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Abstract
Multi-task clustering improves the clustering per-
formance of each task by transferring knowledge
across related tasks. Most existing multi-task clus-
tering methods are based on the ideal assumption
that the tasks are completely related. However, in
many real applications, the tasks are usually par-
tially related, and brute-force transfer may cause
negative effect which degrades the clustering per-
formance. In this paper, we propose a self-adapted
multi-task clustering (SAMTC) method which can
automatically identify and transfer reusable in-
stances among the tasks, thus avoiding negative
transfer. SAMTC begins with an initialization by
performing single-task clustering on each task, then
executes the following three steps: first, it finds
the reusable instances by measuring related clusters
with Jensen-Shannon divergence between each pair
of tasks, and obtains a pair of possibly related sub-
tasks; second, it estimates the relatedness between
each pair of subtasks with kernel mean matching;
third, it constructs the similarity matrix for each
task by exploiting useful information from the other
tasks through instance transfer, and adopts spectral
clustering to get the final clustering result. Experi-
mental results on several real data sets show the su-
periority of the proposed algorithm over traditional
single-task clustering methods and existing multi-
task clustering methods.

1 Introduction
Traditional clustering algorithms deal with a single clustering
task on a single data set. However, the information in a single
data set may be too limited to help reveal the correct clus-
ter structure. Multi-task clustering improves the clustering
performance of each task by transferring knowledge across
related tasks. There are mainly two ways to transfer knowl-
edge in multi-task clustering [Pan and Yang, 2010]: instance

transfer reuses certain parts of the data from the other tasks
for each task; feature representation transfer learns a com-
mon feature representation among the related tasks. Most
existing multi-task clustering methods are based on the as-
sumption that the tasks are completely related, i.e., the label

spaces among the tasks are the same. However, in many real
applications, the tasks are usually partially related, i.e., only
parts of the label spaces among the tasks are the same. Trans-
ferring knowledge of instances not in the related label space
may degrade the clustering performance, this is referred to
as negative transfer

[Pan and Yang, 2010]. For example, if
we have two tasks to cluster web pages from two universi-
ties by institute, one university contains the web pages un-
der the institutes of Mathematics, Engineering and Medicine,
the other university contains the web pages under the insti-
tutes of Mathematics, Engineering and Business. Only the
web pages under the institutes of Mathematics and Engineer-
ing are reusable for multi-task knowledge transfer, and trans-
ferring knowledge of the web pages under the institutes of
Medicine and Business may cause negative effect.

Two kinds of multi-task clustering methods for partially re-
lated tasks based on some assumptions have been proposed:
1) MBC [Zhang and Zhang, 2010] and its improved versions
S-MBC and S-MKC [Zhang and Zhang, 2013] update the
clusters by learning the relationship between clusters of dif-
ferent tasks. However, they work for the case that the distribu-
tions of the tasks are the same or similar (most data points of
the tasks are from the same distribution); 2) MTRC [Zhang,
2015] learns the task relatedness through Gaussian prior, but
it is based on a strict assumption that all tasks have the same
cluster number and the label marginal distribution in each
task distributes evenly. In light of the limitations of the ex-
isting multi-task clustering methods, it is urgent to develop
a more general multi-task clustering method for partially re-
lated tasks.

In this paper, we propose a self-adapted multi-task clus-
tering (SAMTC) method which can automatically identify
and transfer reusable instances among the tasks, thus avoid-
ing negative transfer when the tasks are partially related. In
the multi-task setting, each task can be seen as a target task,
and the other tasks are source tasks. Based on the assumption
that if the given tasks are related, there are certain parts of
instances from the source tasks that can be reused for clus-
tering each target task [Pan and Yang, 2010]. The intention
of SAMTC is to identify such parts and transfer knowledge
among them. SAMTC begins with an initialization by per-
forming single-task clustering on each task, then executes
the following three steps. 1) Reusable instances finding:
it computes the distance of any two clusters between each
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pair of target task and source task with a common distribu-
tion measure Jensen-Shannon divergence [Lin, 1991], and
considers only the instances in the clusters closest to each
other reusable. Then it constructs a pair of target and source
subtasks with the obtained reusable instances. 2) Subtask re-
latedness learning: it calculates the weights of the instances
in the source subtask by performing kernel mean matching
[Huang et al., 2006] between each pair of target subtask and
source subtask. Then it estimates the relatedness of the source
subtask to the target subtask by the ratio of positive weighted
instances in the source subtask. 3) Clustering through in-
stance transfer: it constructs a similarity matrix for each
target task by exploiting useful information from the source
tasks through reusable instances transfer, then it adopts spec-
tral clustering to get the final clustering result. Experimen-
tal results on several real data sets show the superiority of
the proposed algorithm over traditional single-task clustering
methods and existing multi-task clustering methods.

2 Related Work
According to the basic assumptions, existing multi-task clus-
tering can be divided into two groups. The first group
of multi-task clustering methods are for completely related
tasks. The approach in [Gu and Zhou, 2009] learns a sub-
space shared by multiple related tasks. The algorithm in [Gu
et al., 2011] learns a kernel space in which the distributions
of the related tasks are close to each other and the geometric
structures of the original data are preserved. The method in
[Zhang and Zhou, 2012] learns a shared subspace in which
the distributions of the related tasks are close to each other.
The algorithm in [Xie et al., 2012] learns and refines the re-
lations of features among the related tasks by information
theoretic co-clustering. The method in [Gupta et al., 2013]
learns both the shared subspace and individual subspaces to
exploit the shared and individual aspects of the tasks. The
method in [Al-Stouhi and Reddy, 2014] introduces an inter-
task bias to reweight the distance between any two samples in
different tasks, and it can only deal with the binary clustering
problem. The convex discriminative multi-task feature clus-
tering method in [Zhang, 2015] learns the feature relatedness
through Gaussian prior. All of the methods above assume the
label spaces among the tasks are the same.

The second group of multi-task clustering methods are for
partially related tasks. The multi-task Bregman clustering
method in [Zhang and Zhang, 2010] alternatively updates the
clusters and learns the relationship between clusters of dif-
ferent tasks, and the two phases boost each other. It was
shown in [Zhang and Zhang, 2013; Zhang et al., 2015] that
the boosting may bring negative effect, thus two smart multi-
task clustering methods are proposed. The smart multi-task
Bregman clustering method can identify and avoid the neg-
ative effect. The smart multi-task Kernel clustering method
extends the smart multi-task Bregman clustering method such
that it can deal with non-linear separable data. But the three
methods above work for the case that the distributions of
the tasks are the same or similar. The convex discriminative
multi-task relationship clustering method in [Zhang, 2015]
learns the task relatedness which is in the form of a covari-

𝑪𝟏𝒕 𝑪𝟏𝒔

Target
task

Source
task

Target 
subtask

Reusable Instances Finding

𝑪𝟑𝒕

𝑪𝟐𝒕 𝑪𝟐𝒔

𝑪𝟏𝒔

𝑪𝟑𝒕

𝑪𝟐𝒕

𝑪𝟐𝒔

Source
subtask

Instance Transfer

𝑪𝟏𝒔

𝑪𝟑𝒕

𝑪𝟐𝒕

𝑪𝟐𝒔

Target 
subtask

Source
subtask

Figure 1: The illustration of the reusable instances finding
process. For the clusters in each pair of target task and source
task, we construct a directed graph, with the arrow pointing
to the closest cluster in the other task. The target subtask
and the source subtask are constructed by the instances in the
clusters that point to each other. Instance knowledge is only
transferred between the source and target subtasks.

ance matrix through Gaussian prior. But it is based on a strict
assumption that all tasks have the same cluster number and
the label marginal distribution in each task distributes evenly.

3 The Proposed Algorithm
3.1 Problem Formulation
We are given T clustering tasks, each with a set of points,
i.e. Xt

= {xt
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t

2, . . . , x
t
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t

} 2 Rd⇥n

t

(t = 1, . . . , T ), where
nt is the number of points in the t-th task, d is the dimen-
sionality of the feature vectors. Each data set Xt is to be
partitioned into h

t

clusters, i.e., Ct

= {Ct
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2, . . . , C
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}.
� : Rd ! H is a feature mapping into the Reproducing Ker-
nel Hilbert Space H. ceil(x) is the smallest integer not less
than the real number x. | · | denotes the sample number in a
set. Each pair of tasks Xt and Xs have a related pair of sub-
sets, i.e., the instances in these subsets have the same labels,
and the related subsets follow the similar distribution. Our
goal is to find these related subsets in the tasks and exploit
the relatedness among them to help improve the clustering
performance.

3.2 Algorithm Overview
SAMTC begins with an initialization by performing single-
task clustering on each task, e.g., the Normalized Cut spectral
clustering method with the Shared Nearest Neighbor similar-
ity [Jarvis and Patrick, 1973], then it executes the followings.

1) Reusable instances finding: this step is to find reusable
instances in the source tasks for each target task. Generally if
the tasks are related, there must exist some instances belong-
ing to the same topic among these tasks. Therefore, for each
target task, if we find the related clusters in its source tasks,
the instances in the related clusters are considered reusable
to the target task. To find the related clusters, we compute
the distance of any two clusters between the target and source
tasks through a commonly used symmetric and bounded dis-
tribution measure, i.e., the Jensen-Shannon divergence. Then
based on the assumption that only the clusters closest to each
other are possibly related, a pair of target and source sub-
tasks which consist of the possibly related clusters are ob-
tained, and instance knowledge is only transferred between

2358



the source and target subtasks. We give an illustration of the
reusable instances finding process in Figure 1.

2) Subtask relatedness learning: this step is to further ex-
plore the relatedness of the constructed subtasks based on the
first step. We use kernel mean matching to estimate the re-
latedness between them. Kernel mean matching is a method
for estimating the mathematical expectation of a particular
distribution by a weighted average of instances from another
distribution. In other words, given a pair of target subtask
and source subtask, kernel mean matching actively selects
representative (positive weighted) instances from the source
subtask to estimate the expectation of the target subtask dis-
tribution, which means that these selected representative in-
stances in the source subtask are potentially relevant to the
target subtask. Thus the relatedness of the source subtask to
the target subtask can be estimated by the ratio of representa-
tive instances in the source subtask.

3) Clustering through instance transfer: this step is to clus-
ter each target task by exploiting useful instance information
from its source tasks. We construct a similarity matrix for
each target task, with the similarity between any two data
points to be the normalized weighted number of shared near-
est neighbors from the target task itself and its source tasks.
For each data point in the target task, if it is in the target sub-
task, its nearest neighbors are computed in both the target
task itself and the corresponding source subtask; otherwise,
its nearest neighbors are computed only in the target task it-
self. Then we adopt the Normalized Cut spectral clustering
[Shi and Malik, 2000] to cluster each target task according to
the learned similarity matrix. Through such a similarity con-
struction, not only the useful instance information from all
the tasks is used, but the independence of the clustering for
each task is also ensured.

3.3 Reusable Instances Finding
For each target task Xt, we are going to find the related
clusters from each source task Xs, and only the instances
in the related clusters of the source task Xs are considered
reusable to the target task Xt. We compute the distance of
any two clusters between the target task Xt and source task
Xs through Jensen-Shannon divergence [Lin, 1991].
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where P
C

t

i

and P
C

s

j

are the probability distributions of clus-
ter i in the target task Xt and cluster j in the source task
Xs respectively, D(P ||Q) denotes the Kullback-Leibler di-
vergence [Kullback and Leibler, 1951] between two proba-
bility distributions P and Q. For continuous probability dis-
tributions P and Q with the variable x in a domain D, the
Kullback-Leibler divergence is defined as

D(P ||Q) =

Z

D
f(x) log

f(x)

g(x)
dx, (2)

where f(x) and g(x) are the probability density functions of
the probability distributions P and Q. D(P ||Q) can also be
expressed as

D(P ||Q) = E


log

f

g

�
, (3)

which is the expectation of the logarithmic difference be-
tween the distributions P and Q. Given a sample set B from
distribution P , according to the law of large numbers and
Eq.(3) [Jiang et al., 2013], D(P ||Q) can be estimated by

D(P ||Q) =

1
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X
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log
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nel density estimation [Silverman, 1986]. In kernel density
estimation, kernels are used to estimate the probability den-
sity function of a random variable. We use the most common
Gaussian kernel in this paper, then we get the probability den-
sity function f

C
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(x) in Eq.(5).
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where x = (x.D1, x.D2, . . . , x.Dd

)

T is a d-dimensional
sample, the bandwidth h

j

which determines the amount of
smoothing is set as h

j

= 1.06 ⇥ �|Ct

i

|� 1
5 according to the

Silverman’s rule of thumb [Silverman, 1986], � is the stan-
dard deviation of the samples of Ct

i

.
After computing the distance of any two clusters between

each pair of target task Xt and source task Xs through
Jensen-Shannon divergence in Eq.(1), we construct each pair
of target subtask Zt and source subtask Zs by only retaining
the clusters closest to each other.

3.4 Subtask Relatedness Learning
We exploit kernel mean matching [Huang et al., 2006] to
learn the relatedness between each pair of target subtask Zt

and source subtask Zs. To estimate the mathematical ex-
pectation of the distribution of the target subtask Zt by a
weighted average of instances from its source subtask Zs, we
have

min

�

������

ñ
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where � 2 Rñ

s

is a reweighting factor for the source subtask
Zs. zs

i

and zt
j

are the data points in the source subtask Zs and
the target subtask Zt respectively, ñs and ñt are the numbers
of data points in the source subtask Zs and the target subtask
Zt respectively. Eq.(6) can be rewritten as
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. Eq.(7) is a quadratic program which can be solved by
the off-the-shelf quadratic programming solver in MATLAB.
However, when the number of the processed data is large, it is
computationally expensive. Fortunately, Eq.(7) can be solved
efficiently by the Frank-Wolfe algorithm [Wen et al., 2015].

After � is calculated, we estimate the relatedness R
(t)
s

of
the source subtask Zs to the target subtask Zt by the ratio
of positive weighted instances in the source subtask Zs by
Eq.(8). Note that the relatedness metric in Eq.(8) is asym-
metric, i.e., R(t)

s

6= R
(s)
t

.

R(t)
s
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|{i|�
i

> 0, i = 1, . . . , ñs}|
ñs

, s.t. s 6= t. (8)

3.5 Clustering through Instance Transfer
For each target task Xt, we construct a similarity matrix W t

with the similarity between any two data points xt

i

and xt

j

to
be the normalized weighted number of shared nearest neigh-
bors. The reusable instances are transferred to take part in
the calculation of the nearest neighbors. Then we perform
the Normalized Cut spectral clustering on each target task Xt

according to the similarity matrix W t. To construct W t, for
each data point xt

i

in the target task Xt, we compute its near-
est neighbors as follows. For each source task Xs:

1) If xt

i

is in the target subtask Zt, its nearest neighbors
consist of two parts: the nearest neighbors in the target task
Xt itself, and the nearest neighbors in the source subtask Zs.
To compute the nearest neighbors N (t)

t

(xt

i

) in the target task
Xt itself, we choose the distance measurement that adapts
to the data set to compute k

(t)
t

nearest neighbors from Xt

(e.g., for document data sets, we could choose cosine simi-
larity, while for music analysis, we could choose the Itakura-
Saito divergence), where k

(t)
t

is a parameter to determine the
number of nearest neighbors in Xt. To compute the near-
est neighbors N (t)

s

(xt
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) in the source subtask Zs, we map the
data points in the target subtask Zt and the source subtask Zs

to a same feature space, i.e., the Reproducing Kernel Hilbert
Space H. Then we use the kernel trick (Gaussian kernel simi-
larity) to compute k(t)

s

nearest neighbors from Zs, where k(t)
s

is a parameter to determine the number of nearest neighbors
in Zs. 2) If xt

i

is not in the target subtask Zt, its nearest neigh-
bors are computed only in the target task Xt itself. We choose
the distance measurement that adapts to the data set to com-
pute the nearest neighbors set N (t)

t

(xt
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) which contains k
(t)
t

nearest neighbors from Xt. And we set N (t)
s
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) = ; since
there are no related instances in the source task Xs.
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Algorithm 1 SAMTC
1: Input: T tasks {Xt}T

t=1, clustering numbers of all tasks {h
t

}T

t=1, the number
of nearest neighbors k

(t)
s

(s, t = 1, 2, . . . , T ). Initialize the partitions of each
task X

t: Ct = {Ct

1, C
t

2, . . . , C
t

h

t

} by the Normalized Cut spectral clustering
method with the Shared Nearest Neighbor similarity.

2: Output: Partitions {C(t)}T

t=1.
3: for t = 1 to T do
4: for s = 1 to T do
5: if s 6= t then
6: Reusable Instances Finding:
7: Compute the distance between any two clusters Ct

i

and C

s

j

by Eq.(1).
8: Construct the target subtask Z

t and the source subtask Z

s with the in-
stances in the clusters closest to each other.

9: Subtask Relatedness Learning:
10: Compute the relatedness R

(t)
s

of the source subtask Z

s to the target
subtask Z

t by Eq.(8).
11: Clustering through Instance Transfer:
12: Compute N (t)

s

(xt

i

) by Gaussian kernel similarity if xt

i

2 Z

t, where
N (t)

s

(xt

i

) is the set of k(t)
s

nearest neighbors in Z

s for xt

i

.
13: end if
14: end for
15: end for
16: Clustering through Instance Transfer:
17: for t = 1 to T do
18: Compute N (t)

t

(xt

i

) which contains k(t)
t

nearest neighbors in X

t for xt

i

.
19: Construct a similarity matrix W

t by Eq.(9).
20: Apply the Normalized Cut spectral clustering method to get the partition C

(t).
21: end for
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), otherwise we set
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bined nearest neighbors in the task Xs between xt
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and
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2 N (t)
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), otherwise
union
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) = ;. The denominator in Eq.(9) is to
normalize the weighted number of shared nearest neighbors.
Since for each pair of data points xt

i

and xt

j

, if either of them
is not in the target subtask Zt, the numerator in Eq.(9) which
represents the weighted number of shared nearest neighbors
between them will be much smaller than that between the data
points which are both in the target subtask Zt.

In summary, the overall process of the proposed SAMTC
algorithm is listed in Algorithm 1. Denote d as the feature
number, n as the sample number, the overall time complexity
of SAMTC is O(n3

+n2d), which is comparable to the exist-
ing multi-task clustering methods. Moreover, the large-scale
spectral clustering methods such as [Chen and Cai, 2011] can
be applied to SAMTC to deal with large-scale data.

4 Experiments
4.1 Baselines and Evaluation Metrics
We compare the SAMTC method with typical single-task
clustering methods k-means and Normalized Cut spectral
clustering with Shared Nearest Neighbor similarity (Ncut-
SNN) [Shi and Malik, 2000], which is a single-task version of
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Table 1: Data Sets
Data set Task id Categories(#Sample) #Feature

WebKB-c

Task 1 C1: Cornell.course(44) C2: Cornell.faculty(34) C3: Cornell.project(20) C4: Cornell.student(127) 2500
Task 2 C1: Texas.course(38) C2: Texas.faculty(46) C3: Texas.project(20) C4: Texas.student(146) 2500
Task 3 C1: Washington.course(77) C2: Washington.faculty(31) C3: Washington.project(21) C4: Washington.student(126) 2500
Task 4 C1: Wisconsin.course(85) C2: Wisconsin.faculty(42) C3: Wisconsin.project(25) C4: Wisconsin.student(154) 2500

WebKB-p1

Task 1 C1: Cornell.faculty(34) C2: Cornell.project(20) C3: Cornell.student(127) 2500
Task 2 C1: Texas.course(38) C2: Texas.project(20) C3: Texas.student(146) 2500
Task 3 C1: Washington.course(77) C2: Washington.faculty(31) C3: Washington.student(126) 2500
Task 4 C1: Wisconsin.course(85) C2: Wisconsin.faculty(42) C3: Wisconsin.project(25) 2500

WebKB-p2

Task 1 C1: Cornell.faculty(34) C2: Cornell.project(20) 2500
Task 2 C1: Texas.course(38) C2: Texas.project(20) C3: Texas.student(146) 2500
Task 3 C1: Washington.course(77) C2: Washington.student(126) 2500
Task 4 C1: Wisconsin.course(85) C2: Wisconsin.faculty(42) C3: Wisconsin.project(25) 2500

NG-p1 Task 1 C1: Comp.sys.ibm.pc.hw(392) C2: Rec.sport.baseball(396) C3: Sci.med(392) 3000
Task 2 C1: Rec.sport.hockey(399) C2: Sci.space(392) C3: Talk.religion.misc(250) 3000

NG-p2 Task 1 C1: Comp.graphics(387) C2: Rec.auto(395) C3: Sci.crypt(395) 3000
Task 2 C1: Comp.os.ms-win.misc(391) C2: Rec.motocycle(397) C3: Sci.electronics(393) C4: Talk.politic.mideast(376) 3000

Reuters-p1
Task 1 C1: Economic index.gnp(63) C2: Energy.crude(321) C3: Food.cocoa(53) 8121
Task 2 C1: Economic index.cpi(60) C2: Energy.nat gas(33) C3: Metal.iron steel(37) 8121
Task 3 C1: Economic index.ipi(36) C2: Metal.copper(44) C3: Food.sugar(114) 8121

SAMTC. We also compare SAMTC with the multi-task clus-
tering methods which work for completely related tasks: the
shared subspace learning multi-task clustering (LSSMTC)
method [Gu and Zhou, 2009] and the convex discriminative
multi-task feature clustering (MTFC) method [Zhang, 2015].
More importantly, we compare SAMTC with the multi-task
clustering methods which work for partially related tasks:
the smart multi-task clustering (S-MBC and S-MKC) meth-
ods [Zhang and Zhang, 2013], and the convex discriminative
multi-task relationship clustering (MTRC) method [Zhang,
2015]. In addition, we evaluate SAMTC without using the
Reusable Instances Finding term (SAMTC-nr) and the Sub-
task Relatedness Learning term (SAMTC-ns) respectively.

We adopt two performance measures in [Xu et al., 2003]:
clustering accuracy (Acc) and normalized mutual information
(NMI) to evaluate the clustering results.

4.2 Data Sets
We use data sets WebKB4, 20NewsGroups and Reuters1 to
construct the multi-task data sets in three typical cases (Table
1). The first case is that the tasks are completely related. We
construct WebKB-c to represent this case. The second case
is that the tasks are partially related and the cluster numbers
in all the tasks are the same. We construct WebKB-p1, NG-
p1 and Reuters-p1 to represent this case. The third case is
that the tasks are partially related and the cluster numbers in
all the tasks are not the same. We construct WebKB-p2 and
NG-p2 to represent this case.

4.3 Parameter Setting
For the parameters, we apply grid searching [Gu and Zhou,
2009] to identify the optimal values. For SAMTC, the
number of nearest neighbors k

(t)
s

(s 6= t) is set by search-
ing the grid {ceil( ñ

s

2⇥h̃

s

), ceil( ñ
s
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where ñs and ˜h
s

are the numbers of data points and clus-
ters in the source subtask Zs respectively; the distance mea-
surement during computing the nearest neighbors N (t)

t

(xt

i

)

1http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

is cosine similarity. For SAMTC and Ncut-SNN, the num-
ber of nearest neighbors k

(t)
t

is set by searching the grid
{ceil( n

t

2⇥h

t

), ceil(n
t

h

t

),min(ceil( 2⇥n

t

h

t

), nt � 1)}. For S-
MKC and SAMTC, the Gaussian kernel bandwidth is the
median Euclidean distance between the data points. For
S-MBC, the Bregman divergence we choose is Euclidean
distance. For LSSMTC, the parameter � is searched from
{0.1, 0.2, . . . , 0.9}, the dimensionality of the shared subspace
is searched from {2, 4, 6, 8, 10}. For MTFC and MTRC, �1

and �2 are both searched from {2�10, 2�8, . . . , 2�2}. For S-
MBC and S-MKC, � is searched from {0.1, 0.2, . . . , 1}.

Since MTFC and MTRC are convex optimization meth-
ods, we perform them once under each parameter setting, and
show the clustering results under the best parameter setting.
For the other methods, we repeat each method 10 times under
each parameter setting, and show the mean clustering results
and the standard deviations under the best parameter setting.
As LSSMTC, MTFC and MTRC can only apply to the case
that the cluster numbers of all the tasks are the same, we per-
form them on WebKB-c, WebKB-p1, NG-p1 and Reuters-p1.

4.4 Clustering Results
From the clustering results shown in Table 2 and Table 3, the
following observations could be made.

1. SAMTC performs better than the single-task cluster-
ing methods such as k-means and Ncut-SNN, since SAMTC
exploits the information across the related subtasks, whereas
the single-task clustering methods only utilize the informa-
tion within each task.

2. LSSMTC and MTFC always perform better than the
single-task clustering methods on WebKB-c, whereas they
may perform worse than the single-task clustering methods
on the other data sets. This is because that LSSMTC and
MTFC work for completely related tasks such as WebKB-c.
For the other data sets in which the tasks are partially related,
they may suffer from negative transfer.

3. S-MBC and S-MKC generally perform worse than the
other multi-task clustering methods, because they require the
distributions of the tasks to be the same or similar (and the
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Table 2: Clustering Results on WebKB-c, WebKB-p1, NG-p1 and Reuters-p1
Data set Task.Eval. k-means Ncut-SNN LSSMTC MTFC MTRC S-MBC S-MKC SAMTC-nr SAMTC-ns SAMTC

WebKB-c

T1.Acc(%) 61.4± 2.6 59.5± 7.3 63.1± 6.2 75.1 40.9 57.9± 8.4 47.0± 2.2 66.7± 3.8 69.6± 5.0 71.5± 6.4
T1.NMI(%) 16.2± 3.4 27.7± 5.9 27.9± 3.9 38.3 13.6 25.0± 2.8 19.8± 4.1 36.6± 2.8 36.0± 4.6 39.4± 3.1
T2.Acc(%) 48.7± 7.5 56.6± 7.5 63.0± 4.2 68.8 45.6 63.8± 7.4 45.1± 4.5 68.8± 4.0 69.2± 6.3 70.3± 4.8
T2.NMI(%) 13.1± 4.4 25.2± 7.2 27.6± 2.2 36.8 17.0 27.0± 2.2 22.8± 4.3 38.6± 4.7 39.4± 6.6 40.0± 8.8
T3.Acc(%) 53.9± 3.2 52.5± 5.1 57.5± 5.5 62.4 60.0 57.8± 5.4 49.3± 5.9 58.3± 2.7 60.1± 6.8 66.3± 6.1
T3.NMI(%) 11.8± 3.4 26.1± 7.9 27.2± 4.5 30.0 46.6 26.7± 3.4 23.7± 7.2 30.3± 2.5 31.7± 6.4 35.3± 2.8
T4.Acc(%) 60.5± 6.0 65.7± 6.5 68.9± 8.0 71.2 55.9 70.8± 6.6 52.9± 3.7 71.9± 3.9 73.1± 4.4 76.1± 5.5
T4.NMI(%) 21.2± 10.6 35.1± 5.8 36.5± 4.1 49.4 36.9 39.4± 5.5 31.4± 3.1 47.9± 5.3 48.1± 3.7 49.4± 4.8

WebKB-p1

T1.Acc(%) 62.2±6.9 60.4± 3.9 65.3± 4.2 65.2 48.6 67.2± 1.8 46.2± 2.8 67.6± 4.4 68.8± 4.0 74.5± 5.1
T1.NMI(%) 12.9± 5.7 13.2± 2.7 8.2± 4.0 21.6 19.3 10.0± 4.9 11.2± 2.1 19.0± 3.2 18.0± 4.1 22.5± 5.1
T2.Acc(%) 69.5± 9.3 69.7± 3.1 70.2± 1.3 57.4 54.9 75.8± 1.6 50.8± 5.7 78.5± 4.9 75.9± 3.1 80.7± 7.5
T2.NMI(%) 15.6± 4.4 42.0± 4.1 29.0± 3.4 36.3 14.2 34.7± 6.2 19.5± 8.6 47.8± 5.5 46.4± 4.1 53.6± 7.4
T3.Acc(%) 57.3± 4.7 71.1± 2.4 65.6± 4.0 59.0 76.9 64.7± 6.3 59.5± 1.9 74.3± 0.8 76.1± 0.0 79.1± 0.0
T3.NMI(%) 11.7± 7.6 36.2± 2.8 30.6± 3.2 33.4 53.5 29.7± 4.1 32.2± 2.9 39.0± 2.1 42.0± 0.0 44.2± 0.0
T4.Acc(%) 52.8± 6.4 76.8± 3.8 76.6± 2.1 78.3 58.6 74.5± 4.6 65.1± 5.1 81.4± 1.6 83.6± 1.8 84.3± 1.0
T4.NMI(%) 10.8± 2.8 53.0± 3.6 52.4± 4.1 46.3 47.0 50.4± 6.6 37.8± 3.3 58.1± 1.3 63.5± 3.6 64.5± 3.1

NG-p1

T1.Acc(%) 35.6± 0.5 72.7± 2.5 42.8± 2.2 85.2 92.7 44.9± 3.3 63.6± 2.9 83.7± 5.9 82.3± 5.4 86.6± 0.3
T1.NMI(%) 6.2± 1.6 47.8± 5.9 13.5± 1.4 55.0 72.4 19.0± 2.0 31.2± 2.9 57.7± 4.3 55.7± 3.6 60.3± 1.0
T2.Acc(%) 33.8± 2.0 75.6± 4.1 53.8± 12.5 68.1 79.3 76.6± 10.1 62.2± 7.9 79.6± 4.8 80.3± 3.7 83.9± 1.4
T2.NMI(%) 16.7± 2.3 50.1± 6.1 16.4± 13.3 35.1 43.1 41.8± 10.2 34.2± 6.5 54.0± 5.4 54.4± 4.6 57.3± 3.8

Reuters-p1

T1.Acc(%) 73.9± 8.7 80.0± 8.0 73.8± 11.3 81.2 60.0 80.0± 9.0 68.0± 2.9 83.6± 9.6 82.4± 7.0 86.8 ± 7.4
T1.NMI(%) 27.7± 17.8 58.8± 12.3 46.4± 2.7 16.1 34.6 56.6± 2.2 42.4± 1.4 62.8± 12.3 59.8± 10.5 63.1± 12.4
T2.Acc(%) 61.8± 14.9 88.9± 10.0 87.9± 12.2 93.1 81.5 88.2± 12.2 91.3± 2.6 86.5± 1.0 81.5± 6.0 93.2± 1.2
T2.NMI(%) 39.2± 25.4 72.7± 12.1 75.0± 13.9 75.8 64.1 74.5± 11.1 74.4± 6.4 62.0± 2.3 55.4± 0.9 77.3 ± 4.0
T3.Acc(%) 65.0± 10.3 87.3± 10.6 77.1± 12.7 93.1 81.5 80.6± 10.6 69.2± 7.9 91.2± 5.3 90.9± 7.2 94.4± 3.5
T3.NMI(%) 30.4± 18.6 67.5± 19.7 50.9± 15.1 75.8 64.1 56.7± 12.7 42.9± 8.6 74.4± 9.8 77.8± 5.7 82.0± 7.1

Table 3: Clustering Results on WebKB-p2 and NG-p2
Data set Task.Eval. k-means Ncut-SNN S-MBC S-MKC SAMTC-nr SAMTC-ns SAMTC

WebKB-p2

T1.Acc(%) 61.5± 4.5 71.5± 5.9 64.6± 0.6 64.3± 2.3 73.5± 4.3 72.8± 4.1 75.6± 0.8
T1.NMI(%) 5.8± 4.9 13.6± 8.1 6.9± 2.3 7.2± 2.8 15.8± 6.9 14.0± 5.2 20.2± 1.6
T2.Acc(%) 69.5± 8.8 76.3± 3.9 80.0± 1.9 52.9± 3.2 77.2± 6.4 75.7± 7.1 80.6± 6.5
T2.NMI(%) 14.7± 2.9 46.2± 5.4 34.6± 5.0 20.7± 6.0 49.7± 8.9 48.1± 6.5 50.9± 8.3
T3.Acc(%) 63.6± 2.8 90.7± 0.7 88.4± 2.1 84.1± 1.4 92.0± 0.6 93.6± 1.2 93.9± 0.5
T3.NMI(%) 5.1± 4.2 62.2± 2.3 49.5± 6.0 35.5± 2.7 59.9± 2.6 65.2± 4.4 66.5± 1.8
T4.Acc(%) 53.6± 8.3 78.4± 1.9 76.6± 3.0 62.8± 6.8 80.9± 2.4 79.1± 9.5 85.5± 0.0
T4.NMI(%) 11.9± 11.0 59.8± 3.8 55.4± 5.7 37.9± 5.9 55.6± 4.6 60.0± 8.2 68.1± 0.0

NG-p2

T1.Acc(%) 36.4± 3.2 66.3± 4.2 45.6± 4.2 73.9± 1.2 68.7± 5.9 71.6± 6.2 78.3± 5.5
T1.NMI(%) 6.8± 3.5 36.9± 5.6 18.2± 10.9 37.5± 2.0 37.2± 5.5 41.2± 5.1 46.7± 4.8
T2.Acc(%) 40.1± 2.2 65.3± 6.7 46.1± 4.1 66.6± 1.6 67.8± 3.5 66.0± 6.1 70.7±3.9
T2.NMI(%) 4.9± 4.1 36.9± 8.6 21.0± 5.4 40.0± 2.5 45.6± 3.2 44.4± 3.0 47.8± 4.5

more similar, the better), but the task distributions in the
tested data sets do not show very high similarity.

4. The performance of MTRC is not so good as we ex-
pected and is quite unstable. It performs the best on the task
1 of NG-p1, but performs not so well on the task 2 of NG-
p1 and the other data sets. This is because that MTRC as-
sumes that the label marginal distribution in each task dis-
tributes evenly, and only the task 1 of NG-p1 in the tested data
sets satisfies such assumption. Moreover MTRC requires the
cluster numbers of all the tasks to be same, which limits its
applicability.

5. SAMTC-nr and SAMTC-ns perform better than Ncut-
SNN in most cases, which illustrates that the Reusable In-
stances Finding term and the Subtask Relatedness Learning
term are very essential to measure the relatedness among the
tasks. But from the comparison of SAMTC with SAMTC-
nr and SAMTC-ns, it can be seen that using the two terms
together can achieve better clustering performance than only
using one term. SAMTC-nr and SAMTC-ns sometimes per-
form worse than Ncut-SNN, because only using one term can-

not fully explore the relatedness among the tasks.
6. SAMTC generally performs much better than the com-

pared multi-task clustering methods (except for the task 1 of
NG-p1 on which it performs the second best, whereas MTRC
performs the best), since SAMTC does not have the afore-
mentioned limitations in the compared multi-task clustering
methods, it tackles the partially related tasks by making the
most of the reusable instance information while disregarding
the uncorrelated instances, i.e., it can exploit the positive re-
latedness among the tasks and avoid negative transfer.

5 Conclusion
In this paper, we have proposed a general self-adapted multi-
task clustering (SAMTC) algorithm, which can exploit the
positive relatedness among the tasks and avoid negative trans-
fer by identifying the reusable instances between each pair of
tasks. SAMTC first finds the reusable instances between each
pair of tasks and obtains a pair of subtasks, then it further ex-
plores the relatedness between each pair of subtasks, finally
it constructs the similarity matrix for each task by exploit-
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ing useful instance information from the other tasks through
instance transfer and performs spectral clustering on the con-
structed similarity matrix. Experimental results on several
real data sets show the superiority of the proposed algorithm
over traditional single-task clustering methods and existing
multi-task clustering methods.
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