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Abstract
Nowadays, the rapid proliferation of data makes it
possible to build complex models for many real ap-
plications. Such models, however, usually require
large amount of labeled data, and the labeling pro-
cess can be both expensive and tedious for domain
experts. To address this problem, researchers have
resorted to crowdsourcing to collect labels from
non-experts with much less cost. The key challenge
here is how to infer the true labels from the large
number of noisy labels provided by non-experts.
Different from most existing work on crowdsourc-
ing, which ignore the structure information in the
labeling data provided by non-experts, in this paper,
we propose a novel structured approach based on
tensor augmentation and completion. It uses tensor
representation for the labeled data, augments it with
a ground truth layer, and explores two methods to
estimate the ground truth layer via low rank tensor
completion. Experimental results on 6 real data sets
demonstrate the superior performance of the pro-
posed approach over state-of-the-art techniques.

1 Introduction
Recent years have seen explosive growth of data being col-
lected from a variety of domains. Such unprecedented
amount of data makes it possible to build complex models
for prediction and inference. On the other hand, building
such models requires accurate label information, the collec-
tion of which from domain experts is typically both expen-
sive and tedious. Alternatively, crowdsourcing has been pro-
posed to collect large amount of label information from non-
experts, which is much less expensive [Kittur et al., 2008;
Huberman et al., 2009]. However, due to the noisy nature of
the labels provided by non-experts, a key challenge in crowd-
soucing is how to infer the true labels from the large number
of noisy labels.

To address this problem, a variety of techniques have
been proposed in the past decades. Among others, the most
straightforward method is majority voting, which is based
on the assumption that all labels are equally reliable. How-
ever, this assumption may not hold in practice, and major-
ity voting has been proven sub-optimal [Karger et al., 2011].

More recently, [Dawid et al., 1979] proposed an iterative
algorithm based on Expectation Maximization (EM) to es-
timate worker quality and infer the item true label at the
same time. Its performance is further improved by a vari-
ety of recent algorithms [Zhou et al., 2012; Liu et al., 2012b;
Zhang et al., 2014; Raykar et al., 2010]. Section 2 provides a
brief review of these algorithms.

In this paper, for the first time, we approach the crowd-
sourcing problem using tools and concepts from tensor aug-
mentation and completion (TAC). Compared with existing
techniques, we are able to effectively leverage the structured
information in the labeled data. First of all, we represent the
set of labels provided by non-experts (workers) as a three-
way tensor, and then augment it with an extra tensor slice
named the ground truth layer. Second, to infer the true labels
in the ground truth layer, we leverage the low rank property of
the augmented tensor, and introduce two optimization prob-
lems named PG-TAC (prior guided) and RS-TAC (relaxed
simplex). Finally, we propose various algorithms for solv-
ing these problems using block coordinate descent. Empiri-
cal results on 6 real data sets demonstrate the effectiveness of
the proposed methods in both binary and multi-class labeling
tasks, outperforming several state-of-the-art methods.

The rest of the paper is organized as follows. In Section
2, we briefly review existing working on crowdsourcing and
tensor completion. Then in Sections 3 and 4, we present our
proposed model and optimization algorithms, followed by ex-
perimental results on both synthetic and real data sets in Sec-
tion 5. Finally, we conclude the paper in Section 6.

2 Related work
In this section, we briefly review the related work on crowd-
sourcing and missing value completion.

One of the earliest works on crowdsourcing is [Dawid et
al., 1979], which proposes an iterative algorithm based on Ex-
pectation Maximization (EM) to estimate worker quality and
infer the item true label at the same time. They assume each
worker is associated with a probabilistic confusion matrix for
item labeling. Each diagonal entry of the confusion matrix
represents the labeling accuracy in each labeling class and
the off-diagonal entries of each row represent the mislabel-
ing probabilities. However their model implicitly ignores the
item variations in the same class and assumes all items, which
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have the same true labels, will have the same degree of dif-
ficulties. That assumption does not hold in many real-world
situations, then [Zhou et al., 2012] improved upon their work
by proposing a minimax entropy principle to infer the true la-
bel, the labeling difficulty of the item, and the quality of the
worker. Besides the worker quality, their method assumes
that each item has its own intrinsic difficulty of being mis-
labeled. When the item difficulty is ignored, their model is
reduced to the EM method proposed by [Dawid et al., 1979].
Another flaw of the EM method, proposed by [Dawid et al.,
1979], is that their likelihood function is nonconvex, there-
fore its performance is initialization sensitive because the EM
iterations can possibly converge at a local optimum. To ad-
dress this issue, [Zhang et al., 2014] proposed a two-staged
algorithm in which the initial worker confusion matrix is es-
timated using the spectral method, and then their algorithm
turns to EM iterations. Their model has been proved to be
able to achieve the minimax rates of convergence up to a log-
arithmic factor. [Liu et al., 2012b] also proposed a graphical
model that performs variational inference method using belief
propagation and mean field (MF) algorithms. Another proba-
bilistic model named GLAD, which can simultaneously esti-
mate the ground truth, item difficulty and worker ability, has
also been proposed by [Whitehill et al., 2009]. However the
GLAD model can only work on binary tasks and it does not
model the worker bias, its performance can get worse when
the bias variation of different workers is high [Welinder et
al., 2010]. Later on, the GLAD model is generalized to work
multi-class labelling tasks by [Mineiro, 2011].

Missing values are commonly seen in many real-world ap-
plications, such as recommendation systems, which motivates
the study of missing value completion. This problem is ini-
tially proposed by [Candès and Recht, 2009] in order to re-
cover the missing entries in matrices. Theoretically it has al-
ready been proved that most low rank matrices can be recov-
ered from a small fraction of entries by formatting a rank min-
imization problem. However this rank minimization problem
is NP-hard and non-convex, which results in the optimiza-
tion problem that uses trace norm as the objective. This is
addressed and mentioned in a variety of works [Candès and
Tao, 2010; Recht, 2011]. The advantage is that trace norm
is the tightest convex envelop for matrix rank. In many prac-
tical situations, higher dimensional data is more desired and
it requires to generalize the completion methods on tensors.
Similar to matrix completion, it is straightforward to think
of formulating the tensor completion as a rank minimization
problem. However, unlike the matrix rank, there is no di-
rect algorithm that can decide the rank of a tensor [Kolda
and Bader, 2009]. To overcome this issue, similarly, [Liu et
al., 2012a] proposed to approximate the rank minimization
problem as a trace norm minimization problem. They intro-
duce one type of the definition for tensor trace norm, while
there exists many other definitions [Gandy et al., 2011]. [Liu
et al., 2012a] also relaxes the objective function so that the
optimization problem becomes convex. Their final low rank
tensor completion method (LRTC) shows the broad capabil-
ity to recover data in various format. Meanwhile there are
many other heuristic methods [Xu et al., 2013] that can be
applied to do tensor completions by employing tensor decom-

position and unfolded matrix factorization. However the the-
oretical guarantee of these heuristic methods is still an open
question and the comparison experiment results from [Liu et
al., 2012a] show that LRTC has a more stable performance
on both synthetic data and real-world data.

3 Problem formulation
3.1 Notation
In this article, we use calligraphic letters, such as X , to de-
note tensors. We use upper case letters, such as M , to denote
matrices. Vectors and scalars are denoted by the bold lower
case letters and a lower case letters such as x and x. A n-way
tensor is denoted as X 2 IR

N1⇥N2⇥...⇥Nn . The (i, j, k)th
element of a three-way tensor X is represented by Xijk. A
slice of a three-way tensor X is denoted as Xi::,X:j: or X::k.
A fiber of a three-way tensor is denoted as X:jk,Xi:k or Xij:.
The norm of a tensor is analogous to the matrix Frobenius
norm: ||X ||F = (

P
i,j,k |Xijk|2)1/2. The trace norm of a

matrix M is defined as: ||M ||⇤ =

P
i �i(M) and �i(M) de-

notes the ith singular value in descending order. Let ⌦ denote
the index set of a tensor, and |⌦| denote the cardinality of ⌦.
One important operation of a tensor X is called matricization
or unfold, which reorders a n-way tensor into a matrix. We
denote X(k) as the output of unfold operation along the k-th
dimension of a tensor X , i.e., X(k) = unfoldk(X ). Similarly,
the foldk(X(k)) is the inverse operation of unfold and it re-
turns the tensor X . The details of operations fold and unfold
can be found at [Kolda and Bader, 2009].

3.2 Tensor augmentation and completion
We propose to reorganize the worker labels from crowdsourc-
ing as a three-way label tensor T 0 2 IR

Nw⇥Ni⇥Nc and an
index set ⌦. Here Nw, Ni and Nc are denoted as number of
the workers, number of the items and number of the classes
respectively. Each worker gives each item either exactly one
label or no label, then label tensor T 0 and index set ⌦ are
built as follows: If a worker i has labeled an item j with la-
bel k, the corresponding fiber T 0

ij: is initialized with an unit
vector, which has value of 1 in kth entry and value of 0’s in
the rest. Meanwhile the corresponding index triplets of fiber
T 0
ij: are added into the index set ⌦. However a worker does

not necessarily have to label all items. If worker i does not
label item j, fiber T 0

ij: is initialized with a zero vector and
⌦ remains unchanged. If that is the case, the label tensor
T 0 will have missing entries. In our approach, we propose
to augment the label tensor with an extra tensor slice of size
Ni ⇥Nc, called the ground truth layer, on the worker dimen-
sion. All entries of the ground truth layer are assumed to be
missing and our objective is to infer the true labels of items.

Recall that the common approach for matrix completion is
to minimize the matrix trace norm by solving the following
convex optimization problem [Candès and Recht, 2009].

min

X
: ||X||⇤, s.t. : X⌦ = M⌦ (1)

where X and M are matrices of the same size. ⌦ is the index
set of matrix M , and X is the matrix such that its rank should
be minimized while completing procedure. The entries that
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do not belong to ⌦ are missing. For tensor completion, [Liu et
al., 2012a] followed the same formulation with the following
trace norm definition of an n-way tensor X :

||X ||⇤ =

nX

l=1

↵l||X(l)||⇤

s.t. :

nX

l=1

↵l = 1,↵l � 0, l = 1, ..., n

(2)

where ↵l, l = 1, ..., n are pre-defined scalars of tensor trace
norm. Analogous to the matrix completion formulation, the
tensor completion problem can be written as follows:

min

X
:

nX

l=1

↵l||X(l)||⇤, s.t. : X⌦ = T⌦ (3)

In the formulation, X is the target tensor that needs to be
completed. However, the unfolded matrices X(l), l = 1, ..., n,
are not independent with each other. In order to split them
and solve them independently, same number of intermediate
matrices Ml, l = 1, ..., n are introduced in this problem. Then
this optimization problem can be relaxed and formulated as:

min

X ,Ml

:

nX

l=1

↵l||Ml||⇤ +
�l

2

||X(l) �Ml||2F ,

s.t. : X⌦ = T⌦

(4)

We propose to formulate the crowdsourcing problem as
an augmented tensor completion problem with certain reg-
ularization on the ground truth layer. Since our task only
requires a three-way tensor, from now on, without other
specifications, all tensors in our equations have an order of
three, namely n = 3. Given the augmented label tensor
T 2 IR

(Nw+1)⇥Ni⇥Nc and index set ⌦, our optimization
problem becomes:

min

X ,Ml

:

nX

l=1

↵l||Ml||⇤ +
�l

2

||X(l) �Ml||2F +R(Xig ::)

s.t. : X⌦ = T⌦

(5)

Here ig denotes the ground truth layer index on the worker
dimension of the tensor.

3.3 Two formulations for inferring the ground
truth layer

In the formulations, we propose to regularize the ground truth
layer in two different ways: One is to regularize the discrep-
ancy between the ground truth layer of the tensor and a given
prior statistics of the items. Another one is to constraint each
tensor fiber of the ground truth layer in a simplex. Under
these two regularizations, the inferred the ground truth layer
can have distinct interpretations.

Prior guided ground truth inference
The objective function of the first formulation has a regular-
ization term w.r.t. the discrepancy between ground truth layer
and prior statistics matrix, and the regularization is parame-
terized with a positive value �. Our key motivation of this

regularization is to updating the item labels by combining the
prior statistics and tensor structure information. The formu-
lation becomes:

min

X ,Ml

:

nX

l=1

↵l||Ml||⇤ +
�l

2

||X(l) �Ml||2F +

�

2

||Xig :: � S||2F

s.t. : X⌦ = T⌦
(6)

Here S 2 IR

Nw⇥Nc represents the item prior statistics matrix
of the tensor T .

Relaxed simplex ground truth inference
The second formulation has regularization terms w.r.t. the
tensor fibers of the ground truth layer. Originally each item
fiber Xigj: is posed to be constraint in a simplex. However
the amount of labels collected for each item is usually lim-
ited to a small number in empirical experiment. It is likely
that the labels of these items fluctuate around their expected
values. In order to prevent overfitting, we formulate our ob-
jective with relaxed simplex constraint and penalize the large
fluctuations according to the value of parameter �:

min

X ,Ml

:

nX

l=1

↵l||Ml||⇤ +
�l

2

||X(l) �Ml||2F +

�

2

NiX

j=1

⇠

2
j

s.t. :

NcX

k=1

Xijk � 1 = ⇠j , i = ig, 8j = 1, ..., Ni

X⌦ = T⌦

(7)

4 Algorithm
All the terms in the objective function are convex, therefore
we can employ the block coordinate descent (BCD) for the
optimization problems (6) and (7). BCD is guaranteed to con-
verge [Tseng, 2001] and is computational easier and cheaper
than the batch update. Then we apply the coordinate de-
scent to optimize one target variable while fixing others. In
our case, we have four blocks: X ,M1,M2 and M3, because
the observed tensor has only three dimensions: the worker,
the item and the label. There are two major iteration steps
in BCD: First iteration updates one intermediate matrix Ml

while fixing the other intermediate matrices and the tensor
X ; Second iteration updates the tensor and fixing all interme-
diate matrices.

4.1 Updating Ml

Under certain simplification, the optimization problem of first
BCD iteration becomes:

min

Ml

:

↵l

�l
||Ml||⇤ +

1

2

||X(l) �Ml||2F (8)

The close-form solution of this problem has been given by
[Cai et al., 2010] as D⌧ (X(l)) = U⌃⌧V

T . We first compute
singular value decomposition of matrix X(l) = U⌃V

T , then
replace ⌃ with its shrinkage version: ⌃⌧ = diag({�i�⌧}+).
Here a+ = max(a, 0) and ⌧ is the threshold of shrinkage
SVD. No matter under prior guided formulation or relaxed
simplex formulation, both problems will have problem (8) as
the sub-problem in their BCD iterations.
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4.2 Updating X
Prior guided formulation:
With intermediate matrices M1,M2 and M3 fixed in this iter-
ation, the optimization problem becomes:

min

X
:

nX

l=1

�l

2

||X(l) �Ml||2F +

�

2

||Xig :: � S||2F

s.t. : X⌦ = T⌦

(9)

This problem is convex and the objective can be rewritten
in elementary manner and then the Lagrangian of the opti-
mization problem is given as:

L =

nX

l=1

�l

2

X

i,j,k

(Xijk � (foldl(Ml))ijk)
2

+

�

2

||Xig :: � S||2F +

|⌦|X

(i,j,k)2⌦

�ijk(Xijk � Tijk)
(10)

Elements of tensor X can be divided into three sets. First
set C1 has its elements belong to the index set: (i, j, k) 2 ⌦.
The elements of the second set C2 neither belong to the index
set nor the ground truth layer: (i, j, k) /2 ⌦ and i 6= ig; The
elements of the third set C3 do not belong to the index set but
belong to the ground truth layer: (i, j, k) /2 ⌦ and i = ig .
The elements in set C1 do not appear in the second term of
the Lagrangian. Easily we know that the solution is:

Xijk = Tijk (11)

The elements in set C2 do not appear in the second and
third terms of the Lagrangian. We take the derivative of the
Lagrangian w.r.t. Xijk and set it to 0, then we get:

Xijk =

✓Pn
l=1 �lfoldl(Ml)Pn

l=1 �l

◆

ijk

(12)

The elements in set C3 do not appear in the third term of the
Lagrangian. We take the derivative of the Lagrangian w.r.t.
Xijk and set it to 0, then we get:

Xijk =

✓Pn
l=1 �lfoldl(Ml)Pn

l=1 �l + �

◆

ijk

+

✓
�SPn

l=1 �l + �

◆

jk
(13)

Relaxed simplex formulation:
The intermediate matrices M1,M2 and M3 are fixed, the op-
timization problem becomes:

min

X
:

nX

l=1

�l

2

||X(l) �Ml||2F +

�

2

NiX

j=1

⇠

2
j

s.t. :

NcX

k=1

Xijk � 1 = ⇠j , i = ig, 8j = 1, ..., Ni

X⌦ = T⌦

(14)

Similarly, we rewrite the objective element wise, and the
Lagrangian of the optimization problem becomes:

L =

nX

l=1

�l

2

X

i,j,k

(Xijk � (foldl(Ml))ijk)
2
+

�

2

NiX

j=1

⇠

2
j

+

NiX

j=1

⌧j(

NcX

k=1

Xijk � 1� ⇠j) +

|⌦|X

(i,j,k)2⌦

�ijk(Xijk � Tijk)

(15)

Similar as the prior guided formulation, here the elements
of tensor X are also divided into three sets C1, C2 and C3.
The solutions for the elements in sets C1, C2 stay the same
as shown in equations (11) and (12). The elements in set C3
do not appear in the third term of Lagrangian. We take the
derivative of the Lagrangian w.r.t. Xijk and ⇠j and set them
to 0, then we get:

Xijk =

Pn
l=1 �l(foldl(Ml))ijk � ⌧jPn

l=1 �l
(16)

⇠j =
⌧j

�

(17)

Substituting Equations (16) and (17) into the relaxed con-
straint

PNc

k=1 Xijk � 1 = ⇠j , we get:

⌧j =

Pn
l=1 �l(

PNc

k=1 foldl(Ml))ijk � 1)

Nc +
1
�

Pn
l=1 �l

(18)

Substituting Equation (18) in Equation (16), we get:

Xijk =

✓Pn
l=1 �lfoldl(Ml)Pn

l=1 �l

◆

ijk

+

�

Pn
l=1 �l(1�

PNc

k=1(foldl(Ml))ijk)

(�Nc +
Pn

l=1 �l)
Pn

l=1 �l

(19)

Our proposed PG-TAC method is described in Algorithm
1. The algorithm of RS-TAC is omitted due to space limit.

5 Experiments
In this section, we report the results of our proposed methods
on four groups of synthetic data sets. The purpose of this is
to study the behavior of our methods under various data set
configurations. Moreover, we compare our methods with a
variety of state-of-the-art algorithms on six real data sets.

5.1 Synthetic data
Generation of synthetic data sets is based on four parame-
ters: number of worker Nw, number of items Ni, number of
classes Nc and probability of no labels q. Given Nc and Ni,
the true labels of these items are sampled from a multino-
mial distribution with probabilities p1, p2, ..., pnc . In order to
have balanced data, these probabilities should be the same.
However we add random noise to the probabilities without
breaking the rule of the sum being to 1. Now, the data set is
unbalanced and is more analogous to a real data set. Then for
each worker, we generate a Nc⇥Nc worker quality confusion
matrix as follows: the diagonal entries are independently and
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Algorithm 1: PG-TAC
Data: Augmented tensor T , prior statistics S, ↵, �, �, ✏.
Result: Completed tensor X .
while ||X � T ||F /||T ||F � ✏ do

for l = 1:n do
Updating Ml based on equation (8).

end
Updating elements in set C1 based on equation (11);
Updating elements in set C2 based on equation (12);
Updating elements in set C3 based on equation (13);

end

uniformly sampled from a certain probability range. Empiri-
cally, the labeling difficulty of each item should rise with the
increasing number of labels Nc, therefore it would be inap-
propriate to sample the diagonal probability entries in a fixed
range for different Nc values. In order to simulate the real-
world situations, we assign each diagonal entry with a prob-
ability which is the product of random guess and a scale fac-
tor . We empirically draw  from a uniform distribution of
range [1.5, 1.99]. For instance, if the scale factor is drawn as
1.8, then for a 3-labeling task, the diagonal element will have
accuracy value of 0.6. The non-diagonal entries are randomly
assigned with positive probabilities under the constraint that
the sum of each row of the confusion matrix is equal to 1.
Since each worker does not have to label all items, we draw
a labeling decision for each worker from a Bernoulli distri-
bution with the probability of q. In addition to prior guided
tensor augmentation and completion (PG-TAC) and relaxed
simplex tensor augmentation and completion (RS-TAC), we
also use no constraint tensor augmentation and completion
(NC-TAC) as a simple baseline method for comparison. The
evaluation metric is the error rate of label prediction. All the
outcomes of our proposed methods are result of 10 indepen-
dent runnings and the performance is shown in figure 1. The
initial configuration is Nw = 50, Ni = 400, Nc = 4 and
q = 0.7. Based on this, we report the performance of our
proposed methods on synthetic data sets generated with four
groups of configurations: (a). Nw varies in range of [20, 90]
by a step size of 10. (b). Nc varies in range of [2, 8] by a step
size of 1. (c). Ni varies in range of [50, 1000] by a step size
of 50. (d). q varies in range of [0, 0.95] by a step size of 0.05.
Under each configuration, other data set parameters remain
consistent with the initial configuration.

On all synthetic data sets we generated, the PG-TAC
method achieves the lowest error rate on all configurations.
The RS-TAC method does not necessarily improve the perfor-
mance. In many configurations, RS-TAC and NC-TAC have
almost the same performance. We also observe when the data
sets are not sufficiently labeled, for instance, if Nw and Ni

are very small or q is relatively large, the performance of our
proposed methods are almost the same. When more data is
used, the PG-TAC and RS-TAC have better performance.

5.2 Real data
We also evaluate our methods with various other methods on
six real world crowdsourcing data sets. There are three data
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Figure 1: Comparison results of our proposed methods on
various synthetic data sets configurations.

sets have binary labels and three data sets have multiple la-
bels. The binary labeling data sets include Temp data set
[Snow et al., 2008]), RTE data set [Snow et al., 2008] and
Spam data set [Zhou et al., 2015]. The multi-class labeling
data sets include Dog data set [Zhou et al., 2012], Web data
set [Zhou et al., 2012] and Age data set [Han et al., 2015].

# classes # items # workers # total labels
RTE 2 800 164 8000
Temp 2 462 76 4620
Web 5 2653 177 15567
Dog 4 807 109 7354
Spam 2 149 18 1901
Age 7 1002 165 10020

Table 1: For Dog data set, the unqualified workers, who have
only labeled a small amount of images, are remained. For
web data set, 12 items have been removed due to lack of true
labels. For age data set, data has been discretized into 7 bins:
[0, 9], [10, 19], [20, 29], [30, 39], [40, 49], [50, 59], [60, 100].

5.3 Methods
In our experiment, we employed eight methods for the pur-
pose of comparison: Majority Voting (MV) is the most
straightforward method to implement and we use it as one of
our baseline methods. Dawid-Skene Expectation Maximiza-
tion (DS-EM), proposed by [Dawid et al., 1979], is a genera-
tive model which jointly infers the item true labels and worker
qualities. Dawid-Skene Mean Field (DS-MF) employs vari-
ational inference using mean filed method and this model is
proposed by [Liu et al., 2012b]. Generative model of Labels,
Abilities and Difficulties (GLAD), proposed by [Whitehill
et al., 2009], is a probabilistic framework that can simulta-
neously infer worker quality, item difficulty and item true
labels. Here we use its variant, implemented by [Mineiro,
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MV DS-EM DS-MF GLAD MMCE NC-TAC PG-TAC RS-TAC
RTE 10.31 7.25 6.63 7.00 7.50 7.13 7.00 7.25
Temp 6.39 5.84 5.84 5.63 5.63 5.84 5.41 5.84
Web 26.93 16.92 18.24 19.30 11.12 11.16 10.82 11.23
Dog 17.91 15.86 15.74 – 16.23 15.86 15.74 15.74
Spam 19.80 13.42 12.75 18.12 12.75 14.10 12.75 13.42
Age 34.88 39.62 36.33 35.73 31.14 31.24 32.44 31.14

Table 2: Comparison results of all methods on six real data sets in error rate (in percentage)

2011], which can work on multi-class data. Minimax Condi-
tional Entropy (MMCE) uses the minimax entropy principle
[Zhou et al., 2012] to infer items ground truth from noisy la-
bels. When the item difficult is ignored, the MMCE model is
reduced to DS-EM method. NC-TAC is another simple base-
line of our proposed method without the constraint on ground
truth layer. PG-TAC employs an tensor slice as its prior statis-
tics. When regularization parameter � is very small, PG-TAC
is approximately equal to NC-TAC; when � is sufficiently
large, PG-TAC reduces to its prior statistics. The objective of
RS-TAC has a regularization term, which is parameterized by
�, to control the strength of relaxation on ground truth layer.

5.4 Parameter selection
PG-TAC and RS-TAC both have three parameters in objec-
tive: ↵l,�l and �. Here l = 1, ..., 3 and 3 is the mode of
the tensor. The values of ↵l are assigned with value of 1/3
and we let �l =

↵l
�l

. Given �l, the value of �l is also deter-
mined. Therefore it is straightforward to verify that we only
need to tune �l in BCD iterations no matter it is in the step of
computing Ml or in the step of computing X . For simplicity,
we let all �l be the same for all three modes. Eventually we
can apply the grid search on two regularization parameters �l
and �, and the procedure is described as follows: all data sets
we used are publicly available online and they all come with
ground truth labels. We run our proposed algorithms on a 2-
D grid parameter space. For each possible parameter pair on
the searching grid, a subset of worker labels is randomly cho-
sen from current data set without replacement. In practice,
we empirically choose 90 percent of worker labels as a sub-
set, run our methods, and evaluate the performance. Then we
repeat the same procedure ten times for each possible param-
eter pair on the grid. Eventually the regularization parameter
pair is chosen as the one that have lowest average error rate.

5.5 Implementation details
The results of MV, DS-EM and MMCE methods are veri-
fied by using the open source implementation provided by
[Zhou et al., 2015]. Our PG-TAC method uses the DS-EM
as prior statistic and the ground truth layer is initialized us-
ing histogram of worker labels. In our empirical studies, we
have tried initializing ground truth layer with majority vot-
ing of worker labels, mean value of the tensor and normal-
ized histogram of worker labels. Normalized histogram is the
linear combination of label tensor slices, therefore the rank
of the augmented tensor will not increase if the ground truth
layer is initialized using histogram. If we do not have any
information about the ground truth layer, there is no hope to

recover the unknown ground truth layer with meaningful re-
turning values. This has been verified by initialize ground
truth layer with all 0’s and the final completed values on it
are meaningless. The ground truth layer of RS-TAC method
is initialized with DS-EM. We use ||X � T ||F /||T ||F as the
stopping criteria and it is set to 10

�5. The final label pre-
diction is performed as follows: in each fiber Xigj: of the
completed ground truth layer, the entry with larger values are
more likely to be correctly predicted.

5.6 Results
Table 2 summarizes the error rates of various methods on
six real data sets. For fairly comparison, all methods have
been fed with the same format of input data. Our proposed
methods PG-TAC and RS-TAC have consistently lower er-
ror rate than other state-of-the-art methods in most data sets.
The RS-TAC method has the best performance on Age data
set, which is the most difficult one we employed. Among all
other data sets, the RS-TAC method has similar performance
as NC-TAC. We observe the PG-TAC has outperformed all
state-of-the-arts methods in most real data sets. The perfor-
mance shown by PS-TAC is within our anticipation because
PG-TAC combines the prior information and structural infor-
mation inferred from tensor. From Equation (13), we know
that inferred layer is actually the linear combination of prior
statistics and NC-TAC. The only exception is on Age data
set, which has severely unbalanced label distributions. In-
terestingly, DS-EM has the worst performance on Age data
set among all methods. Even though the prior statistics is
severely biased, PG-TAC still can achieve competitive results.

6 Conclusion
In this paper, we propose two novel methods (PG-TAC and
RS-TAC) to infer the true labels of items in both binary and
multi-class crowdsourcing settings. These methods capture
the structure information in the data by representing the noisy
labels provided by workers with tensors. Furthermore, we
propose to augment the data tensor with an extra ground truth
layer, and explore various tensor completion techniques to in-
fer the true labels in the ground truth layer. Our experiment
results on 6 real data set demonstrate that our proposed meth-
ods outperform state-of-the-art techniques.
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