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Abstract

As a classical subspace learning method, Proba-
bilistic PCA (PPCA) has been extended to several
bilinear variants for dealing with matrix observa-
tions. However, they are all based on the Tucker
model, leading to a restricted subspace representa-
tion and the problem of rotational ambiguity. To ad-
dress these problems, this paper proposes a bilinear
PPCA method named as Probabilistic Rank-One
Matrix Analysis (PROMA). PROMA is based on
the CP model, which leads to a more flexible sub-
space representation and does not suffer from rota-
tional ambiguity. For better generalization, concur-
rent regularization is introduced to regularize the
whole matrix subspace, rather than column and row
factors separately. Experiments on both synthetic
and real-world data demonstrate the superiority of
PROMA in subspace estimation and classification
as well as the effectiveness of concurrent regular-
ization in regularizing bilinear PPCAs.

1 Introduction

Principal Component Analysis (PCA) [Jolliffe, 2002] is a
classical subspace learning technique. It is widely used for
various applications such as data compression, computer vi-
sion, and pattern recognition. Probabilistic PCA (PPCA)
[Tipping and Bishop, 1999] is an important extension of
PCA. It reformulates PCA as a generative model, which
brings two main advantages: 1) It can capture data uncer-
tainty and handle missing values; 2) By introducing proper
prior distributions, it enables automatic model selection or
incorporation of desired properties such as robustness [Chen
et al., 2009], sparsity [Khanna et al., 20151, and large-margin
separability [Du et al., 2015]. Although PCA and PPCA have
wide applications, they are designed for vector inputs, and re-
quire vectorization (reshaping) to deal with multidimensional
data. This may lead to some loss of data information due to
the broken spatial structures.

To address the above problem, various multilinear exten-
sions of PCA have been proposed, where the input data are
represented by fensors (multidimensional arrays). Roughly
speaking, multilinear PCA methods can be grouped into two
branches [Lu et al., 2013]. One is based on the Tucker
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model [Tucker, 1966] that learns low-dimensional tensors
from high-dimensional tensors [Yang et al., 2004; Ye, 2005;
Ye et al., 2004; Xu et al., 2005; Lu et al., 2008]. The
other branch is based on the CANDECOMP/PARAFAC (CP)
model [Carroll and Chang, 1970; Harshman, 1970] that learns
low-dimensional vectors from high-dimensional fensors, in a
successive way [Shashua and Levin, 2001; Lu et al., 2009].

Several attempts have also been made to take advantages
of both probabilistic models and tensor representations. This
paper focuses on bilinear extensions of PPCA, which aims to
learn a subspace from matrix (second-order tensor) inputs.
Matrix-Variate Factor Analysis (MVFA) [Xie et al., 2008]
may be the first bilinear PPCA method. It relates each (ma-
trix) observation to a low-dimensional latent matrix via intro-
ducing column and row factor matrices. With the same spirit
as MVFA, Probabilistic Second-Order PCA (PSOPCA) [Yu
et al., 2011] provides a probabilistic interpretation of bilinear
PCAs by assuming that both matrix observations and latent
matrices are from matrix-variate normal distributions [Gupta
and Nagar, 1999]. By adding two extra noise terms to the
PSOPCA model, Bilinear Probabilistic PCA (BPPCA) [Zhao
et al., 2012] can analytically marginalize out latent matrices
and provide closed-form updates for both maximum likeli-
hood estimation (MLE) and maximum a posteriori (MAP)
estimation.

All the existing bilinear PPCA methods are Tucker-based.
They have a restricted subspace representation that reuses
each column/row factor for constructing multiple bases of the
matrix subspace. This enables them to model the matrix sub-
space with only a small number of parameters, but also lim-
its the flexibility in capturing data characteristics. In addi-
tion, like PPCA, Tucker-based PPCAs suffer from rotational
ambiguity [Tipping and Bishop, 1999; Ahn and Oh, 2003],
which means that they can only estimate the span rather than
the exact axes of the underlying subspace. This is undesirable
for applications such as data interpretation and visualization
[Jolliffe, 2002].

To address the above problems of Tucker-based bilinear
PPCAs, this paper proposes a bilinear PPCA method based
on the CP model, named as Probabilistic Rank-One Matrix
Analysis (PROMA). PROMA models each observation as a
linear combination of rank-one matrices, and does not suf-
fer from rotational ambiguity. Moreover, it takes the Tucker-
based PPCA model as a special case, providing more flexi-



bility in capturing data characteristics. To obtain robust solu-
tions against overfitting, we need regularization in PROMA.
Instead of separately regularizing column and row factors, we
propose concurrent regularization to penalize the whole ma-
trix subspace and relax the scale restriction of separate regu-
larization, which could lead to better generalization for CP-
based PPCAs.

2 Preliminaries

This section describes the notations and definitions needed in
the proposed method, and provides a brief review on PPCA
and its bilinear extensions.

Notations: Vectors and matrices are denoted by bold low-
ercase (x) and uppercase (X) letters, respectively. Super-
script T denotes the transposition. Symbols ® and ® de-
note the Kronecker and Hadamard (entrywise) product, re-
spectively. © is the Khatri-Rao (column-wise Kronecker)
product of two matrices C = (cy,...,cp) € R¥%>*F and
R = (ry,...,rp) € R¥*P which leads to a d.d, x P
matrix denoted as C ©® R whose pth column is ¢, ® r,
(p = 1,...,P). () denotes the expectation w.rt. a cer-
tain distribution. tr(-) is the matrix trace, vec(-) is the vec-
torization operator that stacks the columns of a matrix into a
single column vector, and diag(+) is the operator that creates
a diagonal matrix from a vector or a vector formed by the
diagonal elements of a matrix. Ny, 4, (8, X.,X,) denotes
a matrix-variate normal distribution with the mean matrix
=, covariance matrices X, € R%Xde gpnd 3, € Rdrxdr,
which is related to the multivariate normal distribution in
the following way: X ~ Ny_ 4, (8,3.,%,) if and only if
vec(X) ~ N (vec(E), X, ® X.) [Gupta and Nagar, 1999].

PPCA model: PPCA relates a d-dimensional observation
vector X to a g-dimensional latent vector z as follows:

x=Wz+ u+e€, @)
where W € R4 is the factor loading matrix,
€ ~ N(0, 1) represents random noise with variance o2,
z ~ N(0,1) is independent of € , and p is the mean vec-
tor. In essence, the goal of PPCA is to learn a g-dimensional
subspace spanned by the columns of W from d-dimensional
observations. When the observation X € R%*? is in the
matrix form, we need to vectorize X first, and then perform
PPCA on vec(X) € Rédr,

Tucker-based bilinear PPCA model: Bilinear PPCA
methods such as PSOPCA and BPPCA take matrices as in-
puts without vectorization. They are all based on the Tucker
model, which relates each matrix observation with a latent
matrix. Specifically, they aim to find a q. - ¢,.-dimensional
subspace by modeling a matrix observation X as follows:

X =U°ZU"" + E+E, )

where Z € R% > is a latent matrix with Z ~ N;_, (0,1 1)
serving as the low-dimensional representation of X, = is the
mean matrix, and E € R%*dr jg a noise matrix and inde-
pendent of Z. Each element of E is an independent identi-
cally distributed (i.i.d.) normal random variable with E;; ~
N(0,0?), which is also equivalent to E ~ Ay, 4, (0,0, o1)
with o > 0. U® = (uf,...,uj ) and U" = (uf,...,uy )
are the column and row factor matrices, respectively.

2429

Compared with the PPCA model (1), Tucker-based one (2)
requires much fewer parameters (U¢ and U" rather than W)
to model the same number of latent features, while, as will be
seen in the next section, this subspace representation is rel-
atively restricted and has limited flexibility in capturing data
characteristics.

3 Probabilistic Rank-One Matrix Analysis
with Concurrent Regularization

This section presents our Probabilistic Rank-One Matrix
Analysis (PROMA) method in three stages: 1) We introduce
a CP-based bilinear PPCA Model, which is more general than
the Tucker-based one (2); 2) concurrent regularization is pro-
posed to alleviate overfitting for CP-based PPCAs; 3) we de-
velop the PROMA algorithm with a data-dependent strategy
of determining the regularization parameter.

3.1 CP-Based Bilinear PPCA Model

We assume that an observed matrix X can be represented by
a linear combination of P rank-one matrices, whose coeffi-
cients are the elements of a latent vector z € RY. This leads
to a CP model as follows:

P
X =Y zer, +E+E=CdiagzR" +E+E, 3)

p=1

where z, is the pth element of z~ N(0,I), and
E ~ Ng,.4,.(0,01,0I) with o > 0. C = (cy,...,cp) €
R%*F and R = (ry,...,rp) € R4 *F are the column and
row factor matrices, respectively.

Despite of modeling data in different ways, (1), (2), and
(3) have the same goal of learning a subspace from vec(X)
or X. In the following discussions, we study different PPCA
models in a typical subspace learning setting, where the di-
mensionality of the matrix subspace or the number of latent
features is given, i.e. ¢ = q. - ¢ = P.

Connections with PPCA: We first explore the connections
between PPCA and its bilinear extensions.

Proposition 1. Given q = q. - q. = P, the Tucker and CP
models (2) and (3) are equivalent to the PPCA model (1) with
W =U"® U°and R © C, respectively.

Proof. By vectorizing both sides of (2) and (3), and using the

fact that vec(U°ZU" ") = (U" ® U°)vec(Z), the Tucker
model (2) can be rewritten as follows:

vee(X) = (U" @ U°)vec(Z) + p + €.

With vec(z,¢,r, ) = 2,1, ® ¢, the CP model (3) becomes:

q
vee(X) =Y zr,@c, tpte=ROC)z+p+e
p=1

Since z = vec(Z) ~ N(0,I), p = vec(E), and € =
vec(E) ~ N(0,0%1), (2) and (3) are equivalent to the PPCA
model (1) with W = U" ® U*° for the Tucker model, and
W = (r1®cy,...,rp®cp) = ROC for the CP model. [J



Proposition 1 implies that both the Tucker- and CP-based
PPCAs can be viewed as PPCA with a specific parameteriza-
tion of the factor matrix W. This also means that inferring the
Tucker and CP models is equivalent to estimating a subspace
spanned by the columns of U” ® U¢ and R® C, respectively.

Connections with Tucker-based bilinear PPCAs: Next,
we will show that in the same setting of subspace learning,
the Tucker model (2) is a special case of the CP model (3).

Theorem 1. Given P = q. - q, the Tucker model (2) is a
special case of the CP model (3).

Proof. The Tucker model (2) can be rewritten as the follow-
ing summation form of the CP model (3):

dc,qr

X = Z Ziju

ij=1

co.r T

‘u}' +Z+E = Cdiag(z)R" + E+E,

where z = vec(Z), C = (uf,...,uf,...,ug ,...,ug ), and

R = (U",...,U"). Therefore, the Tucker model is just a

CP model with ¢, and g, repeated ui (i = 1,...,q.) and u’;
(7 =1,...,q) in C and R, respectively.

From Proposition 1 and Theorem 1, the Tucker model (2)
represents the matrix subspace as U” ® U°¢ = RoC =
(uf ®@uf,uy ®uf,...,uy uf,uyVus,...,u; Vug ).
It reuses each column of U¢ and U" to construct multiple
bases of the matrix subspace. This makes each subspace ba-
sis constructed by uj and uj (i = 1,...,¢;;5 = 1,...,¢)
share some common information with (¢, — 1) + (¢» — 1)
other bases, leading to restricted flexibility in capturing data
characteristics. In contrast, the CP model (3) does not have
this restriction and allows each subspace basis r;,, ® c,, to be
constructed by distinct pair of factors. Thus, it generalizes the
Tucker model (2), and has more potential of capturing useful
data characteristics.

Log-likelihood function: Armed with the CP model (3),
the conditional distribution of X given z is as follows:

P
X|z ~ ./\/’dc,dy,(z zpepr, + 8, 01,01),

p=1
which is also equivalent to vec(X)|z ~ N((R @ C)z +
w,0%I). Without loss of generality, we assume that data
are centered and thus & = 0. Given a set of observations
{X,,}_,, we can take the expectation of the complete-data

log-likelihood L = 25:1 Inp(X,,,2z,) wrt. the condi-
tional distribution p(z|X). Defining the parameter set § =
{C,R, %}, we have

|

1
+55 (11X — C diag(z,)RT ||} | + const.
g

“

d.d,
2

T
Z,Zp

In

o+ {al )

n=1

&)

With the above log-likelihood function, we can estimate the
model parameters by maximizing (5) w.r.t. 6.

Rotational ambiguity avoided: Apart form its flexibility,
another advantage of the CP model over the Tucker one is
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that it does not suffer from rotational ambiguity. This means
that maximizing the likelihood function (5) leads to unique
C and R up to rotation transformations, which results in the
optimal axes of the matrix subspace in the sense of maxi-
mum likelihood. This property could be very useful in data
interpretation and visualization. In contrast, Tucker-based bi-
linear PPCAs have rotational ambiguity and can only obtain
arbitrary bases spanning the subspace, since their solutions
with and without rotation transformations are equally good in
terms of the likelihood function [Zhao et al., 2012].

3.2 Regularization for CP-based PPCAs

In order to obtain robust solutions against overfitting, it
is common to regularize the log-likelihood function (5) by
adding certain regularization terms for C and R or introduc-
ing priori distributions over C and R separately.

Separate regularization: For clarity, we only discuss Lo
regularization for penalizing smoothness, while similar con-
clusions can also be drawn for more general regularizations.
It would be natural to regularize the log-likelihood function
(5) as follows:

P P
L) =L6)+7e ) _llesll> +7 Y el ()
p=1 p=1

where v, and -, are regularization parameters. This is equiv-
alent to introducing Gaussian priori distributions p(C|v.)
H5:1N(Cp|0a7c_11) and p(Rlv,) = H;};D:1 N(rp|0,,'T)
over the factor matrices C and R, respectively.

Scale restriction: However, this conventional approach
is not good enough for CP-based PPCAs, because C and
R are penalized separately. Recall from Proposition 1 that
the CP model learns a subspace spanned by the columns of
W = R ©® C. Although W is constructed by C and R, we
eventually favor a smoothed W, whereas imposing smooth-
ness on C and R separately may not lead to a smoothed W.
Moreover, due to the regularization terms ||c,||? and ||r,||%,
(6) restricts the scales of ¢, and r,, to specific values. How-
ever, this restriction seems unnecessary, because (5) is invari-
ant to scale transformations c,, — sc,, T, — s~'r,, (s # 0)
and does not prefer certain scales of ¢, and r;,. Consequently,
regularizing C and R separately may exclude some good so-
lutions in terms of (5). Can we relax such restriction in regu-
larizing CP-based PPCAs?

Concurrent regularization: Bishop [1995] proved that
adding random noise to the training examples is equivalent
to Tikhonov regularization. This inspires us to regularize
CP-based PPCAs via introducing additional noise. Instead
of generating a noisy training set as [Bishop, 1995], we in-
troduce additional noise by adjusting the noise variance o2.
Specifically, we replace o in (5) with a regularization pa-
rameter . Varying the noise level can balance the influences
between observations with high likelihood values and those
with low ones, which in turn improves robustness against
overfitting. In the context of fitting the CP model, the addi-
tional noise regularizes C and R at the same time. Therefore,
we name this strategy concurrent regularization.

Unlike separate regularization, concurrent regularization
does not restrict the scales of ¢, and r,. Thus it is more



flexible in regularizing CP-based PPCAs, and has potential
to find better solutions. Concurrent regularization can also be
viewed as a bias-variance trade-off of the CP model, where
we improve the generalization performance by increasing the
bias of fitting training data (reflected by ).

3.3 PROMA Algorithm

This section develops the PROMA algorithm that combines
the CP model with concurrent regularization. Note that it is
difficult to maximize (5) w.r.t. both C and R, because they
are coupled with each other. To address this problem, we se-
quentially and conditionally maximizes (5) w.r.t. C and R
following the expectation-conditional maximization (ECM)
approach [Meng and Rubin, 1993]. Specifically, PROMA
consists of two steps: the Regularized Expectation (RE-step)
and the Conditional Maximization (CM-step).

RE-step: We first evaluate the expectation (z,) and
(zn,z)) wrt. the conditional distribution p(z,|X,) (or
p(zn|vec(X,,)) equivalently) for each X,,. Using Bayes’ rule
with g = vec(E) = 0, we have

Zn|vec(X,,) ~ N(M ™ W Tvec(X,,),yM™1),  (7)

where W = RO C, and M = WTW—i—’yI =C'C®
R'R +~Iisa P x P matrix. Based on (7), we can compute
(z,,) and (z,z, ) with the current fixed values of the model
parameters as follows:

(zn) M~ 'diag(C' X, R), (8)
(2n2,)) YM ™+ (2,)(z0) T, ©9)

ZnZ,
where v is the parameter introduced by concurrent regular-
ization, leading to a Regularized E-step. An appropriate ~y
regularizes the whole subspace via W W + ~1, and solves
ill-conditioned problems of M~!. This in turn leads to more
robust (z,,) and (z,,z, ) against overfitting.

CM-step: We then maximize the log-likelihood function
(5) w.rt. C (or R) with the other fixed. By fixing R, we
maximize (5) w.r.t. C and obtain:

- N N -
C=|Y X,Rdiag((z,)) [Z@nzm ®R'R
Ln=1 n=1
) (10)
With a similar derivation as C, we have
) rN ) N T -1
R=|> X,C diag((zn>)] [Z(znzb ®C'C
Ln=1 n=1 i
(1)

By alternatively iterating between the RE-step and CM-step,
we can find the MLE solutions C and R. Then the latent
representation z of an observation X can be computed via
(z|X) = M~'diag(CTXR). Algorithm 1 is the pseudocode
of PROMA. It always increases the log-likelihood function
(5) and is guaranteed to converge [Meng and Rubin, 1993].
Connections with Bayesian CP decomposition:
Bayesian CP decomposition methods [Xiong er al., 2010;
Shan et al., 2011; Zhao et al., 2015] share the same CP model
as PROMA, while they focus on transductive inferences
of estimating the marginal distribution p(X). In contrast,
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Algorithm 1 Probabilistic Rank-One Matrix Analysis
1:

Input: Data set {X,, € R%*4 }2_, the number of extracted
features P, the maximum number of iterations /K, and the con-
current regularization parameter .
Initialize C and R randomly, and normalize each column of C
and R to have unit norm.
repeat
Compute the conditional expectations (z,,) and (z,z, ) via
(8) and (9), respectively.
Update C and R via (10) and (11), respectively.
until convergence or after K iterations.
: Output: The factor matrices C and R.

AR

PROMA aims to project high-dimensional data into a low-
dimensional subspace, which requires inductive inferences
of estimating the conditional distribution p(z|X). Therefore,
it is non-trivial to apply Bayesian CP decomposition for sub-
space learning because p(z|X) is generally intractable based
on Bayesian inference. Moreover, PROMA is equipped with
concurrent regularization, while Bayesian CP decomposition
methods separately regularize individual factor matrices with
priori distributions.

Parameter initialization: We use a random scheme to
initialize PROMA, where each column of C and R is ran-
domly drawn from N(0,I). Such initialization puts a ran-
dom weight on each column of W = R ® C, which will
make PROMA favor certain pairs of factors and bias the final
results. Thus, the columns of C and R are normalized to have
unit norm, so that the initialized factors are equally weighted.

PROMA™R algorithm: Notice that if o2 is still estimated
by maximizing the log-likelihood function (5) rather than be-
ing replaced by -, No concurrent Regularization is imposed,
and we name this algorithm PROMA™®. Specifically, maxi-
mizing (5) w.r.t. o2 leads to

N - _ N
52 = Ni.d ;::1 {—Qtr (XIC d1ag(<zn>)RT) 1)

r (XTX,,) +tr (R((znzD ® CTC)RT)} .

Therefore, PROMA™ is just PROMA with v = o2 updated
according to (12) in each iteration, where o' can be initialized
randomly.

Automatic determination of v: PROMA involves the reg-
ularization parameter y. Cross-validation can be used for
parameter determination, while it could be time consuming.
Here, we propose a data-dependent strategy to find a reason-
ably good v for PROMA. Specifically, we determine ~y by
performing PROMA™R with P = 1. This provides a one-
dimensional search of total data variance captured by the CP
model, where data are projected into a one-dimensional sub-
space. We find this strategy works well empirically, and is
also very efficient because PROMAMR with P = 1 is very
fast and converges within a few iterations.

4 Experiments

This section evaluates PROMA against competing methods
on both synthetic and real-world data sets.



Table 1: Average subspace estimation accuracy of different
algorithms on the 2-D synthetic data sets.

Method PSOPCA BPPCA PROMAMR PROMA
Arc length 3.67 3.98 9.70e-8 5.56e-5
distance +0.04 +0.09 +1.46e-8 +1.43e-5

4.1 Subspace Estimation on Synthetic Data

We generate synthetic 2-D data sets from the CP model (3)
as follows: two factor matrices C* and R* are generated by
drawing each row of C* and R* from a Gaussian distribution
N(0,Ip-). Then N = 1000 latent vectors {z’ € RF"}N_,
are drawn from N'(0, Ip~), and the observed matrices with a
size of 30 x 30 are constructed by X,, = C*diag(z;;)R*T
without noise. According to Proposition 1, the synthetic data
lie in the subspace spanned by the columns of W* = R* ©®
C*. Our aim is to evaluate the subspace estimation accuracy
by comparing the arc length distance between the estimated
subspace W and the true one W*. This distance measures
the angle between subspaces, and is defined as ||3||2, where

B=(Bi,...,Bp),and {cos(B,)}]_, are the singular values

of WTW* [Zhao et al., 2012].

We compare PROMANR | and PROMA (v = 0.05) against
Tucker-based PPCAs including PSOPCA and BPPCA on
10 randomly generated synthetic data sets with P* = 9.
PROMA™ and PROMA with P = 9, and PSOPCA and BP-
PCA with q. = 3, g, = 3 are performed to estimate the true
P*-dimensional subspace. Table 1 shows the average sub-
space estimation accuracy of different algorithms. It is clear
that PROMANR almost perfectly estimates the true subspace,
whereas PSOPCA and BPPCA fail to estimate the subspace
accurately.

PROMA also gets good results in Table 1 but is worse than
PROMANR, because concurrent regularization introduces ad-
ditional noise, and reduces the model fit for the ideal data.
However, real-world data are usually noisy and not perfectly
generated from the CP model. In this case, concurrent regu-
larization, as will be seen, is effective in alleviating overfitting
for not only PROMA but also other bilinear PPCAs.

4.2 Classification on Real-World Data

Two face data sets are tested. The first one is a subset of the
FERET database [Phillips et al., 2000] including all subjects
with at least eight images and at most 15 degrees of pose vari-
ation, resulting in 721 face images from 70 subjects.

The second one is a subset from the PIE database [Sim et
al., 2003], with seven poses (C05, C07, C09, C27, C29, C37,
C11) of at most 45 degrees of pose variation and under 21
illumination conditions (02 to 22). This subset contains 9,987
face images from 68 subjects. Each face image is normalized
to 32 x 32 graylevel pixels.

Algorithms and their settings: We compare PROMANR
and PROMA against linear baselines: PCA, PPCA; Tucker-
based PCA: MPCA [Lu et al., 2008]; CP-based PCAs:
TROD [Shashua and Levin, 2001], UMPCA [Lu et al., 20091,
and Tucker-based PPCAs: PSOPCA, BPPCA. For complete-
ness, Bayesian CP factorization (BCPF) [Zhao et al., 2015]
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is also compared, where the conditional expectation of (8)
is used to perform dimensionality reduction. We also test
PSOPCA and BPPCA with Concurrent Regularization as
well as PROMAMR with Separate Regularization, denoted by
PSOPCA“R, BPPCA“R, and PROMASR, respectively. We
show their best results, where the regularization parameters
are selected from {1074,1073,...,10%}.

PCA and MPCA are performed to preserve 97% energy,
while changing the value of preserved energy of PCA and
MPCA from 95 ~ 99% leads to similar results. For PPCA,
UMPCA, PSOPCA, and BPPCA, we test up to 1023, 32, 961,
and 961 features, respectively, which are the maximum num-
bers that can be extracted. We test up to P = 600 features for
TROD, BCPF, PROMA™NR, PROMA®® and PROMA, since
their numbers of extracted feature are not bounded by the in-
put dimensions. For MPCA, TROD, and UMPCA, we use
their default settings with up to 1,10, and 10 iterations, re-
spectively. BPPCA has both MLE and MAP implementa-
tions. We choose the MLE-based one used in face recognition
[Zhao er al., 2012] by iterating until convergence. We iterate
PROMANR, PROMASR, and PROMA until convergence or
500 iterations. The regularization parameter v of PROMA is
automatically determined by PROMA™® with P = 1.

Experiment setup: We randomly split the FERET and PIE
data sets into training and test sets so that each subject has L
images for training, and the rest are used for test. We report
the results over ten such random splits. After feature extrac-
tion via each method, all the features are sorted according
to the Fisher score [Duda er al., 2012] in descending order,
and then the nearest neighbor classifier is used to obtain the
recognition rates. For each method and L, we report the best
recognition rates obtained using different numbers of the ex-
tracted features (up to the maximums) in Tables 2 and 3. We
highlight the best and comparable results in bold font based
on t-test with a p-value of 0.01, and underline the second best
ones.

Recognition results: Tables 2 and 3 show the recogni-
tion results on the FERET and PIE data sets, respectively.
PROMA consistently achieves the best results with statistical
significance on the whole, while PROMASR seems the sec-
ond best method. PROMA outperforms BPPCA (BPPCACR),
the best Tucker-based PPCA, by 5.44% (3.59%) and 5.13%
(4.64%) on average for the FERET and PIE data sets, respec-
tively. This could be attributed to the CP model in character-
ing the underlying subspace with more flexibility as well as
the concurrent regularization in alleviating overfitting. On the
other hand, although it already imposes regularization, BCPF
does not work well in all the cases, which indicates that ap-
plying tensor decomposition methods for subspace learning
is not a trivial task.

Effectiveness of concurrent regularization: Concurrent
regularization significantly improves PROMA™R by 17.65%
and 11.68% on average for the FERET and PIE data sets, re-
spectively. It also improves Tucker-based PPCAs, PSOPCA
and BPPCA, in most cases. By optimizing regularized
log-likelihood function (6), PROMASR always outperforms
PROMA™X, while it is still inferior to PROMA. This could be
attributed to concurrent regularization in penalizing the whole



Table 2: Recognition rates (Mean=+Std.%) on the FERET data set (Best; Second best).

L 2 3 5 6 7

PCA 46.49+3.43 54.09+4.88 59.71+2.62 67.39+3.36 71.40+2.40 72.16+3.35
PPCA 51.14£1.99 63.78+3.02 69.18+3.44 73.69+0.66 77.94+2.73 77.88+2.79
MPCA 57.56+£3.69 67.73+1.87 72.04+2.10 76.60+2.25 79.73+2.55 81.08+2.40
UMPCA 47.72£5.62 57.83+4.18 64.29+3.53 69.87+4.72 73.72+5.08 75.24+2.12
TROD 61.62+2.92 69.49+3.29 74.65+3.00 79.11£1.50 81.89+1.98 83.554+2.26
BCPF 52.67+2.12 62.72+3.24 68.62+2.52 74.04+1.51 77.24+2.42 79.83+£2.88
PSOPCA 51.51+£2.10 60.47+2.60 65.96+3.04 70.89+2.41 74.49+2.45 75.89+3.17
PSOPCA®R 59.02+2.35 68.18+2.16 72.83+2.66 77.47+1.83 80.2041.84 81.2642.39
BPPCA 62.10+3.39 71.06+3.45 76.67+3.34 81.97+1.44 84.5242.36 85.1942.13
BPPCAR 64.30+2.82 73.29+2.25 77.69+2.31 82.35+1.12 84.954+2.19 87.234+2.09
PROMAMR 49.21£2.37 56.99+2.28 62.54+3.59 68.84+1.23 72.524+3.51 75.324+2.41
PROMASR 64.25+3.25 73.01£2.88 79.09+2.43 83.3242.64 86.9842.85 86.5442.49
PROMA 67.49+2.59 77.16+2.13 82.56+3.52 85.55+1.82 88.84+2.07 89.74+2.15

Table 3: Recognition rates (Mean+-Std.%) on the PIE data set (Best; Second best).

L 2 3 4 6 8 10 20

PCA 26414335 37254150 43044251 49.50+2.14  5208+2.58  60.68+1.74  66.26+0.87  82.40+0.64

PPCA 24.4142.14 38004094  4548+1.82 51244093 55544099  64.25+125  69.82+0.48  86.66+3.06

MPCA 35274297  462542.56  5174+179  56.61+1.63  59.60+0.58  66.75+0.66  71.48+0.66  84.35+1.48

UMPCA 29.0843.06  38.1142.11 42524342 483443.03  51.04+3.05 58124331  61.61+3.24  76.38+2.39

TROD 34524184 42924275 47904252 52924187  56.33£1.52  63.30+£093  67.70£121  81.07£1.54

BCPF 31.56£1.13  42.63£1.81  50.00£1.92  57.13£1.79  61.39£0.75  69.55+£0.70  74.69£0.60  81.27£1.10

PSOPCA 31.0943.10  39.2143.07 45794298  5238+2.64  56.60+2.79 63994241  68.76+2.19  8437+1.50

PSOPCATR | 35154123 44924123  50.6142.05 56.02+1.16  60.3241.02  67.7740.81  71.71£1.16  85.7240.65

BPPCA 36.0741.88 47414193 53234239 59254227  63.84+1.81  7114+1.13  74.83+2.00  88.06%0.95

BPPCA™® | 37.3942.65 47.674£191 54034237  60.53£1.99  63.91+1.88  71.354259  75.0940.83  87.7840.94

PROMAM | 27.59+1.12  36.14+1.18  43.86+1.62 51.324139  56.30£1.02 66074096  72.11+0.64  88.0141.04

PROMASR | 36.83+1.81  47.8241.73  55.104£2.03 61.59+1.24  6547£1.25 7249+1.18  76.124£0.82  89.08-£0.71

PROMA 42424174 5385+171 5991+173  6577+162 69.13+127 7528+118  79.13+£091  89.36::0.67
~ 363 105 recognition results than PROMA™® in Tables 2 and 3. This
2 ——PROMA 572 JE T implies that PROMAN® suffers from the overfitting problem,
€ 2e3f\ [ PROMANR 84| « whereas PROMA effectively alleviates overfitting via concur-
§ _€;> 5 | rent regularization.
8 1e3 §_6I ——PROMA Convergence: Figure 1(b) shows the log-likelihood of
2 L i S e PROMA"® PROMA™® and PROMA at each iteration on the FERET

10° 10° 102 0 50 100 data set with L = 2. We can see that PROMA gets lower

Iteration Number K Iteration Number K

(a) Estimated noise variance (b) Log-likelihood

Figure 1: Goodness-of-fit and convergence study for
PROMA™® and PROMA on the FERET data set with L = 2.

matrix subspace and relaxing the scale restriction of separate
regularization.

Goodness-of-fit: It is worth noting that although PROMA
replaces the noise variance o2 with the regularization param-
eter v, we can still calculate o for PROMA according to
(12), whose value indicates how well the CP model fits the
training data. Figure 1(a) shows the noise variance o2 of
PROMAM and PROMA w.rt. the iteration number K on
the FERET data set with L = 2. PROMA™® always has
lower noise variance and thus fits the training data better than
PROMA, while PROMA consistently achieves much better
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log-likelihood and converges within a few iterations, while
PROMA™ has higher log-likelihood with slower conver-
gence. This indicates concurrent regularization not only al-
leviates overfitting but also improves convergence.

5 Conclusion

We proposed a CP-based bilinear PPCA, Probabilistic Rank-
One Matrix Analysis (PROMA). Compared with its Tucker-
based counterparts, PROMA has a more flexible subspace
representation, and does not suffer from rotational ambiguity.
For better generalization, we proposed concurrent regulariza-
tion to penalize the whole matrix subspace and relax the scale
restriction of separate regularization. Experiments on both
synthetic and real-world data demonstrated the superiority of
PROMA in subspace estimation and classification, and also
the effectiveness of concurrent regularization in regularizing
bilinear PPCAs.
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