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Abstract

In this paper, we propose to learn cross-view binary
identities (CBI) for fast person re-identification. To
achieve this, two sets of discriminative hash func-
tions for two different views are learned by simulta-
neously minimising their distance in the Hamming
space, and maximising the cross-covariance and
margin. Thus, similar binary codes can be found
for images of a same person captured at different
views by embedding the images into the Hamming
space. Therefore, person re-identification can be
solved by efficiently computing and ranking the
Hamming distances between the images. Extensive
experiments are conducted on two public datasets
and CBI produces comparable results as state-of-
the-art re-identification approaches but is at least
2200 times faster.

1 Introduction

Person re-identification addresses the problem of associating
people, at different locations and times, observed by the non-
overlapping Closed-Circuit TeleVision system. It has various
potential applications, such as long-term multi-person track-
ing, person re-acquisition and forensic search [Gong et al.,
2013]. Due to the various difficulties including illumination
changes, viewpoint and pose variations, inter-object occlu-
sions and low resolution images, person re-identification is
still a very challenging task and far from being tackled.

Most of the existing approaches can be categorised into two
groups: learning features which are invariant to view changes
[Gray and Tao, 2008; Li et al., 2014] and learning the met-
ric functions which are used to rank the pairs of observations
from different views [Prosser et al., 2010; Zheng et al., 2012;
Pedagadi et al., 2013]. However, in spite of their good perfor-
mance on public datasets, existing methods generally neglect
considering the efficiency of the algorithm in the matching
stage. In fact, the searching speed of a re-identification algo-
rithm plays a significant role in real-world applications.

In general, the efficiency of matching mainly depends on
two aspects: (1) the number of samples stored in the gallery
set; (2) the definition of similarity. As for the first aspect,
it is impossible to reduce the number of samples. It is be-
cause [Gong et al., 2013]: (1) A large number of surveil-

Figure 1: Assuming that the left and middle images are of
one person and the middle and right images are of different
persons but captured by one camera. Our aim is to learn two
sets of hash functions (one for each view) which embed the
images to binary codes (IDs) so that the IDs (second row) of a
same person are similar with each other and the IDs of differ-
ent persons are quite dissimilar. As illustrated in this figure,
the learned binary codes play a same role as fingerprints.

lance cameras have been installed in public spaces assembled
with hundreds of thousands of persons, even in a day. (2)
Re-identification in open environments can potentially scale
to arbitrary levels, covering huge spatial areas spanning not
just different buildings but also different cities, or countries,
leading to an overwhelming quantity of “big data”. (3) Per-
son re-identification can be extended from multi-camera net-
works to distributed Internet spaces. Therefore, with an ex-
plosive growth of images, speeding up the matching stage of
a re-identification system by designing a more advantageous
similarity criterion is an essential and non-replaceable option.

In this paper, a novel approach, learning Cross-view Bi-
nary Identities (CBI), is proposed to reduce the computational
burden for person re-identification. In fact, hashing has been
widely used for nearest neighbour search in computer vision
areas, such as image retrieval, object recognition and image
matching, but it has been seldom used in re-identification.
Using the hash functions, various special properties can be
preserved in the learned codes, such as locality, variance and
affinity. For two observations z, and x; of one person in
two different views, CBI can learn two similar codes, which
are considered as the identity (ID) of that person, as shown
in Fig. 1. The learned binary codes enable efficient similar-
ity search in different views using the Hamming distance be-
tween codes. Moreover, compact binary codes are extremely
economical for large-scale data storage.

Our contributions are three-fold: (1) By learning the bi-
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nary codes, each person has a similar identity across dif-
ferent views. Due to the efficiency of binary codes, per-
son re-identification in a huge dataset can be realised. (2)
In CBI, variances of learned bits, cross-covariance and mar-
gin of learned hash codes are simultaneously maximised and
an efficient iterative optimisation solution is introduced. (3)
Moreover, in CBI, a theoretical proof is given to guarantee
the transfer from Hamming space to Euclidean space. Unlike
most methods, which directly relax the sign function, such
as [Rastegari et al., 2013], we consider the theoretical reason
behind when it is safe to relax the sign function.

2 Related Works

To address the challenge of person re-identification, many ef-
forts have been made along the two directions: learning dis-
criminative features and learning the metric functions. More-
over, both aspects are considered to further improve the per-
formance in [Liao et al., 2015].

On the one hand, the learned features are generally in-
variant to the view changes and simple metrics are used for
matching. Various methods including local patches [Gray and
Tao, 20081, colour distributions over colour names (SCNCD)
[Yang et al., 2014], and salience learning [Zhao et al., 2013b]
are proposed to learn discriminative features for person re-
identification. In [Li er al., 2014], deep learning is exploited
to automatically learn features for the re-identification task
and the deep framework has been improved in [Ahmed et al.,
2015] by incorporating neighbouring locations of other im-
ages.

On the other hand, complex distance metrics are learned
to rank the pairs of observations from different views. Some
metric learning related algorithms including Support Vector
Ranking (PRSVM) [Prosser et al., 20101, relative distance
comparison (PRDC) [Zheng et al., 2012], equivalence con-
straints [Kostinger et al., 2012] and dimensionality reduction
[Pedagadi er al., 2013] to learn effective distance for person
re-identification. Very recently, ensemble metrics, such as a
mixture of similarities [Chen et al., 2015] and an ensemble
of distances [Paisitkriangkrai er al., 2015], are exploited to
discover multiple matching patterns.

Despite the promising performance achieved by the exist-
ing methods, all of them suffer from a huge computational
burden in the test stage. Due to the efficient nearest neigh-
bour search using binary codes, hashing techniques have been
widely adopted in many vision applications, especially in in-
dexing large-scale data. Composite Hashing with Multiple
Information Sources (CHMIS) [Zhang et al., 2011] and the
Cross View Hashing (CVH) [Kumar and Udupa, 2011] ex-
tend the SH [Weiss et al., 2008] from different aspects, re-
spectively. The boosting algorithms are adopted to embed
the input data from two arbitrary spaces into a same Ham-
ming space by Cross-Modality Similarity Sensitive Hash-
ing (CMSSH) [Bronstein and Bronstein, 2010]. Considering
the maximum margin, Predictable Dual-view Hashing (PDH)
[Rastegari ef al., 2013] explores a joint formulation for learn-
ing binary codes of data from two different views. Collective
Matrix Factorisation Hashing (CMFH) [Ding et al., 2014] is
based on the assumption that the interlinked data should have
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the same latent factors and the hash codes can be learned
from these factors. Moreover, local functions [Zhai et al.,
2013] and correlation-maximal mappings [Long et al., 2015]
are exploited to learn the common binary codes.

In this paper, we accomplish person re-identification by
learning a set of hash functions for each view. From the fea-
ture learning perspective, CBI learns a discriminative binary
representation for each person. Furthermore, from the met-
ric learning perspective, a more efficient distance metric in
the Hamming space is learned for matching. Moreover, most
of the above hashing methods are exploited to preserve the
local properties in intra-module and inter-module. However,
since normally very few images for each person exist in one
view, the extracted features do not meet the local smoothness
assumption. Instead, CBI focuses on learning similar binary
codes for a person under different views but the Hamming
distances between different persons will be maximised.

3 Learning Cross-view Binary Identities

For two different camera views: a and b, we can collect
two training datasets X, = {xl 22 --- 2"} and X,
{in, xf, ---,xp}, where x! is a column vector observed by
view a for person i and n is the number of paired sam-
ples (z%,x%). Our aim is to find K hash functions F' =
{fL, -, fE} for each view v € {a, b} and y, (k) = f¥(x,).
In this paper, the hash functions are constructed by a set
of linear hyperplanes: W, = {wl,w? --- wX}. Thus,
for dataset X, we obtain Y, = {yl,4%,--- y"} by using
yF = sign((wk)Txl). It is obvious that y¢ € {—1,1}¥.
For simplicity, we can write it as: Y, = sign(W! X,).

For a person with an image in the probe view, the first step
is to calculate the ID by using the learned projections. Next,
the ID can be used to retrieve the images of persons with sim-
ilar IDs in the gallery view. The IDs of persons in the gallery
view can be obtained in advance. Finally, the re-identification
can be achieved by ranking the Hamming distances. Because
the learned pairs of projections can embed the images of a
same person into a same ID, the top list of ranking will con-
clude the ones corresponding to the probe image.

3.1 Maximising the variance of bits

We want to produce an efficient code for each view v, in
which the variance of each bit is maximised and the bits are
pairwise uncorrelated [Gong and Lazebnik, 2011]. Thus, we
achieve this by maximising the following objective function:

I, = 3, var(fy (av))

sit. cor(ffi(xy), fF2(z,)) =0, (1
cor(f) (o), f§(20)) = 1,
where k1 # k. However, the requirement of ex-

act balancedness makes the above objective function in-
tractable. By signed magnitude relaxation, we get the fol-
lowing continuous objective function based on dataset X,,:
I, = Y E(|wp) al}) ~ 53 (wh) XoXjwy =
Lir(WIX, XITW,), s.t. WI'W, = I.

We relax the constraints as: ((w)Twk2)? < 6, ky # ko,
without considering the norm of each linear projection. 4, is
a minimal positive value. In fact, in the following, we can see



that it is not necessary to require the unit norm constraints if
the functions satisfy the hinge loss constraint.

3.2 Minimising the Hamming distance

In a single-view problem, the main consideration is that the
learned codes are discriminative to represent all the sam-
ples by preserving some special properties. However, it
is not enough in a multi-view problem, such as person re-
identification. Our main goal, in this paper, is to learn K hash
functions for each view so that two observations of each per-
son have the most similar binary codes (IDs). That is to say,
the Hamming distance between two sets of codes of one per-
son should be minimised. For a pair of sample sets (X, X;)
collected under the two views a and b, the Hamming distance
between them is defined as:

Ln(Xa, Xp) = > Di(yl, vh), 2

where D;, indicates the Hamming distance. Dy, is equal to
the number of ones in y’, & yi, where @ is a logical operation
that outputs true whenever the inputs differ.

However, despite its efficiency, minimisation of the Ham-
ming distance is generally intractable, because it is non-
differentiable to the linear functions. Thus, we seek to min-
imise an alternative item, which guarantees the Hamming dis-
tance will be minimised simultaneously. Fortunately, Propo-
sition 1 shows that we can achieve this, when the linear hash
functions satisfy the hinge loss constraint defined as follows.

Definition 1: Hinge loss constraint. For any sample ' in

one view v, if the linear function w¥ is satisfying

v (wy) a2 1-&) (3)
where £F is a minimal non-negative value, thus wF is the
hinge loss constraint satisfied function.

The hinge loss function is used for “maximum-margin”
classification, most notably for Support Vector Machines
(SVM) [Cortes and Vapnik, 1995]. It penalises the items sat-
isfying y*(w¥)Tz! < 1 so that all items can be correctly
classified and the classification score should keep stable as
well. In our framework, we hope all the samples can be pro-
jected outside of [—1,1] by each linear function so that the
learned codes are relatively stable for all the samples. More-
over, if W¥ and W} are hinge loss constraint satisfied func-
tions, the Hamming distance between the learned codes are
constrained by the Euclidean distance.

Proposition 1: If two sets of linear projections W, and
Wy, for two views are the hinge loss constraint satisfied func-
tions and their corresponding binary codes are defined by
yl = sign(Wlzi),v € {a,b}, thus the inequality can be

v

established when satisfying Vk, E¥ + €8 < 1:
Da(Ya, u) < |IWa'wl = Wyl i[5 @)

3.3 Overall objective function
To construct our objective function, we have to consider:
(1) The cumulative Hamming distance should be minimised
while the variance of bits should be maximised, thus
LWa, W) =3, [[Wa o, = W[5 = 3, L,

= —2tr(W] SayWh), )

2401

where Sy, = Xo, XL, vi,v2 € {a,b}. (2) For condi-
tions &X' + ¢} <= 1, we can sum all of them over sam-
ples and functions to obtain the relaxed inequality 7~ =
S &R+ 30, &8 <= K xn. (3) To increase the gener-
alisation of the model, it is necessary to penalise each learned
projection by maximising the margin of two separated sam-
ples |[|[W]|? = %Zve{mb} >4 ||wk|[2, which is same as an

SVM classification model. Therefore, we obtain
L= L(Wo, Wy) +CT + |[W|]?, (6)

where Ay and C' are used to balance the losses. In Eqn 6, the
quantities £(W,, W3), T and ||W||? can be considered as a
cross-view loss function for matching, a within-view quanti-
sation loss for hashing and a regularisation, respectively.

Proposition 2: Substituting L(W,, Wy), T and ||W||? into
(6) with considering the conditions, we have:

{Wr, Wi} = argming, ., —Aatr(W] S, Ws)
+ Zk(% Z?Je{a,b} ||w5||2 +C Z ftlfl)
s.t. Vo € {a,b}, i, k, ki # ko : @)
((wh)Tk))* <,
(o (wg)Twy) > 1= €57,65° > 0.

Firstly, we can see that the proposed CBI is related to
Canonical Correlation Analysis (CCA) [Hotelling, 1936], but
without minimising the covariance of intra-module. A solu-
tion of CCA may be affected by highly correlated but unim-
portant (in the sense of low variation and/or covariation) vari-
ables. However, a preserved large variance will increase the
stability and discriminativeness of the learned codes. Sec-
ondly, we can see that Sy is the cross-covariance matrix
between the two views a and b. Maximum Cross-variance
Analysis (MCA) [Lampert and Kromer, 2010] is a typical di-
mensionality reduction method for two cross sets of highly
correlated variables in the low dimensional space. The pro-
posed CBI can also learn the compact, highly correlated bi-
nary codes by maximising the cross-covariance in the new
space. Finally, although PDH [Rastegari et al., 2013] also
learns the projection by maximising the margins, there are
two significant differences between CBI and PDH. On the
one hand, both the cross-variance and the variances of bits
have been maximised in CBI but neither of them is consid-
ered in PDH. On the other hand, PDH obtains the projection
by directly using the classical SVM, but, in CBI, a novel dual
problem with a first degree item is solved to learn the projec-
tions. That is why PDH cannot improve the performance by
increasing the number of bits.

4 Optimisation

Despite the complex formula in Proposition 2, in general, the
problem can be solved by gradient descend with iterative pro-
jection. However, we adopt a more efficient way to search the
local optimal solution, considering that the objective is con-
vex to each variable with other variables fixed. Following
[Lee er al., 2006], we can iteratively optimise the projections
one by one. The training procedure of CBI is summarised in
Algorithm 1.



Algorithm 1 CBI training

Input: Training dataset X, X} and parametersA;, A2, C' and K.
Output: W, and W,
Initialisation
(1) Initiate W, and W}, by a random generator.
Repeat t=1,---
(2) Choose the kth pair of projections using Eqn. 10.
(3) Decide the optimlsatron order of v1 and vs.
(a) Calculate 91,1 and szfv,z
(b) Solve the quadratic programming problem in Eq. 8.
(c) Calculate the projection for view jul using Eq. 9.
(d) Update the codes of view vq by yvl = sign((w{fl) Ty )
(4) Assign the codes for view v2 by yv2 = yv'f
(a) Calculate 91}2 and sfj’;fl.
(b) Solve the quadratic programming problem in Eq. 8.
(c) Calculate the projection for view vz using Eq. 9.
(d) Update the codes of view vz by yff; = :;z'gn((wfj2 )Txsz)
If satisfy conditions: Exit.
Return Update the kth binary codes and hash functions.

4.1 Sequential optimisation

For further simplifying the optimisation, the orthogonal con-
straint of projections in intra-module has been added into the
objective function. Thus, as shown in Proposition 3, we can
see that the problem is the same as the classical SVM but only
by adding an item of first degree.

Proposition 3: We fix all other variables except for w"
and ¥ (i = 1,--- | n). By removing the irrelevant items, we

obtain:
wk = argmin 3( {; T@’;w{; — (wh)TsPh+ Oy,
stV k yik(wk)Tal > 1 - a’€§Z>O’

)
where OF = \; D itk wi(wl)T + I and sb% = o Sypwk.
So far, all variables related to view b have been absorbed
into the vector sglf). The objective function becomes a classi-
cal convex quadratic programming problem. Same as SVM,
a dual problem is designed to obtain the optimal solution:

(wg)" = (©q) ™" (sap + Xi"ag), ©)
where o is the optimal solution of the dual problem and
XpF = (ylhak, - ynhan).

Eqgs. 9 and 8 are similar to the equations in the classical
linear SVM. However, it is meaningful to point out the two
differences between them, which constitute the advantages of
CBI and distinguish from PDH. On the one hand, the inverse
of @ in the quadratic item forces that the learned projection
must be orthogonal to the other projections within the same
view. On the other hand, the s in the first degree item forces
that the learned projection should be highly related to the
corresponding projection within another view. Moreover, be-
cause CBI optimises the projections on each view separately,
it can be easily extended to the n,(n, > 2) situation by di-
rectly computing s = Zl?;éa,bzl A2 Sgpwy . Furthermore, CBI
can also be generalised to multiple-shot cases by minimising
the hamming distances between all the image pairs of one
person for any two different views.

Figure 2: Image samples: VIPeR (left) and CUHKOI (right).

4.2 Greedy selection

Then, the problem becomes how to choose a projection which
will be optimised at present. Once one projection has been se-
lected, the new optimal projection will be obtained by solving
the problem in Proposition 3. Assume the loss of each pro-
jection w¥, at the present iteration, is deﬁned as: L(wk) =
L (wh) T Ofwk—(wh)TsU+C Y0, [1-yiF (wh) T} |, where
EJJF is the hinge loss function. Therefore greedy selection

will be achieved by:
k = mazy(L(wk) + L(w})). (10)

We hope the overall loss will be decreased by minimising the
items which have a high loss. The next step is to optimise the
selected kth pair of projections, which are detailed as follows.

First, view vy with less loss will be optimised in advance,
because the learned binary codes probably approach the op-
timal ones. The binary codes yf}’f of the last round will be
considered as the initials to optimise the problem in Propo-
sition 3 for view v;. Next, the binary codes will be updated
according to y&* = sign((w,, v*)Tz? ) by using the learned
projection. After that, the learned codes of view v; will be
used to optimise the projection in view ve. This means y,,,
is initiated by y,,,. This process is the same as in [Rastegari
et al., 2013]. Finally, the same optimisation of Proposition 3
will be conducted for view vs5. Thus, the binary codes of view
vy will be also updated by y&F = sign((w,,v")?zl).

The optimisation procedure can be terminated by different
criteria, such as difference between two binary codes of two
views less than a small positive number or the fixed number
of iterations. In our experiments, we observed that when the
number of iterations is around the number of projections K,
the difference between two binary codes will be the least.

The proofs of Proposition 1 and 3 and Eq. 9 will be given
in the Supplemental Materials.

4.3 Convergence

In this section, theoretical analysis is provided by rigorous
proof of the convergence of the objective function in Propo-
sition 2.

Proposition 4: L in Proposition 2 monotonically de-
creases with each optimization step for w* and £¥', and there-
fore L converges to a local optimum.

Proof: Denote J(w" &¥|i = 1,---,n) as the objec-
tive function in Proposition 3 and R as the remaining part
which is unrelated to w¥ and ¢ in Proposition 2, respec-
tively. Then, we obtain the objective function in Proposition

2402



Methods | CBI-100 CBI-500 CBI-700 | SDALF | KISSME
Time(s) 5.9¢-07 1.1e-06 1.4e-06 3.6e+00 9.2e-03
Methods PRDC eSDC PRSVM Mrank SCNCD
Time(s) 9.3e-03 1.14e+01 3.2e-03 3.4e-02 4.2e-03

Table 1: Time comparison of computing the similarities be-
tween one probe sample and all the gallery samples (316) us-
ing the compared methods. CBI-100 denotes that only 100
hash codes have been learned.

2: L = J(wF ri = 1,--- ,n) + R. At the tth step of
optimisation, suppose that w® has been chosen (Otherwise,
the same conclusion can be also obtained for w’b‘”'.). Then, we
can denote £'~! as the objective function before optimising
w¥ and L is the function after we obtain the optimum (w¥)*

of J(wk, ki = 1,--- ,n). Since J(wk, i =1,--- n)
is a convex problem, then J(wk &¥|i = 1,---,n) >
J((wk)*,€¥i = 1,--- ,n). Moreover, because R is fixed,
the following inequality can be established:
...Zﬁflzgtz..._ (11)

S Experiments

We test our proposed CBI' for person re-identification on two
public datasets: VIPeR [Gray and Tao, 2008] and CUHKO1
[Li et al., 2014]. Some example images of the two datasets
are shown in Fig. 2. To illustrate the performance and effi-
ciency of CBI, 17 recent algorithms, including 13 person re-
identification methods and 4 multi-modal hash function learn-
ing methods, are used for comparison.

Image representation: In this paper, to reflect the advan-
tage of our CBI to learn binary codes for different descriptors,
three representations, including ELF [Gray and Tao, 2008],
SCNCD [Yang et al., 2014] and LOMO [Liao et al., 2015],
are adopted as the basic descriptors. CBI is not sensitive to
the parameters for the two datasets and we set A\; = 2 and
C' = 200 for all the experiments. However, Ao will be set to
0.05, 10 and 5 for ELF, SCNCD and LOMO, respectively.

Evaluation protocol: We randomly partition a dataset into
two parts without overlap on person identities, according to a
certain percentage. The expectation is reported by conduct-
ing 10 trials of evaluation. The parameters of other hashing
algorithms are carefully tuned so that the best results are ob-
tained. The results of other person re-identification methods
either come from original papers or by running their offered
codes, with exactly the same experimental setting. Same as
most person re-identification publications, the standard Cu-
mulated Matching Characteristics (CMC) [Wang et al., 2007]
curves and the corresponding Area Under Curve (AUC) are
used to illustrate the performance of different methods.

5.1 The efficiency of CBI

The Hamming distance comparison of the learned binary
codes for two different persons in two views from the test
set on the VIPeR dataset is shown in Fig. 3. According to
the proposed CBI, binary codes with length 704 for each im-
age are learned and resampled into an image with 22 x 32

'The codes are released on a website:
https://sites.google.com/site/crossmodalhashing/re-identification
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Figure 3: Left most: the images in the two views of the 577th
(first row) and 547th (second row) persons in the VIPeR
dataset. QR code: the Hamming distances between the
learned codes for the four samples and the exact Hamming
distances are 57, 331, 317, 328, 316 and 78, respectively.

pixels so that it is easy to illustrate the difference of learned
codes. From this figure, we can see that the Hamming dis-
tance between two images of a same person in two views is
much lower than that between the images of different persons
no matter they are captured in the same view or not.

CBI is efficient for similarity search in the testing stage,
since the bit X OR operation is applied when calculating the
Hamming distance. To illustrate the efficiency of CBI, we
compare the time of similarity computation for various meth-
ods on the VIPeR dataset. To simulate a real situation, the
time includes the feature projection for the probe image but
the embedded features of gallery images are obtained in ad-
vance. All algorithms are run on a Matlab 7 platform installed
on Windows 7 with Intel Core 3.4GHz CPU and 8G mem-
ory. The codes of compared methods are provided by their
original authors and comparison results are shown in Table 1.
We can see that the proposed CBI is at least 2200 times faster
than other methods. It is worth to point out that the local
patches based methods, including eSDC [Zhao et al., 2013b],
MLF [Zhao et al., 2014] and SalMatch [Zhao et al., 2013al,
achieve advantageous performance (Rank 1: eSDC-26.74%).
However, the methods exploiting the local patches introduces
a huge computational burden and they are 107 times slower
than CBI. In general, in a real-world application, the number
of samples in the gallery set n is very huge and the original
dimension n4 is much larger than the number of learned bits
K. In theory, the efficiency of CBI is at least n(ng + 1)/ K
times faster than other metric learning based methods.

5.2 Comparison with the state-of-the-art methods

For evaluating on the VIPeR, we compare CBI with re-
cent published algorithms, including: ELF [Gray and Tao,
2008], PRDC [Zheng et al., 2012], PRSVM [Prosser ef al.,
2010], SDALF [Farenzena et al., 20101, CPS [Cheng er al.,
2011], Mrank [Loy e al., 2013], eSDC [Zhao et al., 2013b],
SalMatch [Zhao et al., 2013al, MLF [Zhao et al., 2014],
KISSME [Kostinger ef al., 2012], SCNCD [Yang et al., 2014]
and LOMO [Liao et al., 2015]. The comparison results are
shown in Fig. 4 (a) and (b). Among them, PRDC, Mrank and
PRSVM used the ELF feature. We can see that the proposed
CBI achieves much better results than the three methods al-



70 80

Figure 4: The CMC rankings on the VIPeR dataset. Numbers
in legend are the Rank-1 accuracies. (a) All methods adopted
the ELF feature; (b) Comparison with other methods.

CMC rank score on CUHKO1 CMC rank score on CUHKO1

Figure 5: The CMC rankings on the CUHKOI dataset. (a)
100 test persons; (b) 486 test persons.

most in all ranking. Following [Liao et al., 2015], a Cosine
similarity measure is applied to SCNCD and LOMO. To com-
pare with the three types of original features, we can see that
the performance is boosted by CBI for at least 30%. More-
over, using the SCNCD feature, CBI is the best method at
rank 1 and is better at low ranks (< 30) than other state-of-
the-art methods. Finally, by using LOMO feature, CBI has
a 29.1% accuracy at rank 1 and outperforms other methods
almost at all ranks.

For comparing on the CUHKO1, we follow two partitions
as in [Li et al., 2014; Zhao et al., 2014] and the results are
shown in Fig. 5. For the first partition with 100 test persons,
three methods including FPNN [Li et al., 2014], eSDC [Zhao
et al., 2013b] and SDALF [Farenzena et al., 2010] are com-
pared with. We can see that CBI can achieve much better re-
sults than eSDC and SDALF at all ranks, no matter what fea-
tures are used. To compare with the deep architecture based
method FPNN, using the LOMO feature, CBI can achieve
better results at all ranks while, using the SCNCD feature, is
only slightly inferior FPNN at rank 1 (1.6 %) but better than
FPNN at all other ranks. For the second partition with 486 test
persons, the task is relatively more difficult and four state-of-
the-art methods including eSDC [Zhao et al., 2013b], SDALF
[Farenzena et al., 2010], SalMatch [Zhao et al., 2013a] and
MLF [Zhao er al., 2014] are compared against. In this set-
ting, MLF is the best method but, using the LOMO feature,
CBI achieves very similar performance to MLF. In fact, MLF
is a local patches based method thus the computational bur-
den of feature calculating and matching is very high.

In total, CBI can achieve competitive performance with the
state-of-the-art methods. We have to point out that recent
works on improved deep learning [Ahmed et al., 2015] and
fusion based methods (LOMO+XQDA [Liao et al., 2015],
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Figure 6: Rank 1 comparison with four hashing methods and
CCA on the VIPeR dataset with the three features.

MLF+LADF [Zhao et al., 2014], mixture of similarities
[Chen et al., 2015] and ensemble of distances [Paisitkri-
angkrai ef al., 2015]) reported higher results. However, since
this paper mainly focuses on the efficiency, the combination
of different methods is not considered, because they are com-
putationally very expensive. Naturally, the performance of bi-
nary coding, a.k.a. hashing, methods will be lower than their
corresponding non-hashing based methods due to the quan-
tization loss [Gong and Lazebnik, 2011]. In the following
section, the comparison of CCA [Hotelling, 1936] and CVH
[Kumar and Udupa, 2011], which is a hashing version of
CCA, will also prove this point. Therefore, we can conclude
that, as a binary coding method for person re-identification,
the performance of CBI is acceptable.

5.3 Comparison with other hashing methods

We compare our CBI with CCA [Hotelling, 1936] and multi-
modal binary code learning methods, including PDH [Raste-
gari et al., 2013], CVH [Kumar and Udupa, 2011], CMSSH
[Bronstein and Bronstein, 2010] and CMFH [Ding er al.,
2014] on the VIPeR and CUHKO1 datasets.

The comparison results at rank 1 are shown in Fig. 6.
Firstly, due to the finite rank of variance matrix, the dimen-
sions of the features learned by CCA and CVH are con-
strained, thus their best performance is poor. Secondly, at
very low dimensions, most methods achieve similar results
and the performance of CCA is better than others. Thirdly, the
ranking scores of other three methods including CMFH, PDH
and CMSSH do not progressively increase by the increase of
the length of codes. This is because the later learned codes
tend to add little discriminative information, due to ignoring
the orthogonal constraint between different hash functions.
Fourthly, our proposed method achieves much better results
than other methods when the code length is over 400. Finally,
Tables 2 and 3 show the best performance of each method
with the optimal length of the learned codes. The overall
AUC at ranks from 1 to 100 and the rank 1 accuracies have
been reported. From the tables, we can see that CCA achieves
much better results than the corresponding hashing version
CVH. Moreover, we can observe that CBI outperforms all
other binary code learning methods on the both datasets.

6 Conclusion

In this paper, a cross-view binary code learning method has
been proposed for fast person re-identification. The main ad-
vantage of this method is that it hugely speeds up the proce-
dure of the ranking or retrieval stage, when achieving equiv-
alent performance to the state-of-the-art methods. Moreover,



Method CBI CMFH PDH CMSSH | CCA CVH
ELF-AUC 80.28 78.81 75.63 73.96 73.49 | 50.12
SCNCD-AUC | 87.43 86.43 84.30 77.30 7293 | 70.94
LOMO-AUC 89.92 88.80 84.06 85.04 79.96 | 58.77
ELF-R1 0.221 0.165 0.117 0.114 0.083 | 0.063
SCNCD-R1 0.313 0.222 0.225 0.165 0.218 | 0.158
LOMO-R1 0.291 0.247 0.171 0.190 0.168 | 0.085

Table 2: AUC and Rank 1 performance comparisons on
VIPeR with 316 test persons. R1 denotes Rank 1.
Method CBI | CMFH | PDH | CMSSH [ CCA | CVH
ELF-AUC 75.14 | 7345 | 49.87 | 5703 | 6853 | 5359
LOMO-AUC | 80.63 | 79.78 | 49.81 | 57.58 | 73.63 | 5245
ELFRI 0235 | 0.150 | 0.056 | 0.102 | 0.156 | 0.065
LOMO-RI 0306 | 0.188 | 0058 | 0.099 | 0.153 | 0.059

Table 3: AUC and Rank 1 performance comparisons on
CUHKOL1 with 486 test persons.

two more important points have also been observed. On the
one hand, we firstly give an inside view of the intrinsic mech-
anism that the Hamming distance can be minimised by min-
imising the Euclidean distance when the learned linear hash
functions satisfy the hinge loss constraint. In the future, it is
meaningful to give a more compact boundary via the statis-
tical perspective to enable a faster convergence of the algo-
rithm. On the other hand, just dual modules have been used
to learn the IDs of different persons. In fact, in a real world
scenario, even in a building or a shopping mall, much more
than two cameras are installed to monitor the human activi-
ties. Therefore, learning the IDs of persons from more than
two views is useful. From this point of view, we can see that
CBl is just a starting point in this area.

Appendix
Proof of Proposition 1

Proof: The Hamming distance between two binary codes y,
and vy is defined by:

Dh<ya7 yb) = Zk yéf @ yll)C
= L(sign(uka,) # sign(wfa)),
where 1(-) is an indicator function. Thus, for any k, we con-
sider two conditions: (1) If sign(wkz,) = sign(wfxy), itis
obvious that
Ya @y =0 < |wyza — wyas|.

() If sign(wkz,) # sign(wfzy), we assume that
sign(wkz,) = 1 (Otherwise, same conclusion can be also
obtained). There must be sign(wfz;,) = —1. Since the two
linear projections are both hinge loss constraint satisfied func-
tions, we have w¥z, > 1—£F and wlay, < —1+&F. So, there
is 2 — ¢k — ¢F < |wkz, —wkay|. Provided that € 4+ ¢F <1,
the following inequation is true:

oy =1<2-¢ - <|wkz, -

In total, provided with 1(.)? = 1(.), we obtain the following
conclusion by satisfying Vk, &8 + &F < 1:

Dy (yaryp) = 32, 12 (sign(wyza) # sign(wyas))
< [[Waza — Wa[3.

wiy|.
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Proof of Proposition 3
Proof: The original objective function in Proposition 2 is:

{W. }— arg miny, —Aatr(WI S, Wh)

+Zk( 2 vefab} HWIJHQ +CYE)

s.t. Yv € {a, b}, i, k, kl # kg :
((wy)Twi2))* < o,
(i (wh)Tt) 21— €l eb > 0

If we fix all other variables except for w* and £*?, then the
objective function and the constraints become:

z\lwkll2+02§’§i
)T w ’“))2 < da,
Mgk 0.

f)\gw Sabwb
Vi, koky £k ((w
(ya ( §)ay) >1 -

If the orthogonal constraint of projections in intra-module
has been added into the objective function using a balance
parameter A\;, we obtain:

A Sat 4 glhug 2+ OTE § 5 () Qg
S0, by (y ()Tt 21— g, 86 50,
where Qf = >, w)(w))". If we set ©F = X\, Q% + I and

= XaSapw?, then we obtain:

wk = argmin £ (wh)TOFwF — (w a)T ok 4 CZ &
StV Ky (wh) Tt > 1 — ,52“

Proof of Equation 10

Proof: For simplicity, we delete the subscripts of views and
the index of projections k in this subsection. The optimal pa-
rameters w” and £¥% can be obtained by solving the following
objective function:

twTow —wls+CY, &,

.2 . ST
yszxz > 1— 57,’52 > 0.

w = arg min
s.t.

The objective function becomes a classical convex
quadratic programming problem. To simplify the optimisa-
tion by transferring inequality constraints to equality con-
straints, a dual problem is designed. Thus, the Lagrange func-
tion can be defined as:

L(w,& a,7) = 3wTOw — wl's + CeT¢
_aT xvy T, T¢ T
w XYa+ela—a" -7 ¢,
where e = (1,---,. )T, ¢ = (517"' E)T,
«@ = (517 o 7an)T7 Y = 1,°°° a’YTL)T and
XY = (ylzt,--- y"2™). The gradlent W1th respect to

the parameters: gTLU =0Ow—s5—XYaand %L =Ce—a—n.

Then, the optimal values should satisfy the following
constraints:
w=0"1(s+ X%);
v=Ce—a.

Substituting the above equations into the original Lagrange
function, we obtain the dual problem:

T(xnTeo 'Xva+ (sTOT'XY —

a = argmin, ;o eNa
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