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Abstract
In this paper, we choose to learn useful cues from
object recognition mechanisms of the human vi-
sual cortex, and propose a DCNN performance im-
provement method without the need for increasing
the network complexity. Inspired by the category-
selective property of the neuron population in the
IT layer of the human visual cortex, we enforce
the neuron responses at the top DCNN layer to be
category selective. To achieve this, we propose
the Sparse Category-Selective Objective Function
(SCSOF) to modulate the neuron outputs of the
top DCNN layer. The proposed method is generic
and can be applied to any DCNN models. As ex-
perimental results show, when applying the pro-
posed method to the “Quick” model and NIN
models, image classification performances are re-
markably improved on four widely used bench-
mark datasets: CIFAR-10, CIFAR-100, MNIST
and SVHN, which demonstrate the effectiveness of
the presented method.

1 Introduction
In recent years, Deep Convolutional Neural Networks
(DCNN) have shown state-of-the-art performances with
many applications in computer vision [Min Lin, 2014; Gir-
shick et al., 2014; Goodfellow et al., 2013; Ioffe and Szegedy,
2015; Krizhevsky et al., 2012], speech recognition [Dahl et

al., 2012; Hannun et al., 2014], natural language process-
ing [Collobert and Weston, 2008; Mnih and Hinton, 2009],
etc. The great success of DCNN models can be attributed
to the following key factors: 1) developments of large-scale,
deep models that can accurately model complex problems,
and the availability of big training data with millions of
labeled examples to train large-scale models, 2) the intro-
duction of many training tricks, such as the rectifier acti-
vation function [Krizhevsky et al., 2012], Dropout [Hinton
et al., 2012], DropConnect [Wan et al., 2013], that can ef-
fectively prevent models’ co-adaptation and overfitting prob-
lems, and 3) high performance computing technologies and
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platforms [Dean et al., 2012] that allow large-scale models to
be trained in affordable times.

Generally speaking, deeper and wider (more feature maps
per convolution layer) models along with more training data
lead to better performance accuracies [Simonyan and Zisser-
man, 2015; Szegedy et al., 2015]. However, these strategies
to improve DCNN performances are approaching their lim-
itations. As elaborated in Section 2, when the model depth
and complexity reach certain levels, further increasing the
number and size of network layers will be less and less ef-
fective at improving the network performance. Moreover,
very deep models usually do not converge when trained us-
ing the standard BP algorithm, and pre-training lower layers
becomes a must [Simonyan and Zisserman, 2015]. Besides,
training very deep models (e.g. GoogLeNet [Szegedy et al.,
2015], GoogLe-BN [Ioffe and Szegedy, 2015]) usually re-
quires CPU/GPU clusters and ultra-large training data, and
will be out of reach of small research groups with a limited
research budget.

In this paper, we propose a DCNN performance improve-
ment method that does not need increased network complex-
ity. We choose to learn useful cues from the object recog-
nition mechanisms of the human visual cortex. The human
vision system outperforms existing machine vision systems
at almost all tasks. Therefore, building a system that emu-
lates certain properties of the human visual system has always
been a promising research topic. In fact, CNN itself borrows
the ideas of “local receptive fields”, “shared weights”, “spa-
tial pooling”, etc., from the properties of the primate visual
cortex.

In recent decades, multi-disciplinary research efforts from
neuroscience, physiology, psychology, etc., have discovered
that object recognition in the human visual cortex is modu-
lated via the ventral stream [Gross, 1994; Miyashita, 1993],
starting from the primary visual cortex (V1) through extras-
triate visual areas I (V2) and IV (V4), to the inferotemporal
cortex (IT), and then to the PreFrontal Cortex (PFC). Through
this layered structure, raw neuronal signals from the retina
are gradually transformed into higher level representations
that are discriminative enough for accurate and speedy ob-
ject recognition. Research studies have revealed a category-
selective property of the neuron population in the IT layer.
More specifically, although each neuron’s response in the IT
layer is not unique to a specific class of objects, it responds
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Figure 1: The category-selective property of one typical neu-
ron in IT. (A) Poststimulus spike histogram from an example
IT neuron to one object image (a chair) that was most effec-
tive among 216 tested object images. The responses in the
gray time window are averaged. (B) The mean responses of
the same IT neuron to each of 216 object images. As is typi-
cal, the neuron responded strongly to 10% of object images
in some categories (four example images of nearly equal ef-
fectiveness are shown) and was suppressed below background
rate by other objects belonging to other categories (two exam-
ple images shown). This figure is from [DiCarlo et al.,2012].

only to about 10% of all the object categories in the real
world, and remains inactive in response to the rest [DiCarlo
et al., 2012]. Through this category-selective property, ob-
ject identity of the input signal becomes available at the IT
layer [DiCarlo et al., 2012]. Figure 1 shows the category-
selective property of a sample IT neuron.

Inspired by the above property of the IT neuron popula-
tion, we propose to improve DCNN models by enforcing the
neuron responses at the top DCNN layer to be category se-
lective. To achieve this, we propose an enhancing cost func-
tion named the Sparse Category-Selective Objective Func-
tion (SCSOF) by using the L2,1 Norm to modulate the neu-
ron outputs at the top DCNN layer. When the SCSOF is used
together with other classification cost function, e.g. K-L di-
vergence, the performance can be greatly improved. Our pro-
posed DCNN performance improvement method is indepen-
dent of any choice of DCNN model. As experimental re-
sults show, when applying the proposed method to the cur-
rent state-of-the-art DCNN models, image classification per-
formances are remarkably improved on several benchmark
datasets. To summarize, the contributions of this paper are
as follows:

• We propose to improve a DCNN model by enforcing the
top-layer’s activation to be category-selective. Since no
assumption is made to the DCNN architecture, the pro-
posed principle borrowed from the ventral visual stream
is generic and can be applied to different DCNN models;

• We propose the SCSOF by using the L2,1 norm to modu-
late the neuron outputs at the top DCNN layer. This ap-
proach makes an explicit analogy between the model’s
top layer neuron responses and those of the IT neu-
ronal population. The enhancing cost function implicitly
propagates into the learned model parameters, such that
the extracted features at the model’s top-layer present
clear category-selectivity;

• Experimental results validate that the category-selective

property is achievable via the proposed enhancing cost
function. Besides, experimental results on four bench-
mark datasets show superior performances over existing
DCNN models.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews the related works. Section 3 presents the pro-
posed DCNN performance improvement method. Experi-
mental results are shown in Section 4. And we draw the con-
clusion in Section 5.

2 Related Works
Methods which improve the performance of DCNN mod-
els mainly include increasing the model complexity [Si-
monyan and Zisserman, 2015; Szegedy et al., 2015], en-
larging the training data [Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015] and exploiting well-designed loss func-
tions [Chopra et al., 2005; Schroff et al., 2015] and training
techniques [Hinton et al., 2012; Wan et al., 2013]. In this
section, we focus on reviewing more relevant works which
improve the DCNN models when a specific network and the
training data is given. Conventionally, the K-L divergence
combined with the softmax activation function is adopted
to measure the distance between the predicted label and the
groundtruth. Contrastive loss function is well-designed for
the so-called Siamese Network [Chopra et al., 2005] which
outputs one or zero for the intra-class pair and inter-class pair
input, respectively. Further, the triplet-loss function mini-
mizes the distance between the anchor point and the positive
point and maximizes that between the anchor point and the
negative point simultaneously, which is elaborated for triplet
inputs [Schroff et al., 2015]. Both the contrastive loss func-
tion and triplet-loss function are well-designed for the task of
verification and can not be used for the more generic image
classification task. While in this paper, we propose an en-
hancing objective function which can be used for the classifi-
cation task when combined with a conventional cost function,
e.g. the K-L divergence with the softmax activation.

Specifically, we borrow the category-selective property
which means that an IT neuron’s response to visual input is
very sparse with respect to categories (or groups). We simu-
late this category-selective property using the group-sparsity
model. In fact, the sparsity and group sparsity prior has
been widely used in feature selection and learning litera-
ture. [Zhao et al., 2015] proposed to tackle the heterogeneous
feature selection problem by using sparse group LASSO. A
weight vector is derived to indicate the importance of the fea-
ture groups and feature groups with large weights are con-
sidered more relevant and thus are selected. [Dong et al.,
2011] proposed a new classification method called locality-
constrained group sparse representation for the task of human
gait recognition. Each probe video is classified by minimiz-
ing the weighted mix-norm-regularized reconstruction error
with respect to the gallery videos. [Sun and Ponce, 2013]
utilized a group sparse regularizer to jointly select and opti-
mize a set of discriminative part detectors in a max-margin
framework. [Gregor et al., 2011] proposed a method for
structured sparse coding and dictionary design via lateral in-
hibition. [Stevens et al., 2013] described a learning algorithm
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which efficiently learns a sparse ranking function by using a
domination loss. While in this paper, to the best of our knowl-
edge, we are the first to propose using L2,1 norm to modulate
the top layer of a ConvNet. The next section elaborates the
proposed Sparse Category-Selective Objective Function and
how we introduce it into a DCNN model.

3 Category-Selectivity in DCNN
In order to enforce the category-selective property, we focus
on modulating the top layer’s neuron outputs during the train-
ing phase. Specifically, the Sparse Category-Selective Objec-
tive Function based on the L2,1 norm is combined with the
standard objective function, as elaborated in the next subsec-
tion.

3.1 Framework and Formulation
For clarity, firstly we introduce the objective function of
a conventional DCNN model. Let S = {(Xi, yi), i =
1, · · · , N} denote the input training data set, where Xi 2 Rn

denotes the ith input datum, yi 2 {1, · · · ,K} denotes its
ground-truth label, and K is the number of classes. The goal
of DCNN training is to learn layers of weights that minimize
the classification error from the output layer. In the following
discussion, the bias terms are absorbed into the weight pa-
rameters for simplicity. A recursive function for an M-layer
CNN model can be defined as follows:

Z(0) ⌘ X (1)

Z(m) = W(m) ⇤ Z(m�1) (2)

A(m) = f(Z(m)) (3)

where m = 1, · · · ,M , M denotes the number of layers,
W(m) the weights to be learned, Z(m) the feature maps gen-
erated at layer m, f(·) is an element-wise nonlinear activation
function, e.g. sigmoid, tanh or ReLU transfer function, or a
pooling function on Z(m), and A(m) denotes the responses
after nonlinear activation or pooling. The entire set of weights
can be denoted as W = [W(1), · · · ,W(M)].

The objective function of the conventional DCNN model
can be written as

L(W) =
NX

i=1

L(Xi, yi) + �
MX

m=1

||W(m)||2 (4)

where L(Xi, yi) is the classification error for sample Xi,
||W(m)||2 is the weight decay term on the mth layer, and � is
a parameter to balance the classification error on the training
data set and the model parameters.

Assume that we are enforcing the category-selective prop-
erty on the mth layer of the DCNN model. Denote the neu-
ron outputs of the mth layer on the entire training set by
Am 2 Rp⇥N , where p is the number of neurons in the layer,
N is the number of training samples. Therefore each col-
umn i of Am represents the responses from all the neurons
in the mth layer to the ith sample, and each row j represents
the responses of one specific neuron j on the entire training
set. The category-selective property is enforced as the Sparse
Category-Selective Objective Function which is denoted as

l(Am,y) where y contains all labels of the training dataset.
Thus the complete cost function turns into

L(W) =
NX

i=1

L(Xi, yi) + �
MX

m=1

||W(m)||2 + �l(Am,y)

(5)

where � and � adjust the weight decay term and the Sparse
Category-Selective Objective Function, respectively. In
the next subsection, we elaborate on the Sparse Category-
Selective Objective Function l(Am,y).

3.2 Sparse Category-Selective Objective Function
As Figure 1 depicts, a single IT neuron has the category-
selective property such that it only responds strongly to about
10% of object categories and is suppressed below the back-
ground rate by the others [DiCarlo et al., 2012]. In other
words, an IT neuron’s response to visual inputs is very sparse
with respect to categories (or groups). In practice, the L2,1

norm is the most popular mathematical tool for enforcing the
group sparsity. Therefore, we define the third term in Eqn.(5)
as follows:

l(Am,y) =
pX

i=1

KX

k=1

vuut
NX

j=1,j2!k

a2ij , (6)

where aij denotes the element (i, j) of Am, !k represents
training samples belonging to the kth category, and p, K, N
have the same meanings as in Section 3.1. Note that each row
j of Am represents the responses of one specific neuron j on
the entire training set. For each neuron j, we first calculate
the L2 norm of its response values for all the training samples
belonging to category !k. Then the L2 norm values across
all the categories !1, . . . ,!K of the training set are added up
together to achieve the L2,1 norm computation.

Note that Am depends on W(1), · · · ,W(m) and is inde-
pendent of W(m+1), · · · ,W(M). Hence directly regulariz-
ing Am will affect the weights from layer 1 to m via gradient
backpropagation. Since the IT area is near the final stage of
the visual processing stream, we enforce the category selec-
tive property on the top layer of DCNN. In our experiments,
m is taken as M or M � 1. The next subsection elaborates
how to optimize Eqn.(5).

3.3 Implementation Details
The Back-propagation algorithm is adopted to calculate the
gradient with respect to the weights of the DCNN model. In
Eqn.(5), the gradient of the classification error term and the
weight decay term is straightforward, and here we focus on
obtaining the derivation of the third term, the gradient of the
Sparse Category-Selective Objective Function l(Am,y).

For clarity, we neglect the superscription m in Am. Denote
Am as A and let A = [�!a1, · · · ,�!aN ]. For the ith row of A, we
calculate the L2 norm of samples belonging to each category
and denote the K dimensional vector as

�!
bi

�!
bi = [bi1, bi2, · · · , biK ] (7)
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where

bik =

vuut
NX

j=1,j2!k

a2ij (8)

for k = [1, · · · ,K] and i = [1, · · · , p].
Let

�!
Ij = [0, · · · , 1, · · · , 0] denote the vectorized label of

the jth sample, which is encoded by the “one of c” coding
method. The gradient of the Sparse Category-Selective Ob-
jective Function with respect to the jth column of A is calcu-
lated by

@l(Am,y)

@�!aj
= diag(

1
�!
Ij ·

�!
b1 + ✏

, · · · , 1
�!
Ij ·

�!
bp + ✏

)⇥�!aj

(9)

where ✏ denotes a very small positive number which pre-
vents the divider from being 0. According to Eqn.(9), the
Sparse Category-Selective Objective Function information
can be easily propagated to previous layers based on the
Back-propagation algorithm.

In practice, we calculate the gradients on the mini-batch
training samples in order to be compatible with the stochastic
gradient descent method. In the next section, we show that by
using the proposed SCSOF, the category selective property of
the neuron responses is more apparent on the test set. More
importantly, the recognition performance can be remarkably
improved. The implementation is based on the Caffe [Jia et

al., 2014] package.

4 Experimental Evaluations
4.1 Overview
To evaluate the effectiveness of the proposed SCSOF for
improving object recognition performances of CNN mod-
els, we conduct experimental evaluations using shallow and
deep models, respectively. As for shallow model, we
choose the named “Quick” model 1 provided by the official
Caffe [Jia et al., 2014] package and evaluate it on three bench-
mark datasets, namely CIFAR-10, CIFAR-100 and SVHN.
While as for deep model, the well-known “Network In Net-
work”(NIN) [Min Lin, 2014] model is adopted and four
benchmark datasets, namely CIFAR-10, CIFAR-100, SVHN
and MNIST, are tested, the same as that in [Min Lin, 2014].
Note that we did not test the “Quick” model on the MNIST
dataset because the “Quick” model requires 32⇥ 32 color in-
put samples while the samples on MNIST are 28 ⇥ 28 gray
images. For “Quick” model, the weight decay coefficient �
is set to 0.004, the momentum is set to 0.9. The initial learn-
ing rate is set to 0.001 and decreased by a factor of 10 for
every 8,000 iterations. The training process is finished over
30,000 iterations. For “NIN” model, we strictly follow the
settings as in [Min Lin, 2014] for each dataset. The only
hyper-parameter � introduced by the proposed SCSOF is em-
pirically set to [10�6, 10�4].

1The model is available in the Caffe package.

4.2 Datasets
We evaluate the proposed SCSOF on four widely used bench-
mark datasets, namely CIFAR-10, CIFAR-100, MNIST and
SVHN. The reason for choosing these datasets is because they
contain a large amount of small images (about 32⇥32 pixels),
so that models can be trained by using computers with mod-
erate configurations within reasonable time frames. Because
of this, the four datasets have become very popular choices
for deep network performance evaluations in the computer
vision and pattern recognition research communities. Firstly,
we describe the datasets in this subsection and then report the
results in the following subsections.

CIFAR-10 Dataset. The CIFAR-10 dataset is composed
of 10 classes of natural images, 50,000 for training and
10,000 for testing. Each image is 32⇥ 32 in size and in RGB
format.

CIFAR-100 Dataset. The CIFAR-100 dataset has the
same image size and format as the CIFAR-10 dataset, but it
contains 100 classes. The number of images in each class is
one tenth of those in the CIFAR-10 dataset. Also, this dataset
contains 50,000 images for training and 10,000 images for
testing.

MNIST Dataset. The MNIST dataset consists of 0-9 hand
written digits which are 28 ⇥ 28 gray images. There are
60,000 training samples and 10,000 testing samples in total.

SVHN Dataset. The Street View House Numbers(SVHN)
dataset, obtained by extracting house numbers from the
Google Street View images, is composed of 630,420 32⇥ 32
color images, including the training set, testing set and an
extra set. Multiple digits may exist in the same image, and
the task of this dataset is to recognize the digit located at the
center of each image. It is similar in flavor to MNIST but
incorporates an order of magnitude more labeled data (over
600,000 digit images) and comes from a significantly harder,
unsolved, real world problem, i.e. recognizing digits and
numbers in natural scene images.

4.3 Experiments with shallow model
In this subsection, the named “Quick” model provided by the
official Caffe [Jia et al., 2014] package is selected as the base-
line model. This model consists of three convolution layers
and one fully connected layer. The baseline model adopts
the widely used classification cost function, i.e. softmax ac-
tivation plus KL-divergence cost function. Our method addi-
tionally enforces the proposed SCSOF on the last fully con-
nected layer. We compare the baseline model and the pro-
posed method on three datasets, namely CIFAR-10, CIFAR-
100, and SVHN dataset. Note that the MNIST dataset is not
tested as the inputs of this dataset are 28 ⇥ 28 gray images
while the “Quick” model requires inputs of 32⇥ 32 color im-
ages.

Experimental results of test set error rates on the three
datasets are shown in Table 1. From Table 1, it can be ob-
served that, compared with the baseline model, the proposed
SCSOF can remarkably reduce the test set error rates by
5.17% on CIFAR-10 dataset, 3.52% on CIFAR-100 dataset
and 3.59% on SVHN dataset, respectively. The performance
improvements demonstrate the effectiveness of the proposed
SCSOF.
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Table 1: Test set top-1 error rate of the proposed method on
Quick model.

Cost Function CIFAR10 CIFAR100 SVHN
KL-divergence 23.47 55.87 8.92
KL-divergence+SCSOF 18.3 52.35 5.33
gains 5.17 3.52 3.59

Table 2: Test top-1 error rate on CIFAR-10 dataset.
Algorithm Error rates
Stochastic Pooling [Zeiler and Fergus, 2013] 15.13
Maxout Networks [Goodfellow et al., 2013] 11.68
P. Maxout [Springenberg and Riedmiller, 2014] 11.35
NIN [Min Lin, 2014] 10.41
DSN [Lee et al., 2015] 9.78
Our method 9.52

4.4 Experiments with Deep model
In this subsection, we evaluate the SCSOF on the well-known
“NIN” models [Min Lin, 2014]. NIN model consists of 9
convolution layers and no fully connected layer. Indeed, it
is a very deep model, with 6 more convolution layers than
that of the “Quick” model. Similarly, the baseline NIN model
adopts softmax activation plus KL-divergence cost function
and our method additionally enforces the proposed SCSOF
on the last layer. Four widely used benchmark datasets, in-
cluding CIFAR-10, CIFAR-100, MNIST and SVHN, are used
to compare the baseline NIN model and the proposed method.

For fair comparison, we strictly follow the training and
testing protocols in [Min Lin, 2014]. The CIFAR-10 and
CIFAR-100 datasets are preprocessed by the global contrast
normalization and ZCA whitening as in [Min Lin, 2014],
no data whitening was applied for the MNIST dataset. For
SVHN, 400 samples per class selected from the training set
and 200 samples per class from the extra set were used for
validation, while the remaining 598,388 images of the train-
ing and the extra sets were used for training, which is also the
same with that in [Min Lin, 2014; Goodfellow et al., 2013;
Lee et al., 2015]. The validation set was only used for tuning
hyper-parameters and was not used for training the model.
Preprocessing of the dataset again follows [Min Lin, 2014;
Goodfellow et al., 2013; Lee et al., 2015].

The evaluation results are shown in Table 2, 3, 4, 5, in terms
of test set top-1 error rate on the four benchmark datasets, re-
spectively. It can be seen from these tables that, the proposed
method outperforms the baseline NIN model by 0.9% on the
CIFAR-10 dataset, 1.7% on the CIFAR-100 dataset, 0.5% on
the SVHN dataset and 0.17% on the MNIST dataset. The im-
provement on MNIST in terms of absolute percentage is not
very large, because the baseline NIN model already achieves
test error rate of 0.47%, which is almost a saturate accuracy
on this dataset. However, in terms of relative reductions of
test error rates, the number reached 36%, which is quite re-
markable.

In Table 2, 3, 4, 5, we also include the evaluation re-
sults of some representative methods, including Stochastic
Pooling [Zeiler and Fergus, 2013], Maxout Networks [Good-
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Figure 2: Visualization of neuron outputs. Each column i
corresponds to all the neural responses to test image i, and
each row j corresponds to the responses of neuron j to all the
images in the test set. Images in the test set are re-ordered
by group from category 1 to 10. (a) Neuron outputs with-
out SCSOF enforced. (b) Neuron outputs with SCSOF en-
forced on the last fully connected layer. The variance of each
neuron’s responses on a specific category in (a) is obviously
larger than that in (b). Due to the effect of SCSOF, the cate-
gory selectivity is more apparent in (b). Best viewed in elec-
tronic form.

fellow et al., 2013], Probability Maxout [Springenberg
and Riedmiller, 2014], Tree based priors [Srivastava and
Salakhutdinov, 2013], Multi-digit Recognition [Goodfellow
et al., 2014], DropConnect [Wan et al., 2013] and DSN [Lee
et al., 2015]. Additionally the proposed method outperforms
the state-of-the-art DSN [Lee et al., 2015] and it is worth
mentioning that DSN is also based on the NIN structure with
layer-wise supervision. The evaluation results can be sum-
marized from the following three aspects: 1) The proposed
SCSOF is model-independent and can be enforced on any
CNN models. 2) When combined with shallow CNN model,
the performance improvement is more remarkable. 3) Even
SCSOF is enforced on state-of-the-art CNN models, the per-
formance can be noticeably improved further.
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(a)

(b)

Figure 3: Feature visualization of the test dataset through t-
SNE. One point represents one sample and points with the
same color belong to the same class. (a) Features from the
“Quick” model on CIFAR-10 test set without SCSOF. (b)
Features from the “Quick” model with the SCSOF on the
last fully connected layer. Obviously, features learned with
SCSOF are more discriminant. Best viewed in electronic
form.

4.5 Visualization and Discussion
To gain some insights about what the proposed SCSOF does,
we visualize the top layer feature representations on which
the SCSOF is enforced. The last fully connected layer of
the “Quick” model on CIFAR-10 test set, with or without the
SCSOF enforced on, is selected to do the visualization.

At first, we reorder the test images category by category,
namely the first 1000 images are “airplanes”, the second 1000
images are “automobiles”, the subsequent 1000 images are
“birds”,. . ., etc. In Figure 2, each row represents the activa-
tion response of one neuron. As Figure 2 shows, the category
selective property is obviously more apparent if the proposed
SCSOF is enforced. Interestingly, one neuron in Figure 2 (b),
highlighted by a red ellipse, responds strongly to birds, cats,
deers, dogs, frogs, and horses, i.e. those animal classes, and
gets suppressed on non-animal classes. This shows that the
neuron learns some high level semantic information of ani-
mals due to the Sparse Category-Selective Objective Func-
tion.

Next we use the t-SNE [Van der Maaten and Hinton, 2008]
method to reduce the 64-D feature representations of the last

Table 3: Test top-1 error rate on CIFAR-100 dataset.
Algorithm Error rates
Learned Pooling [Malinowski and Fritz, 2013] 43.71
Stochastic Pooling [Zeiler and Fergus, 2013] 42.51
Maxout Networks [Goodfellow et al., 2013] 38.57
P. Maxout [Springenberg and Riedmiller, 2014] 38.14
Tree priors [Srivastava and Salakhutdinov, 2013] 36.85
NIN [Min Lin, 2014] 35.68
DSN [Lee et al., 2015] 34.57
Our method 34.03

Table 4: Test top-1 error rate on MNIST dataset.
Algorithm Error rates
Stochastic Pooling [Zeiler and Fergus, 2013] 0.47
Maxout Networks [Goodfellow et al., 2013] 0.45
NIN [Min Lin, 2014] 0.47
DSN [Lee et al., 2015] 0.39
Our method 0.30

Table 5: Test top-1 error rate on SVHN dataset.
Algorithm Error rates
Stochastic Pooling [Zeiler and Fergus, 2013] 2.80
Maxout Networks [Goodfellow et al., 2013] 2.47
P. Maxout [Springenberg and Riedmiller, 2014] 2.39
Multi Recognition [Goodfellow et al., 2014] 2.16
DropConnect [Wan et al., 2013] 1.94
NIN [Min Lin, 2014] 2.35
DSN [Lee et al., 2015] 1.92
Our method 1.90

fully connected layer to 2-D and visualize the feature distri-
bution in the 2-D space. It can be clearly seen from Figure 3
that features learned with the proposed SCSOF are more dis-
criminant compared with the baseline method.

5 Conclusion
In this paper, inspired by the category-selective property of
IT neuron population, we propose to improve DCNN mod-
els by enforcing the neuron responses at the top DCNN layer
to be category selective. Specifically, we propose the Sparse
Category-Selective Objective Function by using L2,1 Norm to
modulate the outputs at the top DCNN layer. The proposed
SCSOF is independent of any DCNN models and when it is
combined with shallower CNN model, the performance im-
provement is very remarkable and even when it is enforced on
state-of-the-art DCNN models, the performance can be fur-
ther improved noticeably.
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