Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Informed Expectations to Guide GDA Agents
in Partially Observable Environments

Dustin Dannenhauer and Hector Munoz-Avila

Dept. of Computer Science and Engineering

Lehigh University, Bethlehem, PA USA
dtd212,hem4 @lehigh.edu

Abstract

Goal Driven Autonomy (GDA) is an agent model
for reasoning about goals while acting in a dynamic
environment. Since anomalous events may cause
an agent’s current goal to become invalid, GDA
agents monitor the environment for such anoma-
lies. When domains are both partially observable
and dynamic, agents must reason about sensing and
planning actions. Previous GDA work evaluated
agents in domains that were partially observable,
but does not address sensing actions with associ-
ated costs. Furthermore, partial observability still
enabled generation of a grounded plan to reach the
goal. We study agents where observability is more
limited: the agent cannot generate a grounded plan
because it does not know which future actions will
be available until it explores more of the environ-
ment. We present a formalism of the problem that
includes sensing costs, a GDA algorithm using this
formalism, an examination of four methods of ex-
pectations under this formalism, and an implemen-
tation of the algorithm and empirical study.

1 Introduction

Goal-driven autonomy (GDA) is an agency model where an
agent revises its goals by reasoning over discrepancies. Dis-
crepancies arise when the agent’s own expectations do not
match the agent’s observations. Such discrepancies arise
when acting in dynamic environments (i.e., changes occur in-
dependently from the agent’s actions). When discrepancies
occur, the GDA agent will suggest alternative goals. An ex-
ample, adapted from [Molineaux et al., 20101, involves an
agent performing navy operations. A naval convoy is in route
to deliver some equipment and along the way an escort vessel
identifies an unknown contact. At this point the agent could
pursue one of multiple alternative goals including (1) abort
the mission and route back the vessels to the departing port,
(2) hold the convoy and send escort vessels to identify the
contact.

In partially observable and dynamic environments it may
not be obvious what the agent needs to know about its current
state to achieve its goals and what is irrelevant. This becomes
especially true for GDA agents which may change the goals

2493

Michael T. Cox
Wright State Research Institute
Wright State University, Dayton, OH
michael.cox @wright.edu

they pursue over time. In previous GDA work, partial observ-
ability still enabled generation of a grounded plan to reach
the goal. Furthermore, previous work on GDA agents [Mo-
lineaux et al., 2010; Weber et al., 2012; Jaidee et al., 2011;
Shivashankar er al., 2013] does not address sensing actions
with associated costs. In contrast, researchers have long ob-
served that acquiring knowledge about the state of the world
can be expensive both in terms of running time to complete
the tasks and in resource consumption [Knoblock, 1995]. For
example, virtual agents might require to plan the information
gathering tasks including which information sources to access
and what information to acquire, which in turn will enable the
agent to identify other information sources [Knoblock, 1996];
physical agents may use sensors which require power, time,
and potentially other resources [Mei et al., 2005].

This paper integrates ideas of information-gathering agents
into the GDA framework. In particular, we propose a new
family of GDA agents that adopt the convention of distin-
guishing between planning actions and sensing actions, the
latter of which have associated costs. We investigate how dif-
ferent kinds of expectations affect the performance of GDA
agents in environments that are partially observable and dy-
namic. We evaluate agents where observability is limited in
such a way that the agent cannot generate a grounded plan
because it does not know which future actions will be avail-
able until it explores more of the environment. Our contribu-
tions are as follows: (1) A goal-reasoning formalism, tailored
towards GDA agents, that models sensing costs. (2) A re-
examination of four different forms of expectations for GDA
agents operating under this formalism. (3) A GDA algorithm
for acting under this formalism. (4) An implementation of
the algorithm and empirical study on two domains making
comparative studies between the four forms of expectations.

2 Related Work

Deterministic (STRIPS) planning assumes that actions have a
pre-determined outcome [Fikes and Nilsson, 1971]. The re-
sult of planning is a sequence of actions that enable the agent
to achieve its goals. A Markov Decision Process (MDP) is a
frequently studied planning paradigm whereby actions have
multiple outcomes [Bonet and Geffner, 2006]. In MDPs, so-
lutions are found by iterating over the possible outcomes until
a policy is generated which indicates for every state that the
agent might encounter, what action to take that will enable

the agent to achieve its goals. A Partial Observable Markov
Decision Process (POMDP) is an extension of MDP for plan-
ning when the states are partially observable [Kaelbling et
al., 1998]. In POMDPs, solutions are found by iterating over
the possible states that the agent believes itself to be in and
the possible outcomes of the actions taken on those belief
states until a policy is found over the belief states. In GDA
agents, goals may change while the agent is acting in the en-
vironment. Previous GDA research has used both plans (i.e.,
sequences of actions) [Molineaux er al., 2010] and policies
[Jaidee et al., 2012].

Research in GDA has resulted in techniques to learn GDA
knowledge automatically; this includes research to learn
goals and goal formulation knowledge [Jaidee ef al., 2011]
and learn explanations [Weber, 2012]. Researchers have also
explored applying GDA for playing computer games [Weber
et al., 2010; Dannenhauer and Mufioz-Avila, 2013], for con-
ducting naval operations, and for controlling robots [Roberts
et al., 2014] among others. Thus far, GDA work has not con-
sidered explicit models of the cost of sensing actions; exam-
ining the state is assumed to have no cost for the agent. Our
work is the first to use GDA with an explicit model of par-
tial observability that accounts for the cost of sensing actions.
Furthermore, current GDA research assumes that enough in-
formation in the state is observable to plan ahead a sequence
of grounded actions to achieve the goals. In our work we
drop this assumption presenting a model that accounts for sit-
uations when such planning is not always possible (while at
the same time not precluding this possibility).

There is a long-standing tradition of interleaving planning
and execution [Goldman et al., 1996]. Briefly, Sage was an
early system interleaving planning and execution to enable
the system to further plan when possible while, in parallel,
sensing actions are executed [Knoblock, 1995]. This enables
the agent to cope with information gathering tasks including
query execution for data integration [Ives et al., 1999]. Inter-
leaving planning and execution has also been used for multi-
agent systems architectures [Paolucci er al., 1999]. More re-
cently, there has been a renewed call about the importance of
interleaving planning and execution [Ghallab ef al., 2014]. In
those works, the agents gather information in order to achieve
predefined goals. In contrast, GDA agents might change its
goals.

3 Problem Definition

We define the problem of sensing in a partially observable
and dynamic environment whereby a variety of goals can be
pursued. First, if @) is the collection of all states in the world,
then a collection of atoms s is a partial state if there is a
state ¢ € @ such that s C ¢ holds. The 6-tuple input to the
guiding sensing problem is defined as (S, X, s9, G, ¢4, ¢) and
is composed of the following elements:

S: The set of all partial states; if @ is finite, then S is finite
too. sg: An initial partial state. G: A collection of goals.

33: Actions in the domain. ¥ = ¥4, U Ygense, Where
Ypian are planned actions in the domain (e.g., move the agent
to a neighboring location from its current location). An action
a € Xpan consists of the usual triple, (prec(a),a™, a™) indi-

2494

cating the preconditions, positive effects and negative effects
of a. Ygense consists of sensing actions; one, v, for every
condition 7 that may be satisfied in the environment. ., re-
turns {true, false} depending if 7 is a valid condition in the
environment (e.g., checks if a specific beacon is activated).

¢g: A heuristic function, one for each goal g € G. It maps
for every state, the next action to take, ¢4 : S — Lpian.
The heuristic function ¢4 can be seen as encoding a strat-
egy about how to achieve goal g. In our model the heuristic
functions do not need to provide “hints” of actions to take
that somehow circumvent the partial observability in the do-
main. However, our model does not preclude that possibility:
if a plan 7 to achieve goal g is known, then the heuristic ¢,
would simply pick the next action in 7 from the current state.
It also does not preclude the case where we have a policy
(i.e., a mapping from states to actions) indicating which ac-
tion to take when visiting an state. In such a case when the
goal changes, the plan/policy must change. In our empirical
evaluation, we do not assume that we have knowledge about
such plans/policies.

c: Sensing Cost Function, ¢ : Ygense — R>p. Returns a
non-negative number for each sensing action.

The guiding sensing problem is defined as follows: given
a guiding sensing problem (5, X, sg, G, ¢4, ¢), generate a se-
quence of actions 7 = (aj...a,,), each a € 3, and a se-
quence of partial states (sg...S,,) such that:

1. If mpian = (agy...ak,) denotes the subsequence of all
planning actions in 7 (i.e., each ag; € Ypian), then the
preconditions of each ay; were valid in the environment
at the moment when ay, ; was executed.

2. One or more goals g € G hold in s,.

3. If Tsense = (akq...ax,) denotes the subsequence of all
sensing actions in 7 (i.e., each action in Tgepse is Of the
form () for some condition 7), then the total sensing
cost C(m) = Y7, c(ay;) is minimal.

Condition 1 guarantees that the actions taken while the
agent was acting in the environment were sound. Condi-
tion 2 guarantees that at least one of the goals is achieved.
This condition is compatible with the special case of over-
subscription planning [Smith, 2004], where the agent tries to
achieve the maximum number of goals. It is also consistent
with GDA where the agent chooses the goals to achieve as a
result of situations encountered while acting on the environ-
ment. Condition 3 represents an ideal condition where the
agent minimizes the cost of sensing while achieving its goals.
In our work, we explore a variety of criteria (see next section)
that affects the overall costs of the action trace pursued by
the agent but our algorithms will provide no guarantees that
Condition 3 is met.

4 GDA and Expectations

In Goal-driven autonomy (GDA) the agent repeatedly per-
forms the following four steps (for further details please see
an overview of GDA - e.g. [Aha, 2011]): (1) Discrepancy
detection: after executing an action a, it compares the ob-
served state o after sensing and the agent’s expectation z

(i.e., it tests whether any constraints are violated, correspond-
ing to unexpected observations). For example, in the mar-
sworld domain an expectation is the atom activated(beacon5)
and a discrepancy is the observed contradicting atom deacti-
vated(beacon5). If a discrepancy D is found (e.g., D = x \ o
is not empty), then the agent executes the following step. (2)
Explanation generation: Given an observed state o and a
discrepancy D, this step hypothesizes an explanation e caus-
ing D. (3) Goal formulation: This step generates a goal
g € G in response to D, e, and o. (4) Goal manage-
ment: Given a set of existing/pending goals G C G (one
of which may be the focus of the current plan execution) and
anew goal g € G, this step may update G to create ¢/ (e.g.,
G’ = GU{g}) and will select the next goal ¢’ € G’ to pursue.

The GDA cycle is triggered when discrepancies occur. In
turn, discrepancies hinge on the notion of an agent’s expec-
tations. We explore 5 kinds of expectations from the liter-
ature [Mufioz-Avila et al., 2010a; 2010b; Dannenhauer and
Muiioz-Avila, 2015; Mitchell er al., 1986], adapted to con-
sider the guiding sensing problem. We use the following con-
VEeNtions: mMprefiz = (a1...ay) is the sequence of actions ex-
ecuted so far, (so...s,,) are the sequence of partial states the
agent believes to have visited so far, and a1 € Xpan is the
next action to be executed.

1. No expectations: The agent performs sensing actions
that are only related to the preconditions of a,,4; where
Gp41 € Xplan- For every precondition 7 € a1, the
agent performs the sensing action of ~y, ().

2. Immediate expectations: The agent performs sensing
actions for both the preconditions and effects of a1
where @41 € Ypian.

3. Eager expectations: The agent checks if the belief state
S, 1s consistent with the current observed state and if
Sn+1 18 consistent with the state observed after executing
an+1 € Eplan-

4. Informed expectations: Inf(Tprefiz, So) move forward
all valid conditions computed so far in m,.¢fs. In-
formed expectations are formally defined as follows:
Inf(ﬂ—prefian 30) = Inf(ﬂ—p'refi:ca S0, @)

e Inf((),s,cc) = cc

e Inf((a),s, cc) =cc if (1) a € Lpqp and is appli-
cable in s, then c¢’ = (cc\a™)Ua™, where a™ are
the negative effects from a and a™ are the positive
effects from a.

o Inf((aragyi...an), Sk, cc) =
Inf((ags1..-an), Sk+1, Inf((ag), sk, cc)).

5. Goal-regression expectations: Given a plan suffix
Tsuf fiz (ak+1...arm) achieving a collection of
goals G from some state, goal regression expectations
Regress(Tsy ffiz, G) is formally defined as follows:

e Regress((),cc) = ce.
e Regress((a),cc) = (cc\ a™) U precs(a)), where
precs(a) are the preconditions of a.

e Regress((agt1..-Gm),cc) =
Regress((agt1...am—1), Regress((am), cc)).

2495

Checking for no expectations is typical of systems per-
forming deliberative planning, where the agent’s actions are
not executed in the environment and therefore cannot fail. In a
dynamic environment, actions may become invalid and hence
an agent using no expectations is prone to fail to achieve its
goals. Immediate expectations is an improvement in that the
agent checks if the conditions for the next action to be ap-
plied hold in the observed state. But if earlier conditions are
no longer valid, then the agent will be unaware (e.g., a beacon
needed to achieve a goal condition has become deactivated).
Hence, immediate expectations is also prone to fail to fulfill
its goals.

Eager expectations check that all conditions in the agent’s
belief state are satisfied at every iteration. Hence, they are an
improvement over the previous two kinds of expectations in
that checking for eager expectations guarantees that if these
conditions are valid, the plan is still valid (e.g., it will con-
tinue checking if a previously activated beacon, needed to
achieve a goal, is still active). A drawback is that it may in-
cur high sensing costs; it will also check for conditions that
are not relevant for the current plan (e.g., any atom in the
state, even if irrelevant to the current goal, will be checked
and the agent will incur in the corresponding sensing costs).
In contrast, goal regression expectations are an improve-
ment in that they guarantee that the expectations computed,
Regress(Teuf fix, G), are minimal. That is, if any condition
in Regress(msy s iz, G) is removed then some precondition in
the suffix plan 7, ff, is no longer applicable and therefore
G cannot be fulfilled. The main drawback is that some of
these conditions might become irrelevant if the agent needs
to replan which is prone to occur in dynamic environments.
Informed expectations addresses this limitation in that they
move forward all conditions validated by the plan, mp.c fiz,
executed so far. We state the following property implying
advantages and disadvantages of informed expectations over
goal regression expectations: Let sy be a state, G a collection
of goals and a plan ™ = Tprefirz ® Teuf i achieving G from
So (Where o is the concatenation of the two plans). Under
these conditions, if Inf(Tpre s riz, So) are applicable in a state
Sk, then Regress(Tgyf piz, G) is also applicable in sy, but not
the other way around.

This follows from the fact that Regress(msy iz, G) com-
putes the minimal conditions and our assumption that
Tprefiz ® Tsuffiz achieves G from a state sg. This result
means that an agent checking for Inf(7pre iz, s0) will check
for unnecessary conditions assuming that there is no need to
replan after executing mp,¢ i On the other hand, if there is a
need to replan to achieve the same goals G, then the informed
expectations, Inf(Tpre iz, So), will compute the needed con-
ditions regardless of how the plan is completed. In contrast,
Regress(Tguf fix, G) conditions might no longer be valid.

5 Goal Driven Autonomy Agent

Algorithm 1 shows the pseudo-code for our agent that is op-
erating in a partially observable and dynamic environment.
The main algorithm GDA starts on Line 18. The algorithm
uses the following variables, initialized in Line 2: a plan 7
(initially empty), a collection of states (initially consisting of

Algorithm 1

1: Global Variables S, ¥, 59, G,G, ¢, X : S x I = S

2 4 (); S « (s0); g defaultGoal; G < {g}

3: return GDA()

4:

5. procedure CHECK(x, s,)

6: D+ ;s +s > initialization
7: for 7 € x do

8: cond <+ v, () > Sensing Action
9:

if (positive(r) and not(cond)) or (negative(r)
and cond) then > Discrepancy!

10: D <+ De (1))

11: T mey()

12: if positive(cond) then

13: s« s \{r} > 7 is not valid in s
14: if negative(cond) then

15: s« s u{r} > 7 is valid in s
16: return D

17:

18: procedure GDA()

19: s « lastState(S)

20: if terminationCondition(G, 5,8,) then

21: return (7, S)

22: a < Pg(s) > selects applicable action
23: D <+ check(precs(a), s,)

24: if D == () then

25: execute(a)

26: s < apply(a, s)

27: T e (a)

28: D <+ check(X (s,), s,7)
29: if D == () then

30: S+ Se(s)

31: return GDA()

32: else 5« S e (s)

33: else replace(S, s)

34: E + explain(D,s) > There was a discrepancy
35: G «formulate_new_goals(G, G,D,E,s)

36: g <—goal_selection(G ,S)

37: return GDA()

39: procedure TERMINATIONCONDITION(G, s, S,)
40: g < goalsSatisfied(s,G)
41: if ¢ # 0 then

42: if check(g’, s,) then
43: return true

44: else return false

45: else return false

the starting partial state sg), a default goal, g, and a collection
of goals that the agent is currently pursuing G. Tt also uses
a global variable, G with all potential goals that the agent
might pursue. The algorithm also uses an expectation func-
tion, X (s, 7), as defined in the previous section (excluding
goal regression expectations).

We did not implement goal regression in our algorithm be-
cause in the domains we tested our agent cannot generate a
complete grounded plan from the outset due to partial ob-
servability.

The algorithm returns the pair (7,), where is the trace

of all planning and sensing actions executed and S all states
the agent believes it visited (depending on the kind of expec-
tations used, the agent may not have checked if every condi-
tion in the state is valid in the environment). The procedure
begins by taking the last partial state, s, believed to be visited
(Line 19). It first checks if the termination conditions are met
in s. The terminationCondition procedure is detailed on Line
39 and is explained later. If the termination condition is not
met, then the agent selects an applicable action a (based on
the belief state s) to execute using the heuristic for the current
goal (Line 22). It checks if the preconditions of a are valid
in the environment by performing sensing actions (Line 23).
The procedure check is detailed in Line 5. We will explain it
later, but briefly, it will log in 7 any sensing action performed
and it will modify s based on the discrepancies D it detected.
If the preconditions are satisfied in the environment (Line 24),
then the action is executed (Line 25), the belief state is moved
forward by applying action a on s (Line 26). Action a is
added into 7 (Line 27). Afterwards, it checks if the expecta-
tions (Line 28) are met in the environment (Line 29). If so,
s is added into S and calls GDA() recursively (Lines 30-31).

Otherwise, it adds s into S (Line 32; the procedure check up-
dates s whenever there is a discrepancy).

If the preconditions are not satisfied, the last state in S is
replaced with the updated state s (Line 33; calling the check
function in Line 23 changes s based on the discrepancies de-
tected). If there is a discrepancy either in the preconditions
or in the expectations, Line 34 is reached. In it, the algorithm
generates an explanation E for the discrepancy, formulates
new goals G to achieve, selects a new goal g to pursue among

those in G and calls GDA recursively (Lines 35-37).

We now discuss the auxiliary procedures check and termi-
nationCondition. The check procedure (Line 5), receives as
parameters the conditions = to be checked, the belief state
s and the actions executed in the environment so far 7. It
checks for every atom 7 in z if 7 is sensed in the state (Line
8) while accounting for the fact if it is a positive or nega-
tive condition (Line 9). D maintains all discrepancies found
(Lines 6 and 10). 7 is updated with any sensing actions per-
formed (Line 11). The state is updated when there is a dis-
crepancy (Lines 12-15). The procedure returns the discrepan-
cies (Line 16). The auxiliary procedure terminationCondition
(Lines 39-45) checks if the current goals ¢’ (with ¢ C G) are
(1) satisfied in the belief state s (lines 40-41) and (2) satisfied
in the environment (Line 42).

6 Experiments

To compare how the different kinds of expectations affects
the agents’ performance, we implemented two simulated en-
vironments, marsworld and blockscraft; both are partially ob-
servable and dynamic. Our hypothesis is that informed expec-
tations will achieve all goals while having less sensing costs

2496

than other expectations.

Figure 1: 1000 Scenarios per Agent in Marsworld

10 Goals Achieved and Sensing Cost Per Approach

[Goals Achieved
[Sensing Cost
[Actions Executed

o
=3

o
o

o
ES

% Goals Achieved and % Sensing Cost

o
)

None Immediate Informed Eager

Agents

Complete

Figure 2: 1000 Scenarios per Agent in Blockscraft

10 Goals Achieved and Sensing Cost Per Approach

[Goals Achieved
[Sensing Cost
[Actions Executed

0.8 |-

0.6 |- s P

0.4

% Goals Achieved and % Sensing Cost

B

None Immediate

Informed Eager
Agents

Complete

Marsworld is a modified version of the domain described
in [Dannenhauer and Mufioz-Avila, 2015]. Modifications
were needed to make the domain partially observable; in that
work the authors only deal with dynamic but not partially ob-
servable domains. It consists of a square grid of a 100 tiles,
with randomly generated objects: beacons and piles of wood.
The agent also begins with flares in its inventory. The agent
has one overarching goal: signal a nearby agent for assis-
tance. The agent creates a signal in one of three ways: acti-
vate a specified number of beacons, light a specified number
of fires using wood, or drop and light a specified number of
flares. When the agent is in the same tile as a beacon or a pile
of wood, it can activate the beacon or create a fire. If the agent
is in an empty location, it can drop and light a flare. Each of
these may fail: beacons deactivate and fires and flares can be
permanently extinguished. Only after the target number of
activated beacons, fires, or flares have been reached can the
agent signal for assistance. The agent is endowed with 7 plan
actions: moveup, movedown, moveright, moveleft, activate-
beacon, makefire, dropflare. The agent can sense anything in

2497

its current tile and any adjacent tiles (N,S,E,W) with a cost
of 0. When an object is no longer within view, the agent
can check on the object with a sensing action at a cost of 1.
Hence, an agent can perform enough sensing to know every-
thing it has seen, but at a high cost (i.e., the cost for each
sensing action required to view everything in its belief state).

The blockscraft domain is inspired by the popular sand-
box game Minecraft. In this domain the agent’s goal is to
build a 10-block tower by picking up and stacking blocks.
Blocks can only be stacked on the ground or on top of blocks
of the same type. The agent does not know what blocks will
be available to it over the course of its execution. In the game
Minecraft, often the player will dig for blocks and uncover
different types of blocks, only known after acquiring them.
The agent always has 3 blocks in a nearby quarry to choose
from, and only after it uses a block will a new one become
available. In our experiments there are three different types
of blocks and each new block has a randomly selected type.
Blockscraft is dynamic due to external agents, unseen to our
agent, that may remove blocks from a tower as well as build-
ing their own towers. This is akin to the online multiplayer
aspect of Minecraft, where many players can modify a shared
world. Blockscraft is partially observable in that our agent
only has a top-down view of the blocks. The top-down view
enables sensing actions of cost O for the top two blocks of
each tower it has built. Any other block (those under the top
two) can be sensed with a cost of 1.

In each domain we generated 1000 random scenarios and
ran five GDA agents (Figures 1 and 2). Four of the GDA
agents implemented the four expectations described previ-
ously. The fifth GDA agent acts as an upper bound on our
experiments to show what the behavior would be if the agent
could sense the whole environment. In this way, we’re able to
observe what would happen if the agent can gain full observ-
ability of the environment with the same cost model as the
other agents (we call this the complete expectations agent).

7 Results

In Figures 1-2, the first bar of each agent (green) is the per-
centage of goals achieved. The second bar (red) is the per-
centage sensing cost out of the maximum sensing cost. The
maximum sensing cost is the sensing cost of all atoms in the
state (as shown by our upper bound: complete expectations).
The third bar (purple) shows the normalized total of actions
executed by each agent. In Figure 1 the chance of failure
per action executed was 20% for beacons, fires, and flares
each. In Figure 2, the chance that a block would be removed
was 10% and the chance that a block would be added was
30%. Chances for discrepancy to occur are computed per ev-
ery planning action executed by the agent.

Looking at Figure 1, we see that agents using none and
immediate expectations were unable to achieve most of their
goals. Agents using informed and eager were able to achieve
all of their goals. However, informed expectations incurred
in significantly less sensing costs than eager, and less than
the upper bound shown by complete. The none and immedi-
ate expectations agents do not become aware of failures out-
side their limited view and thus fail to switch goals, reaching

their (falsely believed) goal with less actions (compared to
informed and eager). In these experiments we turned off the
sensing checking of the goals (Line 42 of the Algorithm) as
the none and immediate expectation agents were taking too
long to complete their goals while the informed, eager, and
complete agents are guaranteed to satisfy the goals they be-
lieve they achieved.

Figure 3: Sensing Cost per Failure Rate in Marsworld

Sensing Cost vs. Discrepancy Rate

1.0

= - |nformed
~—a Eager
~—— Complete

0.8

o
o

Sensing Cost

o
ES

021

OO L L L 1 L
0 20 30 40 50 60
Percent Chance of External Events

10 70

Figure 4: Sensing Cost per Failure Rate in Blockscraft

Sensing Cost vs. Discrepancy Rate

I —— e

1.0

0.8}

f--m---—p_ __ »-w--m--m--m

o
o

Sensing Cost

I
IS

= -a |nformed
~—a Eager
~—— Complete

021

0.0

10 15 20 25
Percent Chance of External Events

5 30

Figure 2 shows results from the blockscraft domain. We
see similar results to those in marsworld. The none and im-
mediate fail to achieve goals most of the time because even
a change in a single block will go unnoticed. We see a cost
gap in the informed and eager expectations as a result of the
eager expectations agent sensing everything it has ever seen
(including in this case the other towers under construction by
other agents), while informed only keeps track of those atoms
in the state that are related to its previous actions. Thus it per-
forms sensing only on the blocks the agent itself has stacked.

Figures 3 and 4 show the total sensing (relative to complete

2498

expectations) varied by the chance of failure in each domain.
Each data point is the total sensing cost performed out of the
maximum possible sensing cost over 100 runs. In Figure 3
the chance for each of beacons, fire, and flares to fail var-
ied from 0% to 65% in increments of 5%. Figure 4 shows
the results of blockscraft where the chance that blocks were
removed had a failure rate that varied from 0% to 27% in
increments of 3%. In Figure 4, only the chance that blocks
were removed was varied, the chance for blocks being added
was held at 30%. We did not test with values close to 100%
failure rate in both domains because at some point the envi-
ronment changes so frequently it is not possible to achieve
any goals, even with perfect sensing. By stopping at 65% and
27% respectively, we are able to see what is happening while
still enabling agent’s to achieve all of their goals. In both of
these figures we see that informed expectations is performing
substantially less overall sensing than eager and complete ex-
pectations. In blockscraft the difference between eager and
complete is negligible because both agents basically see the
same blocks regardless if used by the own agent or by the
external agents.

8 Final Remarks

We present a formulation of the guiding sensing problem
where sensing actions have associated costs for environments
that are partially observable. Our formulation is amenable
to, both, environments where GDA agents can plan ahead
(e.g., as a sequence of grounded actions) and environments
where this is not possible. We analyze trade-offs between
five forms of expectations (i.e., none, immediate, eager, in-
formed, and goal regression) used by GDA agents when deal-
ing with dynamic environments. We presented an algorithm
for a GDA agent operating in both partially observable and
dynamic environments approximating a solution to the guid-
ing sensing problem when planning ahead as a sequence of
grounded actions is not possible. We evaluated our algo-
rithm in two simulated environments. From this evaluation,
we see that informed expectations performs the best among
the four expectations (i.e., none, immediate, eager, informed)
and using complete expectations (i.e., when full observabil-
ity is enabled); informed expectations has less sensing costs
compared to other expectations that achieve all goals.

For future work, we would like to explore solutions in the
context of GDA agents, that either meet Condition 3 of the
guiding sensing problem or provide a better approximation
than informed expectations. We would also like to explore
agents that can decide whether or not to perform sensing
between each plan action and at the time of believed goal
achievement. Essentially, these agents can vary the frequency
of sensing (e.g. instead of sensing per each plan action, per-
form sensing every n actions). As such, Informed and Eager
expectations would no longer guarantee that a believed to be
true goal is actually true. Since goals must then be confirmed
by additional sensing at the time of presumed goal comple-
tion, future work is needed to identify for which, if any, sens-
ing frequencies there exists an improvement in minimizing
overall sensing cost.

Acknowledgements: This work was supported in part by

grants NSF 1217888 and ONR N00014-15-1-2080

References

[Aha, 2011] Molineaux M. Klenk M Aha, D.W. Goal-Driven
Autonomy. Technical report, NRL Review, 2011.

[Bonet and Geffner, 2006] Blai Bonet and Hector Geffner.
Learning depth-first search: A unified approach to heuris-
tic search in deterministic and non-deterministic settings,
and its application to mdps. In ICAPS, volume 6, pages
142-151, 2006.

[Dannenhauer and Mufioz-Avila, 2013] D. Dannenhauer and
H. Mufioz-Avila. LUIGi: A Goal-Driven Autonomy Agent
Reasoning with Ontologies. In Advances in Cognitive Sys-
tems (ACS-13), 2013.

[Dannenhauer and Mufioz-Avila, 2015] D. Dannenhauer and
H. Muiioz-Avila. Raising Expectations in GDA Agents
Acting in Dynamic Environments. In International Joint
Conference on Artificial Intelligence (IJCAI-15), 2015.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-
4):189-208, 1971.

[Ghallab et al., 2014] Malik Ghallab, Dana Nau, and Paolo
Traverso. The actors view of automated planning and act-
ing: A position paper. Artificial Intelligence, 208:1-17,
2014.

[Goldman et al., 1996] R Goldman, M Boddy, and Louise
Pryor. Planning with observations and knowledge. In
AAAI-97 workshop on theories of action, planning and
control, 1996.

[Tves er al., 1999] Zachary G Ives, Daniela Florescu, Marc
Friedman, Alon Levy, and Daniel S Weld. An adaptive
query execution system for data integration. In ACM SIG-
MOD Record, volume 28, pages 299-310. ACM, 1999.

[Jaidee et al., 2011] Ulit Jaidee, Héctor Mufioz-Avila, and
David W Aha. Integrated Learning for Goal-Driven Au-
tonomy. In Proceedings of the Twenty-Second interna-

tional joint conference on Artificial Intelligence-Volume
Volume Three, pages 2450-2455. AAAI Press, 2011.

[Jaidee et al., 2012] Ulit Jaidee, Héctor Mufioz-Avila, and
David W Aha. Learning and Reusing Goal-Specific Poli-
cies for Goal-Driven Autonomy. In Case-Based Reason-
ing Research and Development, pages 182—195. Springer,
2012.

[Kaelbling ef al., 1998] Leslie Pack Kaelbling, Michael L
Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intel-
ligence, 101(1):99-134, 1998.

[Knoblock, 1995] Craig A Knoblock. Planning, executing,
sensing, and replanning for information gathering. In In
Proceedings Of The Fourteenth International Joint Con-
ference On Artificial Intelligence, 1995.

[Knoblock, 1996] Craig A Knoblock. Building a planner for
information gathering: A report from the trenches. In In
AIPS-96. Citeseer, 1996.

2499

[Mei er al., 2005] Yongguo Mei, Yung-Hsiang Lu, Y Charlie
Hu, and CS George Lee. A case study of mobile robot’s
energy consumption and conservation techniques. In Ad-
vanced Robotics, 2005. ICAR’05. Proceedings., 12th In-
ternational Conference on, pages 492—497. IEEE, 2005.

[Mitchell et al., 1986] Tom M Mitchell, Richard M Keller,
and Smadar T Kedar-Cabelli. Explanation-based general-
ization: A unifying view. Machine learning, 1(1):47-80,
1986.

[Molineaux et al., 2010] Matthew Molineaux, Matthew
Klenk, and David W Aha. Goal-Driven Autonomy in a
Navy Strategy Simulation. In AAAI 2010.

[Mufioz-Avila et al., 2010a] Héctor Mufioz-Avila, David W
Aha, Ulit Jaidee, Matthew Klenk, and Matthew Molin-
eaux. Applying Goal Driven Autonomy to a Team Shooter
Game. In FLAIRS Conference, 2010.

[Mufioz-Avila ef al., 2010b] Héctor Muifioz-Avila, Ulit
Jaidee, David W Aha, and Elizabeth Carter. Goal-Driven
Autonomy with Case-Based Reasoning. In Case-Based
Reasoning. Research and Development, pages 228-241.
Springer, 2010.

[Paolucci er al., 1999] Massimo Paolucci, Onn Shehory, Ka-
tia Sycara, Dirk Kalp, and Anandeep Pannu. A planning
component for retsina agents. In Intelligent Agents VI.
Agent Theories, Architectures, and Languages, pages 147—
161. Springer, 1999.

[Roberts et al., 2014] Mark Roberts, Swaroop Vattam,
Ronald Alford, Bryan Auslander, Justin Karneeb,
Matthew Molineaux, Tom Apker, Mark Wilson, James
McMahon, and David W Aha. Iterative goal refinement
for robotics. In ICAPS Workshop on Planning and
Robotics, 2014.

[Shivashankar et al., 2013] Vikas Shivashankar, UMD EDU,
Ron Alford, Ugur Kuter, and Dana Nau. Hierarchical goal
networks and goal-driven autonomy: Going where ai plan-
ning meets goal reasoning. In Goal Reasoning: Papers
from the ACS Workshop, page 95, 2013.

[Smith, 2004] David E Smith. Choosing objectives in over-
subscription planning. In ICAPS, volume 4, page 393,
2004.

[Weber et al., 2010] Ben George Weber, Michael Mateas,
and Arnav Jhala. Applying Goal-Driven Autonomy to
StarCraft. In AIIDE, 2010.

[Weber et al., 2012] Ben George Weber, Michael Mateas,

and Arnav Jhala. Learning from demonstration for goal-
driven autonomy. In AAAZ 2012.

[Weber, 2012] Ben Weber. Integrating Learning in a Multi-
Scale Agent. PhD thesis, University of California, Santa
Cruz, June 2012.

