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Abstract
We study dynamic trial-offer markets, in which par-
ticipants first try a product and later decide whether
to purchase it or not. In these markets, social influ-
ence and position biases have a greater effect on the
decisions taken in the sampling stage than those in
the buying stage. We consider a myopic policy that
maximizes the market efficiency for each incoming
participant, taking into account the inherent quality
of products, position biases, and social influence.
We prove that this myopic policy is optimal and
predictable asymptotically.

1 Introduction
Social influence is ubiquitous in online cultural markets.
From book recommendations to song popularities, social in-
fluence has become a critical aspect of the customer expe-
rience. Social influence may appear through different sig-
nals such as the number of past purchases; consumer ratings;
and/or consumer recommendations, depending on the mar-
ket and/or platform. Social influence often comes reinforced
by position bias (e.g., [Lerman and Hogg, 2014]), as con-
sumer preferences are also affected, sometimes significantly,
by the visibility of the choices. In digital markets, the impact
of visibility on consumer behavior has been widely observed
[Kempe and Mahdian, 2008; Aggarwal et al., 2008].

Yet, despite its ubiquity, there is still considerable debate
about the benefits of social influence and its effects on the
market. Salganik et al. [2006] argued that social influence
makes markets more unpredictable. They created an artifi-
cial music market, a trial-offer market called the MUSICLAB
and showed that social influence may create significant un-
predictability and inefficiencies. Follow-up experiments have
been made confirming these initial findings [Salganik and
Watts, 2009; van de Rijt et al., 2014].

The MUSICLAB experiments, however, relied on an im-
plicit but critical design choice: The songs were displayed to
participants in decreasing order of popularity, reinforcing the
social signal with position bias. Thus, creating a herding ef-
fect [Muchnik et al., 2013; Hogg and Lerman, 2015], leading
to a “rich get richer” phenomenon. Unfortunately, popular-

ity is not always a good proxy for quality and may lead to
self-fulfilling prophecies [Salganik and Watts, 2008]. Differ-
ent search engine rankings have been studied experimentally
(see e.g., [Ghose et al., 2012; 2014]).

Kleinberg (2008) articulated the need to develop an expres-
sive computational model to understand the long-term effect
of social influence. A first step in answering this open is-
sue appeared in Krumme et al. [2012]: The authors proposed
a discrete choice model for modeling the MUSICLAB. This
model was then used in Abeliuk et al. [2015] to analyze a
new policy for displaying the products, referred to as perfor-
mance ranking. This ranking is a myopic policy that maxi-
mizes the efficiency of the market for each incoming partici-
pant, taking into account the inherent quality of products, po-
sition bias, and social influence. Their computational results
show that the performance ranking significantly decreases the
unpredictability of the market. A different policy, referred
to as quality ranking, was proposed in Van Hentenryck et
al. [2016]. The quality ranking only takes into account the
inherent quality of products and yet, the authors showed that
this policy is optimal and predictable asymptotically.

In this paper, we reconsider the performance ranking from
Abeliuk et al. [2015] and study its asymptotic convergence.
We show that this myopic policy is also optimal and pre-
dictable asymptotically, in addition to being optimal at each
step. In contrast to the quality ranking, which is a static pol-
icy, the performance ranking is dynamic. Thus, from a tech-
nical standpoint, our analysis is the first to provide theoretical
guarantees over a dynamic policy in cultural markets. More-
over, computational results show that the rate of convergence
for the performance ranking is considerably faster than the
quality ranking. Additionally, we correct and simplify a proof
from Abeliuk et al. [2015] showing that the market always
benefits from position bias and social influence in expectation
under this policy. These results indicate that the performance
ranking is an attractive policy for trial-offer markets: It avoids
the pathological effects of the popularity ranking and it opti-
mizes market efficiency both locally and asymptotically.

2 Trial-Offer Markets
This section introduces trial-offer markets in which partici-
pants can try a product before deciding to buy it. Such mod-
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els are now pervasive in online cultural markets (e.g., books
and songs). The market is composed of n products and each
product i 2 {1, . . . , n} is characterized by two values:

1. Its appeal a
i

which represents the inherent preference of
trying product i;

2. Its quality q

i

which represents the conditional probabil-
ity of purchasing product i given that it was tried.

Each market participant is presented with a product list ⇡: she
then tries a product s in ⇡ and decides whether to purchase s

with a certain probability. The product list is a permutation of
{1, . . . , n} and each position p in the list is characterized by
its visibility v

p

> 0 which is the inherent probability of trying
a product in position p. Since the list ⇡ is a bijection from
positions to products, its inverse is well-defined and is called
a ranking. Rankings are denoted by the letter �, ⇡

i

denotes
the product in position i of the list ⇡, and �

i

identifies the
position of product i in the ranking �. Hence v

�i denotes the
visibility of the position of product i.

Our primary objective is to maximize the market efficiency,
i.e., the expected number of purchases. Note also that the
higher this objective is, the lower the probability that con-
sumers try a product but then decide not to purchase it.
Hence, maximizing the expected efficiency of the market also
minimizes unproductive trials.

Dynamic Market Since we are interested in the long-term
effects of social influence, we consider a multi-period, dy-
namic market where consumers arrive sequentially, one per
time period. Upon arrival, a consumer is able to observe the
aggregate purchase decisions of her predecessors. Denote by
d

t

= (d

t

1, . . . , d
t

n

) the total number of consumers who pur-
chased product i until the beginning of period t. The proba-
bility that the consumer arriving at period t will try product i
if items are displayed using position assignment � is given by

P

i

(�, d

t

) =

v

�i(ai + d

t

i

)P
n

j=1 v�j (aj + d

t

j

)

.

Observe that consumer choice preferences for trying the prod-
ucts are essentially modeled as a discrete choice model based
on a multinomial logit [Luce, 1965] in which product utilities
are affected by their position. The market uses the number of
purchases dt of product i at time t as the social signal. How-
ever, other social signals such as the market share, used in
online site such as iTunes, are equivalent as we show next.
Let �t

= (�

t

1, . . . ,�
t

n

) denote the market shares at time t in
terms of the total number of purchases dt, i.e.,

�

t

i

=

d

t

iP
n

j=1 d
t

j

.

The probability of trying product i can be rewritten as a func-
tion of �t, yielding,

P

i

(�,�

t

) =

v

�i�
t

P
n

j=1 v�j�
t

j

,

where, for simplicity, the vector d

0 is initialized with the
products appeals, i.e., d0

t

= a

i

. Both notations are convenient

to stress different results; we use market shares when ana-
lyzing the asymptotic behavior of the market and the number
of purchases for analyzing the static behavior of the market.
Since q

i

is the conditional probability of purchasing product
i given that it was tried and hence, the expected number of
purchases at time t is given by

P
n

i=1 Pi

(�, d

t

) q

i

.

Our goal is to study how the market shares evolve over time
when social influence is present. Observe that the probabil-
ity of trying a product depends on its position in the list, its
appeal, and its number of purchases at time t. As the mar-
ket evolves over time, the number of purchases dominates the
appeal of the product and the trying probability of a product
becomes its market share. Note also that in a dynamic mar-
ket when no social signals are displayed, the purchase history
plays no role and hence, the market behaves as a static mar-
ket. Following Salganik and Watts [2008], we refer to this
setup as the independent condition.

3 Rankings Policies
This section presents the ranking policies studied in this pa-
per. Without loss of generality, we assume that the qualities
and visibilities are non-increasing, i.e., q1 � q2 � · · · � q

n

and v1 � v2 � · · · � v

n

. We also assume that the qual-
ities and visibilities are known. In practical situations, the
product qualities are obviously unknown but Abeliuk et al.
(2015) have shown that they can be recovered accurately and
quickly, either before or during the market execution.

The performance ranking was proposed by Abeliuk et al.
(2015) to show the benefits of social influence in cultural
markets. It maximizes the expected number of purchases at
each iteration, exploiting all the available information glob-
ally, i.e., the appeal, the visibility, the purchases, and the qual-
ity of the products. More precisely, the performance ranking
at step t produces a ranking �

⇤
t

defined as

�

⇤
t

= arg-max

�2Sn

nX

i=1

P

i

(�, d

t

) · q
i

. (1)

The performance ranking can be computed in strongly poly-
nomial time and the resulting policy scales to large markets
[Abeliuk et al., 2015].

The quality ranking which simply orders the products by
quality, assigning the product of highest quality to the most
visible position and so on. With the above assumptions, the
quality ranking � satisfies �

i

= i (1  i  n). The quality
ranking was shown to be asymptotically optimal and entirely
predictable in Van Hentenryck et al. [2016].

These results contrast with the popularity ranking used in
Salganik et al. [2006] to show the unpredictability caused by
social influence in cultural markets. At iteration t, the popu-
larity ranking orders the products by the number of purchases
d

t

i

but these purchases do not necessarily reflect the inherent
quality of the products, since they depend on how many times
the products were tried, which in turn depends on the position
and social signal of the product.

4 Theoretical Analysis
In this section, we present a number of theoretical results
on the performance ranking. In particular, we show that
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the performance ranking always benefits from position bias
and social influence and is an optimal and predictable pol-
icy asymptotically. For simplicity, the results assume that
q1 > q2 > . . . > q

n

.
Our first results characterize some fundamental properties

of the performance ranking.
Lemma 1. Let ⇡⇤ be the optimal list for the static problem
(Equation (1)) given market share � and �

⇤ be the expected
number of purchases given ⇡

⇤ and �. Then

⇡

⇤
= arg-max

⇡

nX

i=1

v

i

�

⇡i (q⇡i � �

⇤
) .

Proof. First observe that

�

⇤
=

P
n

i=1 vi�⇡

⇤
i
q

⇡

⇤
iP

n

i=1 vi�⇡

⇤
i

, 0 =

nX

i=1

v

i

�

⇡

⇤
i

�
q

⇡

⇤
i
� �

⇤�
. (2)

Now assume that there exists ⇡0 such that
nX

i=1

v

i

�

⇡

0
i

�
q

⇡

0
i
� �

⇤�
>

nX

i=1

v

i

�

⇡

⇤
i

�
q

⇡

⇤
i
� �

⇤�
= 0.

By reordering the terms, it comes that
Pn

i=1 vi�⇡0
i
q⇡0

iPn
i=1 vi�⇡0

i

> �

⇤
,

which contradicts the optimality of ⇡⇤.

Lemma 1 through the rearrangement inequality provides an
important characterization of the optimal ranking at time t.
Corollary 1. Let �⇤

t

be the expected number of purchases
at time t under the performance ranking. The performance
ranking ⇡

⇤
t

satisfies
�

⇡

⇤
1,t
(q

⇡

⇤
1,t

� �

⇤
t

) � . . . � �

⇡

⇤
n,t

(q

⇡

⇤
n,t

� �

⇤
t

). (3)

This corollary indicates that a product with quality greater
or equal to �

⇤
t

is ranked higher than a product with quality
smaller than �

⇤
t

. This property is independent of the market
shares at time t.

The optimal expected number of purchases (Equation (1))
can be written as a function of the market shares:

�(�) = max

⇡2Sn

P
n

i=1 vi�⇡

⇤
i
q

⇡

⇤
iP

n

i=1 vi�⇡

⇤
i

.

The continuity of �(�) is necessary to apply stochastic ap-
proximation methods, which are key to the derivation of the
asymptotic behavior of the performance ranking.
Lemma 2. �(�) is continuous for all � 2 �

n�1.

Proof. When ⇡ is fixed, it is easy to verify that �(�) is con-
tinuous. The only source of discontinuity could come when
the list ⇡ changes as a function of �. However, Corollary 1
states that the list only changes when the inequality (3) flips
sign for some i, j given market share �

0. This happens when
�

0
i

(q

i

� �(�

0
)) = �

0
j

(q

j

� �(�

0
)). (4)

Since q

i

6= q

j

, this implies that �0
i

6= �

0
j

. Solving Equation
(4) for �(�0

) yields

�(�

0
) =

�

0
i

q

i

� �

0
j

q

j

�

0
i

� �

0
j

, �

0
i

6= �

0
j

.

Thus, lim
�!�

0+ �(�) = lim

�!�

0� �(�) = �(�

0
).

The Benefits of Social Influence An important question in
cultural markets is whether the revelation of past purchases
to consumers improves market efficiency. The theorem be-
low states that, under the performance ranking policy, the ex-
pected marginal number of purchases in the studied trial-offer
model increases when past purchases are revealed. The key
to the proof is Lemma 3 which uses the following notations:
• V1(� | d) is the expected number of purchases at period

t when position assignment � is displayed conditional to
d

t

= d, i.e.,

V1 (� | d) =
X

i�1

P

i

(�, d) q

i

.

• V2(� | d) is the expected number of purchases at period
t + 1 conditional to d

t

= d when ranking � is used at
periods t and t+ 1 consecutively, i.e.,

V2 (� | d) =
X

i�1

(P

i

(�, d) q

i

V1 (� | d+ e

i

))

+ (1�
X

i�1

P

i

(�, d) q

i

) V1 (� | d) ,

where e

i

denotes the ith unit vector.
The right term captures the case where no product is pur-
chased at period t, while the left term captures the cases
where a product i is purchased, which increases its social in-
fluence for the next period.
Lemma 3. Let �⇤ be the optimal position assignment of the
static problem at period t given any d

t

= d. We have

V2 (�
⇤ | d) � V1(�

⇤ | d).

Proof. We use a
i,t

= a

i

+d

i,t

to denote the perceived appeal
of product i under social influence at time t. When the period
t is not relevant, we omit it and use a

i

instead for simplicity.
Without loss of generality, we can rename the products so
that �⇤

i

= i. Let �⇤ denote the optimal expected number of
purchases at period t given d

t

= d, i.e.,

V1(�
⇤ | d) =

P
i

v

i

a

i

q

iP
i

v

i

a

i

= �

⇤
.

We need to prove that V2 (�
⇤ | d) � V1(�

⇤ | d) = �

⇤, which
amounts to showing that

X

j

✓
v

j

a

j

q

jP
i

v

i

a

i

P
i

v

i

a

i

q

i

+ v

j

q

jP
i

v

i

a

i

+ v

j

◆

+

✓
1�

P
j

v

j

a

j

q

jP
i

v

i

a

i

◆
�

⇤ � �

⇤
,

which reduces to proving

X

j

"
v

2
j

a

j

q

jP
i

v

i

a

i

+ v

j

(q

j

� �

⇤
)

#
� 0. (5)

By Corollary 1, the performance ranking at period t satisfies

a1 (q1 � �

⇤
) � a2 (q2 � �

⇤
) � · · · � a

n

(q

n

� �

⇤
) .
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Hence, the performance ranking allocates all products
with a negative term after the products with a positive
term. Define P1 = {i 2 N | (q

i

� �

⇤
) � 0} and P2 =

{i 2 N | (q
i

� �

⇤
) < 0}. It follows that v

i

� v

j

for all
i 2 P1, j 2 P2. Inequality (5) can be rewritten as follows:
X

j2P1

v

j

a

j

q

j

v

j

(q

j

� �

⇤
)P

i

v

i

a

i

+ v

j

+

X

j2P2

v

j

a

j

q

j

v

j

(q

j

� �

⇤
)P

i

v

i

a

i

+ v

j

� 0.

By definition of P1 and P2, the terms in the left summation
are positive and the terms in the right summation are negative.
Additionally, for any c > 0,

v

i

c+ v

i

� v

j

c+ v

j

, (c+ v

j

)v

i

� (c+ v

i

)v

j

, cv

i

� cv

j

, v

i

� v

j

Hence, since v1 � v2 � . . . � v

n

,
v1P

i

v

i

a

i

+ v1
� v2P

i

v

i

a

i

+ v2
� . . . � v

nP
i

v

i

a

i

+ v

n

.

Let v = min

i2P1 vi the smallest visibility assigned to an item
in P1. Thus, v � max

i2P2 vi. Similarly, let q = min

i2P1 qi.
By definition of P1 and P2, q � max

i2P2 qi. These observa-
tions leads to the following inequality:
X

j2P1

v

j

a

j

q

j

v

j

(q

j

� �

⇤
)P

i

v

i

a

i

+ v

j

+

X

j2P2

v

j

a

j

q

j

v

j

(q

j

� �

⇤
)P

i

v

i

a

i

+ v

j

�

vq

P
i

v

i

a

i

+ v

0

@
X

j2P1

a

j

v

j

(q

j

� �

⇤
) +

X

j2P2

a

j

v

j

(q

j

� �

⇤
)

1

A

=

vq

P
i

v

i

a

i

+ v

nX

j=1

a

j

v

j

(q

j

� �

⇤
) .

The result follows from Equation (2) in Lemma 1 which im-
plies that

nX

j=1

(a

j

v

j

(q

j

� �

⇤
)) = 0.

Lemma 3 states that, if the optimal position assignment in pe-
riod t is used at period t+1, the expected number of purchases
at t+1 is at least as high as the expected number of purchases
at period t. Clearly, re-optimizing at period t+1 by using the
optimal position assignment for period t+1 can only increase
the expected number of purchases. Together with Lemma 3,
this observation leads to the following theorem.
Theorem 1. The expected rate of purchases is non-
decreasing over time for the performance ranking under so-
cial influence.

Proof. For any t and d

t

= d, let �⇤ be the optimal posi-
tion assignment in period t. By Lemma 3, we know that
V2 (�

⇤ | d) � V1(�
⇤ | d). The performance ranking policy

computes
X

i�1

(P

i

(�

⇤
, d) max

�2Sn

V1 (� | d+ e

i

))

+ (1�
X

i�1

P

i

(�

⇤
, d)) V1 (�

⇤ | d) � V2 (�
⇤ | d)

and the result follows.

This result contrasts with the popularity ranking, under which
Theorem 1 does not hold [Abeliuk et al., 2016].

As a direct consequence of Theorem 1, the sequence
�

⇤
1, . . . ,�

⇤
t

of expected numbers of purchases over time is a
sub-martingale. By Doob’s sub-martingale convergence the-
orem [Doob, 1953], the process {�⇤

t

}
t>0 converges almost

surely. The next section studies the convergence points.

Asymptotic Behavior of Performance Ranking We now
prove the key result of the paper: The trial-offer market be-
comes a monopoly for the best product when the performance
ranking is used at each step. As a consequence, the perfor-
mance ranking is optimal asymptotically since the best prod-
uct has the highest probability to be purchased. The result
also indicates that trial-offer markets are predictable asymp-
totically when the performance ranking is used. The proof
needs the following lemma that characterizes the probability
that the next purchase is product i.

Lemma 4. The probability p

i

that the next purchase (after
any number of steps) is product i given ranking � is

p

i

=

v

�iaiqi

nP
j=1

v

�jajqj

.

Proof. The probability that product i is purchased in step m

while no product was purchased in earlier steps is

p

m

i

=

 
1�

P
n

j=1 v�jajqjP
n

j=1 v�jaj

!
m�1

v

�iaiqiP
n

j=1 v�jaj

.

Hence the probability that the next purchased product is prod-
uct i is given by p

i

=

P1
m=0 p

m

i

. The result follows fromP1
m=0(1� a)

m

=

1
a

.

Since, by Lemma 4, the steps in which no product is pur-
chased can be ignored, we can use the following variables
(1  i  n) to specify the market:

X

i,t

.

= a

i,t

q̂

i

(�) (6)

Z

i,t

.

=

X

i,tP
n

i=1 Xi,k

(7)

where q̂

j

(�) = v

�jqj . The trial-offer market can thus
be modeled as generalized Pólya scheme [Renlund, 2010],
where X

i,t

represents the number of balls of type i at step t

and Z

i,t

is the proportion of balls of type i at step t. Since
X

i,t+1 = X

i,t

+ q̂

i

(�) if product i is purchased, the gener-
alized Pólya scheme add q̂

i

(�) balls each time product i is
purchased. As a result, the Pólya scheme uses the stochastic
replacement matrix

R(�) =

0

B@
q̂1(�) · · · 0

...
. . .

...
0 · · · q̂

n

(�)

1

CA . (8)
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Higueras et al (2003) showed that a generalized Pólya urn
scheme with n colors can be modeled as a Robbins-Monro
Algorithm as follows. The process {Z

i

} can be written as

Z

i+1 = Z

i

+ �

i+1 (F (Z

i

) + ✏

i+1 + �

i+1) , (9)

where: (1) the process {�
i

} is a decreasing sequence of pos-
itive random variables,

P
i�1 �i = 1 and

P
i�1 �

2
i

< 1;

(2) {✏
i

} is a sequence of martingale differences with respect
to {F

i

} , where F
i

is the natural filtration of the entire pro-
cess; (3) {�

i

} is a negligible sequence such that �
i

! 0 al-
most surely; (4) F (x) = xR(I � 1

T

x) must be continuous,
where R is the replacement matrix of the Pólya scheme. The
ODE method [Ljung, 1977] relates the recurrence Equation
(9) with the ordinary differential equation ẋ = F (x). If this
ODE has a globally asymptotically stable equilibrium point
u 2 Rn, then the discrete process {Z

i

} converges almost
surely to this point. The equilibrium points u are obtained by
solving F (�) = 0 when

P
n

i=1 �i

= 1.

Lemma 5. Let F (�) = �R(�)(I � 1

T

�). The solutions
to F (�) = 0 when

P
n

i=1 �i

= 1 are given by the set
{e

i

: 1  i  n}, where e

i

denotes the ith unit vector.

Proof.

F (�) = �

2

64R(�)�

0

B@
q̂1(�)

...
q̂

n

(�)

1

CA�

3

75 = [F1(�), . . . , Fn

(�)] ,

with

F

i

(�) = �

i

(v

�iqi �
nX

j=1

v

�jqj�j

). (10)

An equilibrium point must satisfy F

i

(�) = 0 for all i.
Thus, the points in {e

i

: 1  i  n} are trivial solutions.
We now show these are the only solutions. Assume that
S = {i : �

i

> 0} is such that |S| > 1. Then, an equilibrium
must satisfy

v

�iqi =

X

j2S

v

�jqj�j

8i 2 S. (11)

Define l = arg-min

i2S

q

i

and m = arg-max

i2S

q

i

. Equation
(11) when applied twice to l and m implies that v

�mq

m

=

v

�lql. Since q

m

> q

l

, v
m

< v

l

must hold to satisfy the equi-
librium condition (11). This means that product l is assigned
in a better position than product m. Thus, by Corollary 1, the
performance ranking must satisfy that,

�

l

(q

l

� �(�)) � �

m

(q

m

� �(�)). (12)

However, the expected number of purchases �(�) is bounded
from below and above by q

l

and q

m

respectively, i.e.,

q

l

 �(�)  q

m

.

Hence q

l

� �(�)  0, q
m

� �(�) � 0 and q

m

> q

l

, result-
ing in a contradiction since it violates Equation (12). Hence,
condition (11) can never met when |S| > 1.

We now proceed to check the stability of the equilibrium
points. The behavior of the solutions depend on �, which
itself depends on � by Corollary 1. We will exploit this fact.

Theorem 2. [Monopoly] Consider a trial-offer market under
the performance ranking. Then the market converges almost
surely to a monopoly for the product with the best quality.

Proof. In order to use the ODE Method, we study the asymp-
totic behavior of the solutions of ẋ = F (x), or equivalently

ẋ

i

= F

i

(x) = x

i

(v

�iqi �
nX

j=1

v

�jqjxj

), 8i 2 {1, ..., n}.

If x
i

6= 0, we can rewrite the previous equation as follows:

ẋ

i

x

i

� v

�iqi = �
nX

j=1

v

�jqjxj

,

where the right-hand-side of the equation is constant for every
product. Therefore

ẋ

i,t

x

i,t

� v

�iqi =

ẋ

k,t

x

k,t

� v

�kqk

, d

dt

[ln(x

i,t

)� v

�iqit] =

d

dt

[ln(x

k,t

)� v

�kqkt] )
Z

t

0

d

ds

[ln(x

i,s

)� v

�iqis]ds =

Z
t

0

d

ds

[ln(x

k,s

)� v

�kqks]ds

, ln(x

i,t

)� v

�iqit� ln(x

i,0) = ln(x

k,t

)� q̂

k

t� ln(x

k,0)

, ln(

x

i,t

x

k,t

) = t[v

�iqi � v

�kqk] + ln(

x

i,0

x

k,0
) (13)

From any initial condition where the appeals are non-zero, no
product will ever reach a market share of exactly one or zero.
Hence, we analyze the behavior of the performance ranking
when arbitrarily close to the equilibrium points. Define �

i to
be a small perturbation from e

i

, i.e.,

{�i

: �

i

i

= 1� ✏,�

i

j

> 0, 1  j  n,

X

k 6=i

�

i

k

= ✏},

where ✏ is an arbitrarily small positive quantity. The expected
number of purchases for any �

i is �(�i

) ⇡ q

i

. For i = 1, any
perturbation of the market shares will slightly decrease the
expected number of purchases, i.e., �(�1

) = q1 � �, � > 0.
Then, q1��(�

1
) > 0 and, for any k � 2, q

k

��(�

1
)  0. By

the condition in Corollary 1 and the fact that all �1
k

> 0, the
best quality product q1 is assigned in the top slot, i.e., �1 = 1.
Hence, v

�1q1 � v

�kqk > 0 for any k 6= 1.
Consider the process given by Equation (13) with initial

condition x0 = �

1. The process begins in the simplex, i.e.,
0 < x

i,0 < 1, 8i, and hence ln(

xi,0

xk,0
) is bounded. Since

the ranking does not change, the behavior of the solutions
is given by the asymptotic behavior of t[v

�iqi�v

�kqk] which
depends on the sign of v

�iqi � v

�kqk. Taking i = 1 and
k 2 {2, ..., n}, we have that v

�1q1 � v

�kqk > 0, and
hence t[v

�1q1 � v

�kqk] ! +1 as t ! +1. Hence,
ln(

x1,t

xk,t
) ! +1 for all k > 1, and consequently x

k

(t) ! 0.
As
P

n

i=1 xi,t

= 1, x1,t ! 1 and the equilibrium e1 is stable.
For i > 1, consider a perturbation where some product

j : q

j

> q

i

has a small increase in its market such that the
expected number of purchases increases very slightly, i.e.,
�(�

i

) = q

i

+ �, � > 0. Thus, for small �, q
j

��(�

i

) > 0 and
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Figure 1: The Distribution of Market Shares. The products on the x-axis are ranked by decreasing quality from left to right.
Each dot is the market share of a product in one of the 100 experiments. Note that the y-axis is in log scale.

q

i

� �(�

i

) = �� < 0, which implies that �i

j

(q

j

� �(�

i

)) >

�

i

i

(q

i

� �(�

i

)). Therefore, by Corollary 1, product j is as-
signed in a better position than product i, i.e., v

�j � v

�i and
hence, v

�jqj � v

�iqi > 0. Consider the process given by
Equation (13) with initial conditions x0 = �

i, i > 1. At
t = 0, as described above, it holds that v

�jqj �v

�iqi > 0 and
consequently, at the next period of time t = 1, ln(xj,1

xi,1
) >

ln(

xj,0

xi,0
). This implies that x

j,1 > x

j,0 or x
i,1 < x

i,0, which,
in either case, indicates that the new state is farther away from
the initial state. Hence, e

i

is an unstable equilibrium.

Theorem 2 states that, given any initial condition with non-
zero appeals, the market eventually reaches to a monopoly
for the product of highest quality, entailing the following.
Corollary 2. The performance ranking is asymptotically op-
timal in trial-offer markets.

5 Computational Experiments
We conclude by presenting computational results that illus-
trate and complement the theoretical results about the asymp-
totic behavior of the performance rank. We use an agent-
based simulation and each simulation consists of N partici-
pants. For each participant at time t, the simulator randomly
selects a product i according to the probabilities p

i

(�, d),
where � is the ranking policy under evaluation and d is the
social influence signal. Then, the simulator randomly deter-
mines, with probability q

i

, whether selected product i is pur-
chased; In the case of a purchase, the social influence signal
for product i increases, i.e., d

i,t+1 = d

i,t

+ 1. Otherwise,
d

i,t+1 = d

i,t

. For every participant, a new list � is com-
puted using one of the ranking policies described above. We
consider 50 songs (as in the MUSICLAB) and 40,000 partici-
pants. For every experiment, the product qualities q

i

, product
appeals a

i

and the position visibilities v

i

are independently
drawn from a normal distribution with mean 0.5 and devia-
tion 0.2. The values are then normalized to be between 0 and
1 and the appeals a

i

are scaled by a factor of 50.
Figure 1 depicts computational results on the distribution

of market shares under various ranking policies (in log scale).
Each dot is the market share of a product in one of the 100
experiments. Figure 1 shows that the best product almost al-
ways receives the most purchases in the performance rank-

Figure 2: The average distribution of the top-10 market shares
when the 10

th best product starts with 500 purchases. The
products are ranked by decreasing quality from left to right.
Each dot is the average market share of a product over the 100
experiments. Error bars are the standard deviation.

ing. Quality ranking also performs well although the vari-
ance in its market shares is larger. The popularity ranking,
while it shows the same overall correlation between quality
and market share, exhibits many outliers. In terms of mar-
ket efficiency, the performance ranking achieves 10% more
purchases than the popularity ranking and 8% more than the
quality ranking overall. For a single simulation, the perfor-
mance ranking can achieve up to 23% more purchases than
the other rankings.

Figure 2 illustrates the instability of sub-optimal monop-
olies and the benefits of the performance ranking to escape
them. Each dot is the average market share product in one of
the 100 experiments, where the 10

th best product starts with
500 purchases, i.e., we start close to a monopoly for the 10

th

product. The figure shows that the performance ranking de-
creases the market share of the 10

th product and significantly
boosts the best product. This is not the case of the quality
ranking at the completion of the experiments.

In conclusion, the theoretical and computational results in-
dicate that the performance ranking has attractive properties
for dynamic trial-offer markets. It is optimal and predictable
asymptotically and it optimizes market efficiency at each time
point. Computational results also show that it recovers from
poor initial conditions much faster than the quality ranking.
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