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Abstract

Nowadays multi-modal visual data are much eas-
ier to access as the technology develops. Nev-
ertheless, there is an underlying problem hidden
behind the emerging multi-modality techniques:
What if one/more modal data fail? Motivated by
this question, we propose an unsupervised method
which well handles the incomplete multi-modal
data by transforming the original and incomplete
data to a new and complete representation in a la-
tent space. Different from the existing efforts that
simply project data from each modality into a com-
mon subspace, a novel graph Laplacian term with
a good probabilistic interpretation is proposed to
couple the incomplete multi-modal samples. In
such a way, a compact global structure over the en-
tire heterogeneous data is well preserved, leading to
a strong grouping discriminability. As a non-trivial
contribution, we provide the optimization solution
to the proposed model. In experiments, we exten-
sively test our method and competitors on one syn-
thetic data, two RGB-D video datasets and two im-
age datasets. The superior results validate the bene-
fits of the proposed method, especially when multi-
modal data suffer from large incompleteness.

1

In recent years, a large volume of techniques emerge in artifi-
cial intelligence field thanks to the easy accessibility of multi-
modal data captured from multiple sensors [Cai ef al., 2013;
Zhao and Fu, 2015; Zhang et al., 2015; Liu er al., 2016].
Working in an unsupervised manner, multi-modal grouping
(or clustering) offers a general view of the heterogeneous
data grouping structure, which has been drawing extensive
attention [Bickel and Scheffer, 2004; Ding and Fu, 2014;
Blaschko and Lampert, 2008; Chaudhuri et al., 2009; Fred
and Jain, 2005; Singh and Gordon, 2008; Cao et al., 2015].
While beneath the prosperous studies of the multi-modal data
grouping problem, there is an underlying problem, i.e., when
the data from one modality/more modalities are inaccessi-
ble because of sensor failure or other reasons, most methods
mentioned above would inevitably degenerate or even fail.

Introduction
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Figure 1: Framework of the proposed method. Take RGB-D
video sequence as an example, to solve the IMG problem, we
project the incomplete RGB-D data into a latent space as well
as preserve the compact global structure simultaneously.

In this paper, we focus on this challenging, i.e., Incomplete
multi-modality Grouping (IMG) problem.

To solve IMG problem, a natural thought is to reuse the
existing techniques by remedying the incomplete data. In [Li
et al., 2014], two strategies are applied to facilitate to fit IMG
problem, i.e., remove samples suffering from missing infor-
mation or preprocess the incomplete samples to fill in the
missing information. Obviously, the first strategy changes the
number of samples, which essentially disobeys the goal of the
original problem. The second strategy has been experimen-
tally tested to be not good enough [Shao et al., 2015].

Most recently, there are few attempts proposed to solve
IMG problem. [Li er al., 2014] proposed a pioneer work
to handle two-modal incomplete data case, by projecting the
partial data into a common latent subspace via nonnegative
matrix factorization (NMF) and ¢; sparse regularizer. Fol-
lowing this line, a similar idea of weighted NMF and /¢5 ;
regularizer was proposed in [Shao er al., 2015]. However,
both methods [Li et al., 2014; Shao et al., 2015] overlook the
global structure over the entire data samples.

Inspired by this, we propose a novel method integrating
the latent subspace generation and the compact global struc-
ture into a unified framework as shown in Figure 1. More
specifically, a novel graph Laplacian term coupling the com-
plete visual data samples is introduced in latent space, where
the similar samples are more likely to be grouped together.



Compared with the existing approaches, the contributions of
our method are three folds:

* We propose a novel method to deal with IMG problem
for visual data with the consideration of the compact
global structure in the low-dimensional latent space. The
practice is achieved through a Laplacian graph on com-
plete data instances, bridging the complete-modal sam-
ples and partial-modal samples.

Nontrivially, we provide the optimization solution to
our proposed objective, where three auxiliary variables
are introduced to make the optimization of the pro-
posed graph Laplacian term happen under the incom-
plete multi-modality setting.

The superior results on six datasets, i.e., one synthetic
and four visual datasets, validate the effectiveness of the
proposed method. Specifically, when data suffer from
large incompleteness, we raise the NMI performance bar
by more than 30% and 10% for the synthetic and real-
world visual data, respectively.

2 Method

We start with the introduction of some basic operator nota-
tions used in this paper. tr(-) is the operator to calculate the
trace of matrix. (A, B) is the inner product of two matrixes
calculated as tr(ATB). || - |4 denotes the Frobenius norm.
Operator (A); works as max(0, A) to make the matrix (or
vector) non-negative. Other variable and parameter notations
are introduced later in the manuscript.

2.1 Incomplete multi-modality Grouping

For the ease of discussion, we use two-modal case
for illustration. Given a set of data samples X
[€1,... 24 ...,zN], © = 1,..., N, where N is the total
number of samples. Each sample has two modalities, i.e.,
x; = [x; ) 52)] For IMG problem, we follow the setting
in [L1 et al 2014], the input data is separated as an incom-
plete modal sample set X = {X12) X1 X1 instead
of the complete multi-modal data X, Where X2 x@®),
and X @ denote the data samples presented in both modal-
ities, modal-1 and modal-2, respectively. The feature dimen-
sions of modal-1 and modal-2 data are d; and d», and the
numbers of shared samples and unique samples in modal-1
and modal-2 are ¢, m and n, respectively. Accordingly, we
have X(1,2) e ch(dl—&-dz)’ X(l) e Rmxdl’ X(2) c RnXdQ,
N = c+ m + n . Same as traditional multi-view clustering,
the goal of IMG is to group the samples into their correspond-
ing clusters.

Previous methods, like MultiNMF [Liu et al., 2013] and
PVC [Li et al., 2014], pursuit a common latent space via
nonnegative matrix factorization (NMF) where samples from
different views can be well grouped. In this work, we fol-
low this line to find a latent common subspace for heteroge-
nous multi-modal visual data. However differently, we get
rid of the non-negative constraint to make the optimization
much easier. Besides, the major contribution of this paper is
to demonstrate the correctness and effectiveness of the pro-
posed global constraint in IMG problem.
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Given the latent dimension of projective subspace k, we
denote Pc(l) € Re** and Pc(2) € Re*¥ as the latent represen-
tations of X (1:2) = [Xél); X£2)] from two different modal-
ities. Note that Xc(l) and XC(Q) are the samples existing in
both modalities, thus Pc(l) and PC(Q) are expected to be close,

1.€., Pél) — P, + P(EQ). Consequently, we have the basic
incomplete multi-modality grouping formulation as

xM P, 2
L c (1)
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where A is a trade-off parameter, P, is the shared latent repge2
sentation from X " and X2, U(D) ¢ Rkxd1 [7(2) ¢ RExdz
are known as the bases in matrix decomposition, PO ¢
R™*k P2 ¢ R™*F are the latent low-dimensional coeffi-
cients for missing modal samples corresponding to X® and
X @), Regularizers |[UM]|Z and ||U®) |2 are used to prevent
the trivial solution.

2.2 Complete Graph Laplacian

By concatenating the projective coefficients in latent sub-
space P = [P,; P(M); P(?)] € RN** we can directly apply
clustering method on P to get the cluttering result. However,
it is deserved to know that the learned coefficients P is with-
out global property which is crucial in subspace clustering.
For the traditional multi-modality learning problem, global
constraints are easy to be incorporated because of the com-
plete modality setting, such as low-rank constraint in [Ding
and Fu, 2014]. While in IMG problem, this cannot be eas-
ily achieved. To tackle this, we propose to learn a Laplacian
graph incorporating all the samples in the latent space.

Integrating the idea of graph Laplacian and Eq. (1) into the
unified objective function, we have our formulation with the
complete graph Laplacian term G as

2

. X,gl) P, (1)
e |[Fo || 20 |0+
SOOI F
2) P. 2
H{ Xe } - { %) } U\ +G(P,A)+R(U,A).
F

st. ViAT1 =1, A; > 0.

2
Here,
G(P,A) = ptr(PTLaP), 3)
R(U,A) = MIUDE + [UP ) +yllAIE, @
where L4 € RY*N is the Laplacian matrix of similarity ma-

trix A € RV*N defined by Ly = D — A, in which the
degree matrix is the diagonal matrix with D;; = Zjvzl Ajj.
Several remarks are made here.



Remark 1: Thanks to the graph Laplacian term L4, we
bridge the sample connection between complete modal sam-
ples and partial modal samples. In such a way, the global
constraint on the complete set of data samples is integrated
into the objective, which in turn influences the projected co-
efficients in low-dimensional space with the global structure.
The practice of adding a graph term on the complete set of
data gives the name of “complete graph Laplacian’.
Remark 2: A is the affinity graph, with each element de-
noting the similarity between two data samples in latent sub-
space. We normalize each column as the summation equals to
1 as well as all the elements are nonnegative, making A have
a probability interpretation. This naturally provides us with
an opportunity to do spectral clustering on the optimized A,
which none of the existing partial multi-view methods have.
Remark 3: As shown in Eq. (4), the regularizers we add are
all Frobenius norms for simplicity. According to [Lu et al.,
2012], other regularizers such as £1-norm or trace (nuclear)
norm are also good choices for preserving the global struc-
ture that benefits clustering performance.

2.3 Optimization

As seen in Eq.(2), in order to learn a meaningful affinity
matrix in a unified framework, our proposed objective in-
cludes several matrix factorization terms, regularizers and
constraints. It is obviously not jointly convex w.r.t. all the
variables. Instead, we plan to update each variable at a time
via augmented Lagrange Multiplier (ALM) with alternating
direction minimizing strategy [Lin et al., 2011].

However, it is noted that P,, P() and P® are difficult
to be optimized because of the following reasons: (1) Lapla-
cian graph L 4 is the graph measuring the affinities among all
sample points, that is, we have to update them as a whole; (2)
There is no way to directly combine P,, P() and P for
optimization since P(1) and P do not share the same ba-
sis, and even the size of input data in modal-1 is not the same
as that in modal-2 ([X¢ X(l)] e Rletm)xdi for modal-

1, (X, X@] e R<C+n>xd2 for modal-2). This dilemma
makes the variables P,, P() and P(® impossible to be opti-
mized individually nor together as P. To solve this challenge,
we propose to introduce three auxiliary variables Q. € R¢¥*,
QW e R™*k and Q@ e R™ ¥ for P,, P and P
respectively. In this way, we separately update the affinity
matrix A (Laplacian L 4) and matrix factorization with the
bridges of P, = Q., PV = QM) and P?) = Q).

Correspondingly, the augmented Lagrangian function of
Eq. (2) with three auxiliary variables is written as

2

+
F

] U

(1) P.
C(Vz AT1=1;A,>0) — H |: X(l) :| |: P(l
2

X(Q) Pc 9
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(2)] is the lagrangian multiplier, and

where Y = [Y,; YU,V
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@ > 0 is a penalty parameter. Specifically, variables P, @),
UM, UR), Ainthe 7 + 1 iteration are updated as follows:
Update UM &U®) . Fixing P, Q and A, the Lagrangian

function w.r.t. U( )

(1) is written as:

cU®) = X = PUDIE + AUV ©
This is a standard least square problem with regularization,
with its solution as

1
(b)) = o M) T P T XY )

Here I}, is the identity matrix with k-dimension. Similarly,

we have the following function to update U((f)ﬂ):

U@

— 2
() = Per) Pery + M) T P TXE . ®)

Update P. This part includes three subproblems, i.e., up-

date Pe(r11), }5((71)“) and P((Tll) For P (1), by fixing other

variables, the corresponding Lagrangian function is

C(P.) = [|IXV = PUW | + X — PUP % o)
+ (Yo, Pe — Qc) + §\|Pc — Qclf-
With the help of KKT condition that O(C(P.))/d(P.) =
we have the following solver for P, 1) =
D) 272 T —1
<2X§ U(TH) 22XV Yoy THQe(ry | By,
(10)
1 @ @ T
where R(r11) = 2U 4y Uithyy +2U0 00Utk + ik
Similarly, we obtain the solutions for P(( il)
2X(1)U(1) —Y; U(l) U(l) I
(2X; (r4+1) 1(7)"‘#@(7))( (r+1)Y (r+1) —|—,u k) )
(11)
(2)
and P( 41y @
T
@XPUEL) Yo +nQE) QU ULy +ulk) ™!

12)

Update Q. Recall that the motivation of introducing aux-
iliary Q = [Qe;QM; Q@] is to bridge the gap of global
representation of all the data samples in different modalities.
Therefore instead of individually updating Qe (, ;1) Q)

7+1)
and Q (r1)- We update (41 as a whole, with the La-

grangian function written as
7
C(Q) = ptr(QTLAQ) + (V. P = Q) + 5[|1P = QlIf. (13)
Correspondingly, the solver of (-1 via KKT condition is

-1
(BULAT) + Lag) + 1ln) (Vo) + #Pirsr), - (14)

where [ is the identity matrix with /V-dimension.



Update A (Lp). Fixing other variables, the graph A-
problem is in the following form

min f6r(QLaQ) + 7|4l

st. Vi AT1=1; A; = 0.
As discussed in Remark 2, A has the probability interpre-
tation with each element considered as the similarity proba-

bility between two data samples. Therefore, we divide prob-
lem (15) into a set of subproblems AET +1) according to sam-

ple index ¢ as

AETJrl) =

s)

argmin

At + k¥ 27
AiG{a\alel;ato}” (TJrl)HF (16)

where SZT +1) is a column Vector with its element j defined as

S” B ||Q(7—+1
'r+1) 4
be found in [Guo, 2015]

To sum up, for the complete algorithm, we initialize the
variables and parameters (in the iteration #0, denoted as
y”) in ALM as follows: penalty parameter ji(g) = 1073,

(T+1) I . A detailed deduction can

p = 1.1, the max penalty parameter fi,.x = 10°, stopping
threshold ¢ = 1076, Poy = Q) = (}1/)(0) _(?) c R(J\lf)xk
cxk
c(O) Qc(o) c(o) =0 e R°* P Q(O) Y

mxk 2 _ 2 _ (2) _ nxk (1)
0 € R™* P(O) Q(O) Y(O) OER x U(O) —06

RFd U0 = 0 € RW%, Ag) = Lag) = 0 € RNV,
Then we update each variable one by one as discussed above
until convergence.

2.4 Complexity Analysis
Note that with different partial example ratios, the dimensions
of X(172), X and X@ are different, i.e., ¢, m, n vary. For
simplicity, we consider the extreme case that no incomplete
data exist, that is, complete (traditional) multi-view clustering
case. The feature dimensions of different modalities are all d.
In Algorithm 1, the most time-consuming parts are the
matrix multiplication and inverse operations when updating
UM, UR P, Q, A. For each iteration, the inverse op-
erations in Eqs. (7)(8)(10)(11)(12) cost O(k?) due to the
k x k size matrix. While the inverse on graph in Eq. (14)
takes time of O(N3). Usually k& < N, then the asymp-
totic upper-bound for inverse operation can be expressed as
O(N?3). The multiplication operations take O(dkN) when
updating UM, UR) P Q. 1t costs O(N3) when updat-
ing A. However, it is noted that the number of operations of
O(N?3) in each iteration is only 2, the major computations
are of order O(dkN). Suppose M is the number of opera-
tions consuming O(dkN), L is the iteration time. In sum, the
time complexity of our algorithm is O(M LdkN + 2LN?3).

3 Experiment

» Synthetic data are comprised of two modalities. We
first choose the cluster c¢; each sample belongs to, and

then generate each of the modalities x( ) and :L'l(?) from

a two-component Gaussian mixture model. Two modal-

ities are combined to form the sample (xl(l), 52), ci)-
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We sample 100 points from each modality. The clus-

ter means in modal-1 are u(l) =(11), ,ugl) = (3 4),in
modal-2 are ,ug ) = (12), /Lém = (2 2). The covariance
for modal-1 are

0.2

0.6 )

2= (o5 13 )2 = (03
0.

2 0.01 0 2 6 0.1
22 = (%" oo1 )%= (01 05)

¢ Real-world visual data: (a) MSR Action Pairs dataset
[Oreifej and Liu, 2013] is a RGB-D action dataset con-
taining 12 types of activities performed by 10 subjects.
Each actor provides 360 videos for each modality. (b)
MSR Daily Activity dataset [Wang et al., 2012] con-
tains 16 types of activities performed by 10 subjects.
Each actor repeats an action twice, providing 320 videos
for each of the RGB and depth channels. For the above
two RGBD video sequences, we temporally normalize
each video clip to 10 frames with spatial resolution of
120x 160. Histograms of gradient oriented feature is ex-
tracted from both depth and RGB videos with patch size
8x8. Thus, a total of 3000 patches are extracted from
each video, with the feature dimensionality of 31. We
will clarify this in our final version. (c) BUAA NirVis
[Huang et al., 2012] contains two types of data, i.e., vi-
sual spectral (VIS) and near infrared (NIR) data. The
first 10 subjects with 180 images are used. To fasten the
computation, we resize the images to 10x 10, and vec-
torize them. (d) UCI handwritten digit' consists of 0-9
handwritten digits data from UCI repository. It includes
2000 examples, with one modality being the 76 Fourier
coefficients and modal-2 being the 240 pixel averages in
2 x 3 windows.

For the compared methods, we consider the following al-
gorithms as the baselines. (1) BSV (Best Single View): Due
to the missing samples in each modality, we cannot directly
perform k-means clustering on each modality data. Follow-
ing [Shao er al., 20151, we firstly fill in all the missing data
with the average features for each modality, and then per-
form clustering on each modality, and report the best result.
(2) Concat: Feature concatenation is a straightforward way
to deal with multi-modal data, which serves as our second
baseline. Same as BSV, we firstly fill in all the missing data
with the average features for each modality, and then concate-
nate all modal features into one. (3) MultiNMF: Multi-view
NMF [Liu et al., 2013] seeks a common latent subspace based
on joint NMF, which can be approximately regarded as the
complete-view case of PVC. For the synthetic data, there are
few data points containing negative values. In order to suc-
cessfully run the code, we make the input data nonnegative as
preprocessing. (4) PVC: Partial multi-view clustering [Li et
al., 2014] is one of the most recent works in dealing with in-
complete multi-modal data. This work can be considered as
our proposed model without the complete graph Laplacian.
One important parameter on regularizer A is chosen from the
parameter grid of {1e-4, 1e-3, 1e-2, le-1, 1€0, lel, 12}, in-
cluding the default 1e-2 used in the original paper.

'http://archive.ics.uci.edu/ml/datasets.htm]



Table 1: NMI/Precision results on synthetic data under different PER settings.

Method \ PER | 0.1 0.3 0.5 0.7 0.9
BSV 0.421970.5233  0.3600/0.5439 0.1767/70.5147 0.164670.5118 0.0820/0.5109
Concat 0.4644/0.6922 0.4019/0.6436 0.3762/0.6159 0.3000/0.5711 0.2278 / 0.5965
MultiNMF 0.5767/0.8103  0.5699/0.8325 0.4430/0.7694 0.4298/0.7325 0.3677 / 0.6985
PVC 0.6194/0.8064 0.5820/0.8309 0.5512/0.8187 0.5142/0.7985 0.4185/0.6833
Ours 0.8781/0.9585 0.8362/0.9303 0.7433/0.8816 0.7959/0.9176 0.4580 / 0.6947

Table 2: NMI/Precision results on MSR Action Pairs dataset under different PER settings.
Method \ PER 0.1 0.3 0.5 0.7 0.9
BSV .480770.2687 0.480770.2687 0. . 287 . 27T ;

Concat 0.6270/0.3538 0.5803/0.3306 0.5512/0.3030 0.5123/0.2750 0.4685/0.2268
MultiNMF 0.6033/0.4038 0.5149/0.2984 0.5008 /0.2828 0.4816/0.2539 0.4463/0.2267
PVC 0.6917/0.4490 0.6501/0.3998 0.6356/0.3734 0.6012/0.3662 0.5882/0.3629
Ours 0.6859/0.4504 0.6763/0.4431 0.6504/0.3836 0.6468/0.3774 0.6396 / 0.3734

Table 3: NMI/Precision results on MSR Daily Activity dataset under different PER settings.

Method \ PER
BSV

0.1

0.3
7

Concat 0.2499/0.1137  0.2354/0.0997
MultiNMF 0.2077/0.0841 0.2057/0.0911
pPvC 0.2605/0.1385 0.2487/0.1275
Ours 0.2807 /0.1489  0.2554/0.1263

0.5

0.2261/0.0843
0.1924 /0.0806
0.2236 /0.1086
0.2512/0.1241

0.7
.148770.
0.2031/0.0755
0.1823/0.0713
0.2175/0.1049
0.2421/0.1108

0.9

0.1878 /0.0758
0.1655/0.0674
0.2062 / 0.0902
0.2201/ 0.0907

For the evaluation metric, we follow [Li et al., 2014], us-
ing Normalized Mutual Information (NMI). Besides, preci-
sion of clustering result is also reported to give a comprehen-
sive view. Same as [Li et al., 2014], we test all the methods
under different partial/incomplete example ratio (PER) vary-
ing from 0.1 to 0.9 with an interval of 0.2.

3.1 Experimental Result

For each dataset, we randomly select samples from each
modality as the missing ones. Note that our method not only
learns a better low-dimensional representation but also learns
a similarity matrix among samples iteratively. This naturally
gives us two opportunities to do clustering, i.e., k-means clus-
tering on the latent representation P, and spectral clustering
on the learned affinity graph A. To make the fair comparison,
k-means results on P are reported. For each experiment, we
repeats 10 times to get the average performance, the standard
deviations are omitted here because it is observed that these
values are usually small.

Table 1,2,3 and Figure 2 report the NMI values and pre-
cision on synthetic, video and image datasets with different
PER ratio settings. From these tables and bar graphs, the fol-
lowing observations and discussions are made.

e The proposed method performs superiorly to the other
baselines in almost all the settings; Especially for the
challenging synthetic data, we raise the performance bar
by around 31.83% in NMIL.

e With more missing modal samples (PER ratio in-
creases), the performance of all the methods drops.

e With more missing modal samples, our method im-
proves more compared with the state-of-the-art baseline.
Specifically, our NMI improvement reaches 10.34%

(PER=0.9) from 4.58% (PER=0.1) for five real-world
video/image datasets.

¢ For the real-world data, as PER ratio grows, the extent
that performance drops is less than that of synthetic data.

Discussion: The first observation experimentally demon-
strates that the proposed complete graph Laplacian term
works in both synthetic and video/image multi-modal data,
especially when some modal data are missing to a large ex-
tent. Note that for the matrix factorization part, we use the
simplest way with only Frobenius norm regularization on ba-
sis matrix. However, we still outperform the competitors with
the help of complete graph Laplacian term. With better ma-
trix factorization techniques, e.g. NMF in [Li et al., 2014] or
weighted NMF in [Shao et al., 2015], we believe that a better
performance will be achieved.

With no doubt, the problem becomes more challenging
when the number of shared samples is fewer. However, one
may be curious why our method performs much better than
others in synthetic data. The possible reason is that com-
pared with modal-1 data, modal-2 data are difficult to sepa-
rate. When points in modal-1 are missing, the existing meth-
ods cannot do a good job with only modal-2 data even in
latent space. However, thanks to the affinity graph built on
all data points, the data points from different clusters are it-
eratively pulled towards their corresponding cluster centers
by the influence of global constraint. This enlightens us
that in real-world multi-modal visual data, if one modal data
perform poorly (e.g. people blend in the background visu-
ally) than the others, our proposed complete graph Lapla-
cian term is capable to make it up from other discrimina-
tive modal data (e.g. discriminative depth information be-
tween people and background). One may be also interested in
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Figure 2: NMI/Precision results on (a) BUAA-NirVis dataset and (b) UCI handwritten digits dataset.

the reason why our method has a considerable improvement
when data suffer from a large incompleteness. We believe,
as PER ratio increases, the state-of-the-art method PVC de-
generates dramatically because the common projection P, be-
comes harder to be accurately estimated simply from the less
shared multi-modal data. Nevertheless, our proposed com-
plete graph Laplacian remedies the deviation by considering
the global structure of incomplete multi-modal data in the la-
tent space, which further leads to a robust grouping structure.

3.2 Convergence Study

To show the convergence property, we conduct an experiment
on synthetic data with PER ratio set as 0.3 and parameters
{A, B, 7} setas {le-2, le2, le2}. The relative error of stop
criterion |Pr — Q+|loo is computed in each iteration. The
red curve in Figure 3(a) plots the convergence curve of our
model. It is observed that after the first several iterations’
bump, the relative error drops steadily, and then meets the
convergence at around #40 iteration. The NMI value during
each iteration is drawn in black. It can be seen that there are
three stages before converging: the first stage (from #1 to #4),
the NMI value grows dramatically; the second stage (from #5
to #40), the NMI bumps in a certain range but grows; the final
stage (from #41 to the end), the NMI achieves the best at the
convergence point.

3.3 Parameter Study

There are three major parameters in our approach, i.e., A, 8
and . Same as convergence study, we conduct the parameter
analytical experiments on synthetic data with PER ratio set
as 0.3. Figure 3(b) shows the experiment of NMI result w.r.t.
the parameter A under two settings {[S=1e2, y=1€0]; [8=1€2,
~v=1€e2]}. We select the parameter « in the grid of {1e-3, le-
2, le-1, 1e0, lel, 1e2, 1e3}. It is observed that our method
has a relatively good performance when A is in the range of
[le-3, le-1], and drops when A becomes larger.

The experiments shown in Figure 3(c,d) are designed to
test the robustness of our model w.r.t. the trade-off parame-
ters 5 and ~ on the proposed graph Laplacian term. As we
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Figure 3: Convergence and parameter studies on synthetic
data. (a) shows the relative error and NMI result w.r.t. itera-
tion times. (b-d) plot the NMI results in terms of parameters
A, 5 and -y respectively. For each parameter analysis, we run
two different settings shown in red circle and black cross.

observe, the NMIs under different settings reach a relatively
good performance when 3 =[le-1, 1€0, lel] and v = 1e2.

4 Conclusion

In this paper, we proposed a method dealing with incomplete
multi-modal visual data grouping problem with the consider-
ation of the compact global structure via a novel graph Lapla-
cian term. This practice bridged the connection of missing
samples data from different modalities. Superior experimen-
tal results on synthetic data and four real-world multi-modal
visual datasets compared with several baselines validated the
effectiveness of our method.
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