
Denoising and Completion of 3D Data
via Multidimensional Dictionary Learning

Zemin Zhang and Shuchin Aeron
Department of Electrical and Computer Engineering, Tufts University

zemin.zhang@tufts.edu, shuchin@ece.tufts.edu

Abstract
In this paper a new dictionary learning algorithm
for multidimensional data is proposed. Unlike most
conventional dictionary learning methods which
are derived for dealing with vectors or matrices, our
algorithm, named K-TSVD, learns a multidimen-
sional dictionary directly via a novel algebraic ap-
proach for tensor factorization as proposed in [Bra-
man, 2010; Kilmer et al., 2011; Kilmer and Martin,
2011]. Using this approach one can define a tensor-
SVD and we propose to extend K-SVD algorithm
used for 1-D data to a K-TSVD algorithm for han-
dling 2-D and 3-D data. Our algorithm, based
on the idea of sparse coding (using group-sparsity
over multidimensional coefficient vectors), alter-
nates between estimating a compact representation
and dictionary learning. We analyze our K-TSVD
algorithm and demonstrate its result on video com-
pletion and video/multispectral image denoising.

1 Introduction
Sparsity driven signal processing has been widely used in
many areas across computer vision and image analysis, such
as image restoration and classification [Aharon et al., 2006;
Yang et al., 2012; Ramirez et al., 2010]. The main princi-
ple driving the gains is the idea of sparse coding, i.e. the
underlying signal is compactly represented by a few large
coefficients in the overcomplete dictionary, while the noise
and the sampling process are incohrent. Since the perfor-
mance heavily relies on the chosen dictionary, a lot of dictio-
nary learning algorithms are developed to obtain dictionaries
that are more adapted to the signal than the predefined ones,
such as wavelet and DCT. In [Aharon et al., 2006], Aharon
et al. proposed an algorithm called K-SVD, which efficiently
learns an overcomplete dictionary from a set of training sig-
nals. The method of optimal directions (MOD)[Engan et al.,
2000] shares the same effective sparse coding principle for
dictionary learning as K-SVD. Discriminative K-SVD algo-
rithm (D-KSVD) proposed in [Zhang and Li, 2010] improved
the K-SVD method by unifying the dictionary and classifier
learning processes. [Rubinstein et al., 2008] efficiently ac-
celerated the K-SVD algorithm and reduced its memory con-
sumption using a batch orthogonal matching pursuit method.

When the signal is not limited to two dimensional sig-
nals, traditional methods generally embed the high dimen-
sional data into a vector space by vectorizing the data points;
therefore the conventional matrix based approaches can still
be used. This kind of vectorization, however, will break
the original multidimensional structure of the signal and re-
duce the reliability of post processing. To this end, some
dictionary learning techniques have been explored based on
different tensor decompositions such as CP decomposition
[Duan et al., 2012; Huang and Anandkumar, 2015], Tukcer
Decomposition[Zubair and Wang, 2013; Peng et al., 2014;
Fu et al., 2014] and tensor-SVD[Soltani et al., 2015]. In
[Duan et al., 2012], the authors developed an algorithm called
K-CPD which learns high order dictionaries based on the CP
decomposition. [Zubair and Wang, 2013] proposed a tensor
dictionary learning algorithm based on the Tucker model with
sparsity constraints over its core tensor, and applied gradient
descent algorithm to learn overcomplete dictionaries along
each mode of the tensor (see [Tucker, 1966c] for definition
of tensor modes). Peng et al. [Peng et al., 2014] presented a
tensor dictionary learning algorithm based on Tucker model
with Group-block-sparsity constraint on the core tensor with
good performance.

In this paper, we present a novel multidimensional dic-
tionary learning approach based on a notion of tensor-SVD
proposed in [Braman, 2010; Kilmer et al., 2011; Kilmer and
Martin, 2011]. Essentially the t-SVD is based on an opera-
tor theoretic interpretation of the 3rd order tensors [Braman,
2010], as linear operators over the set of 2-D matrices. This
framework has recently been used for dictionary learning for
2-D images in [Soltani et al., 2015], but the authors there
employ a different algorithm and the problem considered is
tomographic image reconstruction. Moreover we will also
consider the problem of filling in missing data by sparse cod-
ing using the learned dictionary.

The paper is organized as follows. In section 2 we go over
the definitions and notations, then illustrate the main differ-
ences and advantages over other tensor decomposition meth-
ods. Section 3 formulates the objective function for tensor
dictionary learning problem using t-SVD, by introducing the
“tubal sparsity” of third-order tensors. Our tensor dictionary
learning model and detailed algorithm to solve the problem
are presented in Section 4. In Section 5 we show experiment
results on third order tensor completion and denoising. Fi-
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nally we conclude our paper in Section 6.

2 Brief Overview of T-SVD Framework
2.1 Notations and Preliminaries
In this part we briefly describe the notations used through-
out the paper, and the t-SVD structure proposed in [Braman,
2010; Kilmer and Martin, 2011; Kilmer et al., 2011].

A tensor is a multidimensional array of numbers. For ex-
ample, vectors are first order tensors, matrices are second or-
der tensors. Tensors of size n1⇥n2⇥n3 are called third order
tensors. In this paper, third order tensors are represented in
bold script font A.

A Slice of an n-th order tensor is a 2-D section defined by
fixing all but two indices. For a third order tensor A, we will
use the Matlab notation A(k, :, :) , A(:, k, :) and A(:, :, k) to
denote the k-th horizontal, lateral and frontal slices. A(k) is
particularly used to represent A(:, :, k), and

�!
Ak represents

A(:, k, :). We also call such
�!
Ak tensor columns.

A Fiber (or Tube) is a 1-D section obtained by fixing all
indices but one. For a third order tensor, A(:, i, j), A(i, :, j)

and A(i, j, :) denote the (i, j)-th mode-1, mode-2 and mode-
3 fiber. Specifically we let ~a 2 R1⇥1⇥n3 denote an n3-tube.

The approach in [Braman, 2010; Kilmer et al., 2011;
Kilmer and Martin, 2011] rests on defining a multiplication
operation, referred to as the tensor-product (t-product) be-
tween two third order tensors. This is done by using a com-
mutative operation, in particular circular convolution between
tensor tubes as defined below.

Definition 2.1.1. (t-product) The t-product between A 2
Rn1⇥n2⇥n3 and B 2 Rn2⇥n4⇥n3 is an n1 ⇥ n4 ⇥ n3 tensor
C whose (i, j)-th tube C(i, j, :) is given by

C(i, j, :) =

n2X

k=1

A(i, k, :) ⇤B(k, j, :) (1)

where i = 1, 2, ..., n1, j = 1, 2, ..., n4. When a third order
tensor is viewed as a matrix of tubes along the third dimen-
sion, the t-product is analogous to the matrix multiplication
except that the multiplication between numbers are replaced
by the circular convolution between tubes.
Remark 2.1.1. From the relationship between circular con-
volution and Discrete Fourier Transform(DFT), the t-product
of A and B can be computed efficiently in Fourier do-
main. Specifically, let bA = fft(A, [ ], 3) and bB =

fft(B, [ ], 3) be the tensors obtained by taking the Fast
Fourier Transform (FFT) along the tube fibers in third di-
mension of A and B, then we can compute the t-product of
A and B through the following,

bC(:, :, i) =bA(:, :, i) ⇤ bB(:, :, i), i = 1, 2, ..., n3

C = ifft(bC, [ ], 3)

Definition 2.1.2. (Tensor transpose) The conjugate trans-
pose of a tensor A 2 Rn1⇥n2⇥n3 is an n2 ⇥ n1 ⇥ n3 ten-
sor AT obtained by taking the conjugate transpose of each
frontal slice of A, then reversing the order of transposed
frontal slices 2 through n3.

Definition 2.1.3. (Identity tensor) The identity tensor I 2
Rn⇥n⇥n3 is defined as follows,

I(:, :, 1) = In⇥n, I(:, :, k) = 0, k = 2, 3, ..., n (2)

where In⇥n is the identity matrix of size n⇥ n.
Definition 2.1.4. (Orthogonal Tensor) A tensor Q 2

Rn⇥n⇥n3 is orthogonal if it satisfies

QT ⇤Q = Q ⇤QT
= I (3)

Definition 2.1.5. (f-diagonal Tensor) A tensor is called
f-diagonal if each frontal slice of this tensor is a diagonal
matrix.

2.2 Tensor Singular Value Decomposition(t-SVD)
We now define the tensor Singular Value Decomposition us-
ing the t-product introduced in previous section.

Definition 2.2.1. The t-SVD of a third-order tensor M 2
Rn1⇥n2⇥n3 is given by

M = U ⇤ S ⇤VT (4)

where ⇤ denotes the t-product, U 2 Rn1⇥n1⇥n3 and V 2
Rn2⇥n2⇥n3 are orthogonal tensors. S 2 Rn1⇥n2⇥n3 is a
rectangular f-diagonal tensor.

Figure 1: t-SVD of an n1 ⇥ n2 ⇥ n3 tensor.

Figure 1 illustrates the t-SVD of 3rd order tensors. Sim-
ilar to the t-product, we can also compute t-SVD in Fourier
domain, see Algorithm 1.

Algorithm 1 T-SVD of third order tensors

Input: M 2 Rn1⇥n2⇥n3

Output: U 2 Rn1⇥n1⇥n3 , V 2 Rn2⇥n2⇥n3 and S 2
Rn1⇥n2⇥n3 such that M = U ⇤ S ⇤VT.
cM = ↵t(M, [ ], 3);
for i = 1 to n3 do
[U,S,V] = SVD(

cM(:, :, i))

bU(:, :, i) = U;

bS(:, :, i) = S; bV(:, :, i) = V;

end for
U = i↵t(

bU, [ ], 3), S = i↵t(

bS, [ ], 3), V = i↵t(

bV, [ ], 3).

As discussed in [Zhang et al., 2014], t-SVD has
many advantages over the classical tensor decompositions
such as CANDECOMP/PARAFAC[Harshman, 1970] and
Tucker[Tucker, 1966c]. For example, given a fixed rank,
the computation of CANDECOMP/PARAFAC decomposi-
tion can be numerically unstable, since calculating the rank-1
components in this model is difficult. Similarly, finding the
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Figure 2: A tensor signal represented by a t-linear combina-
tion of K tensor dictionary atoms.

best Tucker multi-rank ~r approximation to a tensor is numer-
ically expensive and often does not yield the best fit to the
original tensor. However, the computation of t-SVD is very
easy since one only needs to do several SVDs as shown in
Algorithm 1. Another very important property is the opti-
mality approximation of t-SVD [Kilmer and Martin, 2011],
described in the following.

Theorem 2.2.1. Let M = U ⇤ S ⇤ VT be the t-SVD of
M 2 Rn1⇥n2⇥n3 . Then for k < min(n1, n2), define
Mk =

Pk
i=1 U(:, i, :) ⇤ S(i, i, :) ⇤V(:, i, :)

T, we have

Mk = arg min

M̃2M
kM� ˜MkF

where M = {X ⇤ Y|X 2 Rn1⇥k⇥n3
,Y 2 Rk⇥n2⇥n3}.

If we define tensor tubal rank of M to be the number of
non-zero diagonal tubes in S[Zhang et al., 2014], then this
theorem is saying that Mk is the closest tensor to M in Frobe-
nius norm among all tensors of tensor tubal rank at most k.

2.3 t-linear Combination of Tensor Dictionaries
and Coefficients

As in the matrix case, given an overcomplete dictionary D 2
Rn⇥K which contains K prototype signal-atoms for columns,
a signal y 2 Rn can be represented as a linear combination
of columns of D

y = Dx (5)
where x 2 RK is called the representation coefficient vector
of y. This set up could be easily extended to 3rd order tensors
using the framework outlined in the previous section. Given
K tensor columns (or dictionary atoms)

�!
Dk 2 Rn1⇥1⇥n3 , we

represent a tensor signal
�!
X 2 Rn1⇥1⇥n3 using the t-linear

combination of the given tensor dictionaries as follows,

�!
X =

KX

k=1

�!
Dk ⇤ ~ck = D ⇤

�!
C (6)

where {~ck}Kk=1 are tubes of size 1⇥ 1⇥ n3;
�!
C 2 RK⇥1⇥n3

is called coefficient tensor obtained by aligning all the ~ck.
D = {

�!
D1,

�!
D2, ...,

�!
DK} 2 Rn1⇥K⇥n3 is the tensor dictio-

nary. The representation (6) may either be exact or approxi-
mate satisfying

k
�!
X �D ⇤

�!
C k  ✏ (7)

for some ✏ > 0. When K > n, we say the tensor dictionary
D is overcomplete.

3 Problem Formulation
In this section, we introduce our tensor dictionary learning
model and the related algorithm.

3.1 From Matrix to Tensor Dictionary Learning
Given an overcomplete dictionary D 2 Rn⇥K with K > n,
if D is full rank, there are infinite number of solutions to the
representation problem (5); therefore in order to constran the
solution set, one common approach is to enforce sparsity. As
in classic dictionary learning model which was first designed
for the purpose of reconstruction, one adaptively learns an
overcomplete dictionary using the training data, which leads
to the best possible representation of the data with sparsity
constraints. Specifically, given training data {yi}ni=1 2 Rd

where d is the dimensionality and n is the total number of
training data used, dictionary learning methods aim at finding
an overcomplete dictionary D 2 Rd⇥K with K > d, and
a coefficient matrix X = [x1, x2, ..., xn] 2 RK⇥n by the
following optimization problem,

min

D,X

nX

i=1

kyi �Dxik2F

subject to kxikq  T, i = 1, 2, ..., n

(8)

where k · kq, q � 1 is the `q norm which represents different
sparsity regularization.

Using t-SVD structure discussed in the previous section,
we generalize this dictionary learning model to higher di-
mensional cases. Given training data as tensor columns
{
�!
Y i}ni=1 2 Rd⇥1⇥n3 , we want to find a dictionary D 2

Rn⇥K⇥n3 with K > n, and “tubal sparse” tensor coeffi-
cients {

�!
X i}ni=1 2 RK⇥1⇥n3 to represent the training data

using t-product. The tubal sparsity of a tensor column is de-
fined in [Zhang et al., 2014] as follows.

Definition 3.1.1. (tensor tubal sparsity) Given a tensor
column

�!
X , the tensor tubal sparsity k · kTS is defined as the

number of non-zero tubes of
�!
X in the third dimension.

Then we can construct our dictionary learning model:

min

D,
�!
Xi

nX

i=1

k
�!
Y i �D ⇤

�!
X ik2F

subject to k
�!
XkTS  T, i = 1, 2, ..., n

(9)

or equivalently,

min

D,X
kY�D ⇤Xk2F

subject to kXkTS  T0

(10)

where Y =

h�!
Y 1,

�!
Y 2, ...,

�!
Y n

i
2 Rd⇥n⇥n3 and X =

h�!
X1,

�!
X2, ...,

�!
Xn

i
2 RK⇥n⇥n3 . Figure 3 illustrates the ten-

sor sparse coding model. Note that if the jth tube of
�!
X i(j, 1, :

) is zero, then it means that the jth dictionary D(:, j, :) is not
being used in the representation of

�!
Y i.
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Figure 3: Data in the form of tensor columns represented by
the t-product of tensor dictioanry and tubal-sparse coefficient
tensors. The red tubes in the coefficient tensors stand for the
non-zero tubes and white ones are zero tubes.

3.2 K-TSVD
We now discuss our tensor dictionary learning model in de-
tails. Our model is called K-TSVD since it is a general exten-
sion from classic K-SVD to high dimensional tensor based on
t-SVD. Similarly to K-SVD algorithm, K-TSVD also consists
of two stages: the tensor sparse coding stage and the tensor
dictionary update stage. First let’s consider the sparse coding
stage where the tensor dictionary D is fixed. So we need to
solve

min

X
kY�D ⇤Xk2F

subject to kXkTS  T0

(11)

or alternatively we can work on an equivalent form,
min�!
Xi

kY�D ⇤Xk2F + �kXkTS (12)

for some positive �. Since the sparsity measure is computa-
tional intractable in both matrix and tensor cases, we use the
k · k1,1,2 norm [Zhang et al., 2014] instead as a convex relax-
ation for the tubal sparsity, where the k · k1,1,2 norm of a 3rd
order tensor X is defined as

kXk1,1,2 =

X

i,j

kX(i, j, :)kF

If we regard a third dimensional tube ~x 2 R1⇥1⇥n3 as a n3⇥1

column vector, then the `1,1,2 norm of X is just the summa-
tion of `2 norm of all such tubes along the third dimension in
X.

Replacing the tubal sparsity with the `1,1,2 norm, the prob-
lem becomes

min

X
kY�D ⇤Xk2F + �kXk1,1,2 (13)

In order to solve this problem, one more definition is needed
here. For a third order tensor A 2 Rn1⇥n2⇥n3 , define the
block diagonal form A in Fourier domain as follows,

A = blkdiag(bA) =

2

666664

bA
(1)

bA
(2)

. . .
bA

(n3)

3

777775
(14)

where bA = fft(A, [ ], 3) and A(i) is the ith frontal slice
of A. Then (13) can be equivalently reformulated in Fourier
domain as

min

X
kY�DXk2F + �

p
n3kbXk1,1,2

where the
p
n3 factor comes from the fact that kXkF =

kbXkF /
p
n3 [Zhang et al., 2014]. Use the general framework

of Alternating Direction Method of Multipliers (ADMM)
[Boyd et al., 2011], we can solve this optimization problem
recursively with the following algorithm:

Xk+1 = argmin

X
kY�DXk2F + tr(Q

T
kX) +

⇢

2

kX� Zkk2F
(15)

Zk+1 = argmin

Z
kZk1,1,2 +

⇢

2�

kXk+1 +
1

⇢

Qk � Zk2F
(16)

Qk+1 = Qk + ⇢(Xk+1 � Zk+1) (17)

where ⇢ > 0. (15) is essentially a least square minimization
problem and we can separately solve it in each frontal slice of
bX (or equivalently, each diagonal block of X). Let Ck+1 =

Xk+1 +Qk/⇢, the update of (16) is given by

Zk+1(i, j, :) =

✓
1� �

⇢kCk(i, j, :)kF

◆

+

C(i, j, :)

8i = 1, 2, ...,K, j = 1, 2, ..., n

(18)

where (·)+ = max(0, ·).

The second stage of our tensor dictionary learning model
is dictionary update. Given fixed D and X, suppose we only
want to update the k-th element of D, we can decompose the
error term as follows,

kY�D ⇤Xk2F

=

������
Y�

KX

j=1

�!
Dj ⇤X(j, :, :)

������

2

F

=

������

0

@Y�
X

j 6=k

�!
Dj ⇤X(j, :, :)

1

A�
�!
Dk ⇤X(k, :, :)

������

2

F

=kEk �
�!
Dk ⇤X(k, :, :)k2F

=kEk �D(:, k, :) ⇤X(k, :, :)k2F
Ek here stands for the representation error when the k-th atom
D(:, k, :) is removed from the dictionary. The next step is to
find D(:, k, :)⇤X(k, :, :) which best approximates Ek, so that
the error term is minimized. This is essentially to compute the
best tubal rank-1 approximation using Theorem 2.2.1. Since
we need to maintain the tubal sparsity of X and don’t want to
fully fill X(k, :, :), let wk = {i|X(k, i, :) 6= 0, i = 1, 2, ..., n}
be the set of indices where data Y uses tensor dictionary
D(:, k, :) and restrict Ek by choosing the tensor columns cor-
responding to wk to obtain Rk : R(:, i, :) = E(:, wk(i), :

), i = 1, 2, ..., |wk|. From Theorem 2.2.1, we apply t-SVD on
Rk to get U,S and V, and take the first tensor column of U
to update D(:, k, :), use S(1, 1, :) ⇤V(:, 1, :)

T to renovate the
coefficient tensors which use the k-th dictionary. To accel-
erate the algorithm we only compute the approximate rank-1
SVDs in Fourier domain when we compute t-SVD of R. The
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complete algorithm is presented in Algorithm 2. Note that the
optimization problem in Step 1 is convex and we use ADMM
[Boyd et al., 2011] with global convergence guarantees. Sim-
ilarly to K-SVD, the dictionary update stage is only guaran-
teed to converge to a local minimum theoretically. However,
in practice the output dictionary of K-TSVD performs very
well as we will see in the next section.

Algorithm 2 K-TSVD

Input : Observed tensor data Y = {
�!
Y i}n2

i=1 2 Rn1⇥n2⇥n3 ,
� > 0.
Initialize: Dictionary D0 2 Rn1⇥K⇥n3

Repeat until convergence:

1: Compute the sparse coefficient tensor using (15)-(17):

X = argmin

X
kY�D ⇤Xk2F + �kXk1,1,2

2: for k = 1, 2, ...,K do
3: Let wk = {i|X(k, i, :) 6= 0} be the set of indices

where data Y uses dictionary D(:, k, :).
4: Compute Ek = Y�

P
j 6=k D(:, j, :)⇤X(j, :, :)

T, which
is the over all error without using the k-th dictionary
atom D(:, k, :).

5: Restrict Ek by choosing only the tensor columns cor-
responding to wk and obtain Rk:

R(:, i, :) = E(:, wk(i), :) (19)

for i = 1, 2, ..., |wk|.
6: Compute the t-SVD of Rk:

Rk = U ⇤ S ⇤VT
.

7: Update D(:, k, :) = U(:, 1, :).
8: Update X(k, wk, :) = S(1, 1, :) ⇤V(:, 1, :)

T.
9: end for

Output: Trained tensor dictionary D.

4 Experiment Results
4.1 Filling Missing Pixels in Tensors
In this section we consider the application of filling missing
pixels in third order tensors. Suppose that we are given a
video with dead pixels, where the dead pixels mean pixel val-
ues are deleted or missing on some fixed positions of each
frame. Specifically, let ⌦ indicate the set of indices of the re-
maining pixels and M be the data tensor, then M(i, j, :) = 0

for all (i, j) /2 ⌦. Our goal is to recover such tensors with
missing pixels. Suppose D is the learned overcomplete dic-
tionary on the training data, define P⌦ as an orthogonal pro-
jector such that P⌦(M)(i, j, :) = M(i, j, :), if (i, j) 2 ⌦ and
0 otherwise. Then for each patch

�!
Mk in the test data, the re-

construction of this patch is D⇤
�!
C k, where

�!
C k is the solution

to

min�!
C k

kP⌦(
�!
Mk)� P⌦(D ⇤

�!
C k)k2F + �k

�!
C kk1,1,2 (20)

(a) (b) (c) (d)

Figure 4: (a) The overcomplete DCT dictionary. (b) Dictio-
nary learned on the first frame of the basketball video using
K-SVD. (c) The first frontal slice D(:, :, 1) of the learned dic-
tionary of the tensor. (d) The 3rd frontal slice D(:, :, 3) of the
learned dictionary of the tensor.

which can be solved in the same manner as (13).
We utilized a basketball video here to apply K-TSVD al-

gorithm and reconstruct M from missing pixels. There are
40 frames in the video and the resolution of each frame is
144 ⇥ 256. To learn the overcomplete dictionary using K-
TSVD, we randomly took 9000 overlapping block patches of
size 8⇥ 8⇥ 10 from the first 30 frames, saved them as tensor
columns of size 64 ⇥ 1 ⇥ 10, and obtained our training data
Y of total size 64 ⇥ 9000 ⇥ 10. All these patches were used
to train a tensor dictionary with K = 256 atoms. The last 10
frames of the video were used for testing. We took the total
576 disjoint 8⇥8⇥10 blocks in the last 10 frames, saved each
block into a tensor column, and obtained our training data of
size 64⇥ 576⇥ 10.

We investigated the performance of K-TSVD by compar-
ing it with K-SVD and DCT. In K-SVD, in order to have a
fair comparison, for each test frame we also randomly trained
10000 block patches of size 8⇥8 in the first 30 frames. We vi-
sualize an example of the overcomplete DCT dictioanry, the
K-SVD learned dictionary and the K-TSVD learned dictio-
nary in Figure 4. One frame with 50% and 70% missing pix-
els and its reconstructions are shown in Figure 5. As one
can see the reconstruction based on K-TSVD learned dictio-
nary has a better quality. Figure 5(e) shows the reconstruction
error (RE) comparison of those three approaches, where the
error is computed via RE =

p
kX�Xreck2F /N , N is the to-

tal number of pixels in the data. We can see that when the
percentage of missing pixels is small, all three methods per-
form equally well. With more missing pixels, K-TSVD gives
better performance over the other two methods.

4.2 Multispectral Image and Video Denoising
In order to further test the proposed method, we applied our
algorithm on multispectral/hyperspectral images and video
data denoising. In the first experiment the multispectral data
was from the Columbia datasets 1, each dataset contains 31
real-world images of size 512 ⇥ 512 and is collected from
400nm to 700nm at 10nm steps. In our experiment we re-
sized each image into size of 205 ⇥ 205, and took images
of the last 10 bands to accelerate the speed of training ten-
sor dictionaries. Therefore the total size of the tensor data
we used here is 205 ⇥ 205 ⇥ 10. Further work is required
to fully deploy the algorithm in large-scale high order tensor

1http://www1.cs.columbia.edu/CAVE/databases/multispectral/
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(a) Pixels missing (b) DCT recovery (c) K-SVD recovery

(d) K-TSVD recovery (e) Reconstruction error comparison.

Figure 5: The reconstruction result from missing pixels on the
basketball video. The different rows are for 50% and 70% of
missing pixels respectively.

applications.
For the noise model we consider the fixed-location defects

without knowing the noisy positions, which commonly ex-
ists in video and multispectral images. On image of each
bandwidth, some fixed pixel locations are corrupted with very
high noise and our task is to recover the image. Specifically
in our experiment we picked a sparse number of pixel loca-
tions and added Gaussian noise on these positions of each
image. Let ⌦ indicate the set of noisy pixel locations, then
what we did was for each (i, j) 2 ⌦, k = 1, 2, ..., 10,
Y(i, j, k) = Y(i, j, k) + wijk, where Y is the clean tensor
and wijk ⇠ N (0,�) is the additive Gaussian noise.

To train the data and learn the dictionaries, similarly to
what we did in the previous experiment, we randomly took
10000 overlapping patches of size 8⇥ 8⇥ 10 from the noisy
tensor data, which is about a quarter of all the overlapping

(a) Noisy image (b) K-SVD (c) 3DK-SVD (d) BM3D

(e) LRTA (f) DNMDL (g) PARAFAC (h) K-TSVD

Figure 6: Denoised image at the 610nm band of chart and
stuffed toy. The sparsity of the noisy pixels is 10% and the lo-
cations of noisy pixels are consistent on image of each band.
The additive noise is Gaussian with � = 100.

Table 1: PSNR(dB) of chart and stuffed toy images.

Sparsity 5% 10% 15% 10% 10%

Noise level 100 100 100 150 200

Noisy image 20.96 18.18 16.35 14.75 12.10
K-SVD 22.73 22.60 22.49 22.38 22.00

3DK-SVD 22.61 22.53 22.47 22.41 22.20
BM3D 26.95 26.62 26.36 25.23 24.29
LRTA 23.54 26.84 26.65 23.90 22.03

DNMDL 24.07 23.73 25.16 17.89 16.83
PARAFAC 27.07 26.86 26.72 26.13 25.24
KTSVD 27.19 26.98 26.79 26.18 25.44

(a) Noisy image (b) K-SVD (c) 3DK-SVD (d) BM3D

(e) LRTA (f) DNMDL (g) PARAFAC (h) K-TSVD

Figure 7: Video denoising result. The sparsity is 10% and
� = 100.

patches in the data. For a fair comparison, in K-SVD we
also randomly select 10000 overlapping patches of size 8⇥ 8

within each noisy image.

The denoising process of our method includes a tensor
sparse coding stage based on the learned tensor dictionary.
We extracted each 8⇥ 8⇥ 10 patch in the noisy multispectral
images and solved the tensor sparse coding problem (13) to
obtain the denoised patch. Following a similar idea in [Elad
and Aharon, 2006], we averaged all the denoised patches with
some relaxation obtained by averaging with the original noisy
data then got our denoised tensor.

To test the performance of our method, we compared our
K-TSVD to these methods: K-SVD (band-wise)[Aharon et
al., 2006; Elad and Aharon, 2006] 3D K-SVD [Elad and
Aharon, 2006], BM3D (band-wise) [Dabov et al., 2007],
LRTA[Renard et al., 2008], DNMDL[Peng et al., 2014] and
PARAFAC[Liu et al., 2012]. The result with � = 100 and the
sparsity of noisy pixels equaling 10% is shown in Figure 6.
The detailed PSNR comparison on different noise levels of
these methods is in Table 1. We can see that our algorithm
has a better performance over the other competing methods
on most cases.

We also applied K-TSVD algorithm on video denoising.
The video that we used here was footage from a still camera
view of a traffic intersection [Goyette et al., 2012]. The res-
olution of each frame is 175 ⇥ 328, and we performed our
method on every 10 frames. Figure 7 shows one frame of the
denoising result with sparsity = 10% and noise level 100. As
one can see in this experiment K-TSVD perform very well.
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5 Conclusion
In this paper, we present a new method for tensor dictio-
nary learning algorithm K-TSVD, using the t-SVD frame-
work. Our main contribution lies in explicitly integrating
the sparse coding of third order tensors in t-SVD sense, and
based on this we generalize the K-SVD dictionary learning
model to deal with higher order tensors. The experimental
results show that our approach yields very good performance
on video completion and multispectral images denoising.
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