Eq. (10).

Let Z =

ˆZD
� 1

2
z and Dz be a k⇥ k diagonal matrix whose

i-th diagonal element is dii =
Pn

j=1 zji. The weight matrix
W 2 Rn⇥n of the graph G over the dataset X can now be
computed as follows:

W =

ˆZ ˆZT (11)
Since each row of Z sums up to 1, the degree matrix of G is I
and the normalized Laplacian matrix L is I�W . This means
that finding the p smallest eigenvectors of L is equivalent to
finding the p largest eigenvectors of W . Let the singular value
decomposition (SVD) of ˆZ be:

ˆZ = Vz⌃zU
T
z (12)

where ⌃z = diag(�1, · · · ,�k) with �i being a singular value
of ˆZ (sorted as �1 � �2 � · · · � �k � 0), Vz is an n ⇥ k
matrix with each column being a left singular vector of ˆZ,
and Uz is a k ⇥ k matrix with each column being a right
singular vector of ˆZ. It is easy to check that each column of
Vz is an eigenvector of W =

ˆZ ˆZT , and each column of Uz

is an eigenvector of ˆZT
ˆZ (the eigenvalues are �2

1 , · · · ,�2
k in

both cases). Since ˆZT
ˆZ 2 Rk⇥k, we can compute Uz within

O(k3) time. Vz can then be computed as:

Vz =

ˆZUz⌃
�1
z (13)
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(a) k-means (b) Nyström (c) LSC-K (d) LSSC (ours)

Figure 1: Clustering results on the synthetic dataset with 30% uniform noise

Hence, to find the p (p < k) smallest eigenvectors of L =

I �W , we first find the p largest eigenvectors Up 2 Rk⇥p of
ˆZT

ˆZ (the eigenvalues store in ⌃

2
p = diag(�2

1 , · · · ,�2
p)) and

then compute the p largest eigenvectors Vp of W as:

Vp =

ˆZUp⌃
�1
p (14)

which can then be used in Eq. (8). Since both finding Vp (in-
cluding k-means) and solving minQ(H.i) have a linear time
and space complexity with respect to n (p, k, r ⌧ n), our
algorithm is scalable to large-scale data.

Algorithm 1 Large-Scale Sparse Clustering (LSSC)
Input: the dataset X , the parameters: l,�, k, r, p;
Output: the predicted labels;
1. Perform k-means clustering (with l clusters) on the
dataset X to obtain the initial indicator matrix C;
2. Produce k clustering centers (k > l) using k-means
clustering on the dataset X;
3. Construct the weight matrix W of the graph G over the
dataset X according to Eq. (11);
4. Compute the p largest eigenvectors of W denoted by Vp

according to Eq. (14);
5. Solve the problem H⇤

p = argminHp Q(Hp) using the
modified FISTA;
6. Compute the probabilistic clustering matrix Y as: Y ⇤

=

VpH⇤
p ;

7. Derive the predicted labels from Y ⇤
= [y⇤ij ]n⇥l. Each

data point xi is divided into cluster argmaxj y⇤ij .

The complete large-scale sparse clustering (LSSC) algo-
rithm is outlined in Algorithm 1. Here, we adopt the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) [Beck
and Teboulle, 2009] to solve the generalized sparse coding
problem minH.iQ(H.i), given that its implementation mainly
involves lightweight operations such as vector operations and
matrix-vector multiplications. To adjust FISTA for large-
scale sparse clustering, we only need to modify the soft-
thresholding function as:

soft(Hki,
�⌃

1
2
kk

kVpk2s
) = sign(Hki)max{|Hki|�

�⌃
1
2
kk

kVpk2s
, 0}

where kVpks represents the spectral norm of the matrix Vp.
For large-scale problems, it is often computationally expen-
sive to directly compute the Lipschitz constant kVpk2s. In

practice, it can be efficiently estimated by a backtracking line-
search strategy [Beck and Teboulle, 2009].

3 Experiments on Synthetic Data
We first evaluate the effectiveness of the proposed LSSC al-
gorithm on synthetic data.

3.1 Compared Algorithms
To demonstrate the noise-robustness of our LSSC algorithm,
we compare it with two other state-of-the-art large-scale clus-
tering methods. The details of these two large-scale cluster-
ing methods are given below.

• Nyström [Chen et al., 2011]: a parallel spectral cluster-
ing algorithm developed based on Nyström approxima-
tion. The code is available online1 and we choose the
Matlab version with orthogonalization.

• LSC-K [Chen and Cai, 2011]: landmark-based spectral
clustering using k-means for landmark-selection2.

3.2 Clustering Results
We first conduct a group of experiments on a synthetic dataset
to qualitatively evaluate the robustness of our LSSC algo-
rithm. Specifically, we generate a two-moon dataset (see
Figures 1 and 2), where each cluster comprises of 500 data
points. On this noise-free dataset, all of the three large-
scale clustering algorithms are shown to successfully detect
the correct cluster structures. Furthermore, we add 30% uni-
form noise and Gaussian noise to the original dataset, and
the clustering results for the obtained two noisy datasets
are illustrated in Figures 1 and 2, respectively. To show
the effectiveness of the second step of our LSSC algorithm,
we also report the initial results of the first step (i.e. k-
means in Figures 1 and 2) as a baseline. Here, it should be
noted that the evaluation of the method used in this paper is
what the workers in this field do routinely [Li et al., 2007;
Ben-David and Haghtalab, 2014].

From these two figures, we make the following observa-
tions: 1) our LSSC algorithm generally detects the accurate
cluster structures in spite of the unstructured parts of the in-
puts; 2) LSC-K is affected by the noise and thus parts of the
data points are divided into the wrong clusters; 3) Nyström
completely fails in detecting the cluster structures of the noisy

1http://alumni.cs.ucsb.edu/wychen/
2http://www.cad.zju.edu.cn/home/dengcai/
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(a) k-means (b) Nyström (c) LSC-K (d) LSSC (ours)

Figure 2: Clustering results on the synthetic dataset with 30% Gaussian noise

Table 1: Statistics of the two large-scale datasets.

Data Set Samples Dimensions Classes
MNIST 70,000 784 10
Covtype 581,012 54 7

data. These qualitative results demonstrate the robustness of
our LSSC algorithm against different types of noise. In addi-
tion, as compared to the results of the first step (i.e. k-means
in Figures 1 and 2), the improvements achieved by our LSSC
algorithm show that the second step of our LSSC algorithm
does have the ability to rectify the wrong results induced by
the initial k-means clustering.

4 Experiments on Real-World Data
We further evaluate our LSSC algorithm on two real-world
datasets from the Yann LeCun’s homepage3 and the UCI
repository4. Their statistical characteristics are listed in Ta-
ble 1, and below is a brief description of each dataset:

• MNIST: a dataset of handwritten digits, and each digit
is represented using 784 features.

• Covtype: a dataset to predict forest cover type from car-
tographic variables only, originally with 54 features.

4.1 Evaluation Metrics
The clustering results are evaluated by comparing the ob-
tained clustering label of each data point with its ground-truth
label. We use two standard metrics, accuracy (Accu) [Cai et
al., 2005] and purity [Ding et al., 2006], to measure the clus-
tering performance. Given a data point xi, let ri and si be its
obtained clustering label and ground-truth label, respectively.
The Accu is defined as:

Accu =

Pn
i=1 �(si,map(ri))

n
(15)

where map(·) denotes the best mapping between the ob-
tained clustering labels and ground-truth labels of data points.
Moreover, the purity is defined as:

Purity =

1

n

lX

k=1

max

1jl
nj
k (16)

3http://yann.lecun.com/exdb/mnist/
4http://archive.ics.uci.edu/ml

Table 2: Clustering results measured by Accu/Purity (%) for
the compared methods.

Data set Metrics k-means Nyström LSC-K LSSC (ours)
MNIST Accu 55.20 53.55 61.56 65.88

Purity 60.44 58.78 67.08 71.98
Covtype Accu 23.05 21.60 22.13 26.47

Purity 49.05 49.70 49.16 49.76

where nj
k is the number of data points in the cluster k that

belong to the ground-truth cluster j.
To evaluate the robustness of clustering algorithms, we also

adopt �-robust [Ackerman et al., 2013; Ben-David and Hagh-
talab, 2014] as one of our measures in this paper. Note that
other measures (e.g. accuracy) can not directly reflect the
degree of the impact of noise on a clustering algorithm, but
�-robust can intuitively show it.

For a clustering C of the dataset X and data points x, y 2
X , we write x ⇠C y if x and y belong to the same cluster in
C, and x ⌧C y otherwise.
Definition 1 (Hamming distance). Given clusterings C and
C 0 of the same dataset X , the Hamming distance between
clusterings C and C 0 is

�(C,C 0
) = |{{x, y} ⇢ X|(x ⇠C y) +�(x ⇠C0 y)}|/

✓
|X|
2

◆

where +� denotes the logical XOR operation.
Given two datasets X,Z ✓ E with X ✓ Z and a clustering C
of Z, we use C|X to denote the restriction of C to X . If C =

{C1, · · · , Ck}, we thus have C|X = {C1\X, · · · , Ck\X}.
We further give the definition of �-robust. Given a dataset

X and a (typically large) subset Y , we use O = X \ Y to
denote a set of noisy data. We thus claim that Y is robust to
the noisy dataset O relative to a clustering algorithm A, if Y
is clustered similarly with and without the data points in O.
Definition 2 (�-robust). Given datasets X , Y and O, where
X = Y [ O, Y is �-robust to O with respect to a clustering
algorithm A, if

�(A(X)|Y,A(Y ))  �, (17)
where A(X) denotes a clustering of X obtained by the clus-
tering algorithm A.

Equivalently, �(C,C 0
) = 1 � RI(C,C 0

), where RI is the
Rand index [Rand, 1971]. � satisfies the triangle inequality.
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Table 3: �-robust for the compared methods with varying
noise levels of uniform noise.
Data set Noise k-means Nyström LSC-K LSSC (ours)
MNIST 15% 5.38 6.92 9.83 3.31

30% 7.57 7.64 11.13 5.17
Covtype 15% 11.93 12.22 11.09 6.27

30% 12.08 14.70 13.44 8.05

Table 4: �-robust for the compared methods with varying
noise levels of Gaussian noise.
Data set Noise k-means Nyström LSC-K LSSC (ours)
MNIST 15% 6.43 7.29 7.20 3.38

30% 8.65 10.35 12.36 7.24
Covtype 15% 10.24 13.10 15.72 9.65

30% 12.19 15.35 16.76 11.01

4.2 Experimental Settings
In the experiments, we produce new noisy datasets by adding
two types of noise (uniform noise and Gaussian noise) of dif-
ferent levels (i.e. 0%, 15%, and 30%) to the original datasets.
We find that our LSSC algorithm is not sensitive to � in our
experiments, and thus fix this parameter at � = 0.01 for all
the datasets. By considering a tradeoff of running efficiency
and effectiveness, we uniformly set k = 1, 000 and empir-
ically set r = 4, p = 13 for MNIST and r = 2, p = 9

for Covtype. For fair comparison, the same parameters are
adopted for all the other related methods. In addition, all the
methods are implemented in MATLAB R2014a and run on a
3.40 GHz, 32GB RAM Core 2 Duo PC.

4.3 Clustering Results
We first make comparison on the noise-free datasets. The re-
sulting clustering accuracies and purities are shown in Table
2. To verify the effectiveness of the second step of our LSSC
algorithm, we also report the initial results of the first step
(i.e. k-means) as a baseline. We see that our LSSC algorithm
yields the best performance in all cases, which shows that
the two-step optimization strategy indeed helps to effectively
detect the accurate cluster structures. As compared with the
initial results, we observe that the clustering results can be
significantly improved by the second step of our LSSC algo-
rithm. This means that the L1-optimization does suppress the
negative effect of the complicated manifold structure hidden
among the large-scale datasets.

We further evaluate the robustness of each clustering
method by adding two types of noise (uniform noise and
Gaussian noise) of different levels (15%, and 30%). The com-
parison results are reported in Tables 3 and 4, respectively.
The immediate observation is that our LSSC algorithm out-
performs all of its competitors in all cases according to �-
robust. The reason is that the L1-optimization used in the
second step can help to find a smooth and sparse solution and
thus effectively suppress the negative effect of the noise. In
particular, as compared to the most closely related method

Table 5: The clustering results in terms of both accuracy and
running time over the MNIST dataset. The running time of k-
means clustering to generate k centers (k = 1,000) for LSC-K
and LSSC is 43.70 seconds.

Method Accu (%) Running time (sec.)
k-means 55.20 25.16
Nyström 53.55 23.30
LSC-K 61.56 43.70+5.85
LSSC (ours) 65.88 43.70+25.16+10.34

Table 6: The clustering results in terms of both accuracy and
running time over the Covtype dataset. The running time of
k-means clustering to generate k centers (k = 1,000) for LSC-
K and LSSC is 68.95 seconds.

Method Accu (%) Running time (sec.)
k-means 23.05 44.31
Nyström 21.60 74.43
LSC-K 22.13 68.95+17.04
LSSC (ours) 26.47 68.95+44.31+16.68

LSC-K, our LSSC algorithm is shown to achieve significant
gains in clustering over large-scale noisy data.

Finally, the comparison results in terms of both accuracy
and running time over the two noise-free datasets are shown
in Tables 5 and 6. Although the running time of our LSSC al-
gorithm is more than that of Nyström and LSC-K, it is shown
to achieve obvious gains in terms of accuracy. By overall
consideration, our LSSC algorithm is preferred in practice.
Moreover, excluding the running time taken by k-means clus-
tering to find clustering centers and the first step to obtain the
initial clustering results, the L1-optimization used in the sec-
ond step of our LSSC algorithm itself is considered to run
very efficiently over such large-scale datasets.

5 Conclusion
In this paper, we have investigated the challenging problem
of clustering over large-scale noisy data. We have proposed
a large-scale sparse clustering (LSSC) algorithm based on a
two-step optimization strategy: 1) k-means clustering over
the large-scale data to obtain the initial clustering results;
2) clustering refinement over the initial results by develop-
ing a spare coding algorithm. To guarantee the scalability of
the second step for large-scale data, we have speeded up the
sparse coding algorithm using the nonlinear approximation
and dimension reduction techniques. Experimental results
show the promising performance of our LSSC algorithm.
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