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Abstract

Computational Drug Repositioning (CDR) is the
knowledge discovery process of finding new indi-
cations for existing drugs leveraging heterogeneous
drug-related data. Longitudinal observational data
such as Electronic Health Records (EHRs) have be-
come an emerging data source for CDR. To address
the high-dimensional, irregular, subject and time-
heterogeneous nature of EHRs, we propose Base-
line Regularization (BR) and a variant that extend
the one-way fixed effect model, which is a standard
approach to analyze small-scale longitudinal data.
For evaluation, we use the proposed methods to
search for drugs that can lower Fasting Blood Glu-
cose (FBG) level in the Marshfield Clinic EHR. Ex-
perimental results suggest that the proposed meth-
ods are capable of rediscovering drugs that can
lower FBG level as well as identifying some po-
tential blood sugar lowering drugs in the literature.

1 Introduction

Computational Drug Repositioning (CDR) is the knowledge
discovery process of finding new indications for existing
drugs, leveraging heterogeneous drug-related data. It is a
challenging and rapidly-growing application of artificial in-
telligence [Andronis et al, 2011; Fakhraei et al., 2013;
Li and Lu, 2013]. Longitudinal observational data such as
Electronic Health Records (EHRs) have become an emerg-
ing data source for CDR [Xu et al., 2014]. In EHRs, detailed
across-time clinical information on patients, such as drug pre-
scriptions, conditions, lab test results, and demographics, are
collected from a large and diverse population. This large-
scale data source provides potentially valuable information to
foster the study of correlations among various drugs, condi-
tions, and lab results in diverse patient profiles, which is an
important task for predictive analytics in the healthcare in-
dustry.

For the task of CDR, we build a predictive model that uses
the drug prescription history of patients to predict their con-
tinuous numeric value of Fasting Blood Glucose (FBG) level.
We examine the drugs (predictors) that have significant blood
sugar lowering effects. If some of them are not known to
lower blood sugar already, we can consider those drugs as
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potential candidates for repositioning to control blood sugar,
with further inspection.

We observe that patients in the EHRs have extremely di-
verse FBG level profiles (e.g. some people tend to have higher
FBG level than the others). Furthermore, different FBG level
measurements taken far apart in time might have very differ-
ent values. This is especially true if some persistent blood
glucose altering events occur to a person, such as the diagno-
sis of diabetes.

Based on these observations, our Baseline Regularization
(BR) model assumes that there is a patient-specific, time-
varying, but unknown baseline FBG value for each patient
over different time periods. The model further assumes that
the observed FBG level of a particular patient taken at a par-
ticular time is influenced by the joint effects of the baseline
value and the exposure statuses of various drugs for that pa-
tient at that time. We first build a sparse fixed-effect model
to describe our assumptions, and then we impose regulariza-
tion to the baseline model parameters, hence the name of our
model, baseline regularization. For computational efficiency,
we also propose an alternative formulation to the original
baseline regularization model.

Our contributions are threefold:

We introduce the baseline regularization model for the task
of CDR, which generalizes the standard one-way fixed ef-
fect model [Frees, 2004].

We propose an alternative formulation to the original base-
line regularization model, which is equivalent to an L reg-
ularized linear model and hence can be solved efficiently.

Using our methodology, we discover some drugs with lit-
erature support indicating their potential glucose-lowering
effects that are worthy of further investigation.

2 Background
2.1 Electronic Health Records (EHRSs)

Figure 1 visualizes a simple EHR with two patients stored
in a relational database. Two tables are presented. Table la
represents drug era records. Each row records the identifier
of a patient with the name, the start date, and the end date of
a drug prescribed to this patient. We consider that the patient
is under exposure of the drug during the time span from the
start date to the end date of the drug era record. Table 1b



PATIENT ID DRUG.NAME START DATE END_DATE
1 HUMALOG Jan-28-2005 Mar-23-2005
1 HUMALOG Jun-17-2005 Jul-20-2005
2 INSULIN Mar-07-1998  May-14-1998

(a) Drug Era Records

PATIENT_ID
1

DATE
Jan-28-2005
2 Apr-13-1998 95
2 Aug-12-1998 140

(b) Fasting Blood Glucose Records

VALUE
130

Figure 1: Electronic Health Records (EHRs)

represents FBG level records. Each row records the identifier
of a patient, with the measured date and the numeric value of
a FBG measurement. Within each patient, drug era records of
the same drug do not overlap in time. Furthermore, only one
FBG measurement can be taken at a particular date within
each patient.

2.2 Notation
Let there be N patients and M drugs in the EHR. We use
Yi; to denote the numeric value of the j th FBG measurement

taken from the i*" patient, where i € {1,2,--- , N} and j €

{1,2,---,J;}. We denote n = Zi\rzl Ji. Furthermore, we
use x;; to denote an M x 1 binary vector, with z;;;, = 1
representing that the i patient is under the exposure of the
k" drug at the time when the j** FBG measurement was
taken, where i € {1,2,--- ,N},j € {1,2,--- ,J;},and k €
{1,2,---,M}. Similarly, z;;, = 0 indicates that the i
patient is not exposed to the k' drug at the time when the
5" FBG measurement was taken.

3 The Baseline Regularization Model

3.1 The Fixed-Effect Model

We are interested in using ;;’s to predict y;;’s. For this pur-
pose, we consider the following one-way fixed-effect model:

yij | @iy = ai + B ai; + ey, e C N (0,02, (1)
where «; is a patient-specific, time-invariant, nonrandom
parameter representing the constant baseline FBG level of
the it" patient, and 3 is an M X 1 vector with 8, k €
{1,2,---, M}, representing the effect of the k*" drug on the
5" measurement of the i*" patient if the patient is exposed
to that drug at the time when the measurement was taken.
€;;’s represent the independent and identically Gaussian dis-
tributed noises with zero mean and fixed but unknown vari-
ance o2. Based on the aforementioned definitions, intuitively,
if z;; = 0, then

Elyij | zij = 0] = a,
indicating that the baseline parameter «; is the value of the
expected FBG level of the i*" patient if the patient is exposed
to no drugs.
Fitting the fixed-effect model in (1) is equivalent to solving
the following least square problem:

y—[Z X] m

1 2
arg min — (2)

’
a.,B

2
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where
-
Yy = [y11 AW YN1 leN] ,
X = [21311 L1, N1 wNJN] )
a=[a1 o aN]T, Z = diag (11,--- ,1n),

where Z is a block diagonal matrix with 1; being an all-one
J; x 1 vector.

3.2 Time-Varying Baseline

The introduction of the patient-specific baseline parameter o
in (2) explains the heterogeneous nature of the FBG levels
measured from different patients. However, since o is time-
invariant, the model in (2) essentially assumes that the base-
line FBG level of each patient does not change over time.
This is a restrictive assumption for EHR data in that FBG
records of a person can be collected over decades, and the
baseline FBG level will usually change over such a long pe-
riod of time [O’Sullivan, 1974; Ko et al., 2006]. This is es-
pecially true if some persistent glucose altering events occur
to a patient, such as the diagnosis of diabetes. To incorporate
a time-varying baseline, we extend the fixed-effect model in
(1) as follows:

iid

€;; ~ N (0,0%), 3)

where ¢;; can be considered as the deviation of the FBG level
baseline from «; at the time when the j** measurement was
taken from the 7*" patient. Fitting model (3) is equivalent to
solving the following least square problem:
in £ t
arg min (e, B,1)

s

Yij | Tij = Oy “rtij +,@TSE¢J‘ + €4,

2

1 «a 4)
=argmin - ly—[Z X I]||p ,
a,B,t t
2
where
T
t= [tll tlJl tNl tNJN] )

and I is an n X n identity matrix.

3.3 Parsimonious Representation

The parameter of interest in our task is 3. In contrast, we
refer to o and t as nuisance parameters. In this section, we
consider deriving a parsimonious model from (4) that is o-
free. Minimizing £ (a, 3, t) with respect to « is equivalent

oL (o, B,t)
o
where ZT = (ZTZ)71 Z7,yisan N x 1 vector with g;
+ ijl yij» and X is an N x M matrix with the i*" row
being X;. = Ji Zj]zl az;; Substituting (5) into (4) yields,

—0sa=g-XB-Z't, (5

2

)

2

(6)

1 B - J6]
X I—-2Zzt
arg min o Hy Zg—-[X-2Z ] M

which is free of a.



3.4 Sparsity and Baseline Regularization

The sample size in (6) is n; however, the number of param-
eters in the model is M + n. Overparameterization in (6)
motivates us to impose regularization onto the parameters 3
and t so as to control their degree of freedom. A type of reg-
ularization that can be imposed on 3 is the lasso [Tibshirani,
1996] penalty that encourages sparsity, which yields,

2

o1 _ o B
arg min— - Zy-|X-zX 1-2z2zZt
gﬂt?Hy v-| ]Hzm

t
+A 8l

where A\; > 0. The incorporation of the lasso penalty in
(7) can potentially set most components of 3 to zero, which
means the model makes the assumption that only a small sub-
set of drugs in the EHRs will alter the FBG level.

We now consider the regularization of the baseline pa-
rameter t. For this purpose, we first consider an adja-
cent pair of FBG measurements from the same patient ¢,
ie. yi; and (1), where i € {1,2,--- N}, and j €
{1,2,---,J; — 1}. We predefine a time threshold ¢; further-
more, we denote the time when y;; was taken as 7;; and we
define 7;;11) accordingly. We consider only adjacent pairs
of FBG measurements from the same patient that satisfies

Ti(j+1) — Tij < 0. (®)
In words, the constraint in (8) means that we only focus on
adjacent pairs of FBG measurements from the same patient
that are measured close enough in time. For the pair of ;; and
Yi(j+1)» their corresponding baseline FBG levels are a; + ¢;;
and «; + t;(j41) respectively. A reasonable assumption is, if
a pair of adjacent FBG measurements from the same patient
are close enough in time, their FBG baseline levels should not
be very different from each other; that is to say, we expect the
quantity

(i +tigi1)) — (0 + i) = [tig+1) — tisl
to be small. This assumption motivates us to incorporate a
fused lasso penalty [Tibshirani and Taylor, 2011] to (7) in
order to regulate the baseline parameter ¢, yielding:
2

1 . o B
in— - Zy-[X-zX I1-2z2zZt
sy v~ 20 | L, o

t

+A1 1Bl + A2 | Dstll; -

In (9), A2 > 0 and Dy is a matrix that depends on 4. It
only contains 0, and 41 entries. When multiplied with £, the
role of each row of Dy is to subtract the earlier FBG base-
line parameter from the later baseline parameter of an adja-
cent pair of records from the same patient that were collected
within a time span of §. We denote the number of adjacent
pairs that satisfy the aforementioned criteria as s, then Ds
is an s x n matrix. The fused lasso penalty in (9) penal-
izes adjacent baseline parameters that are very different from
each other, and can potentially drive most differences to zero.
Therefore the model helps to keep the value of many adjacent
components in ¢ the same or very closed to each other, which
reduces the degree of freedom of ¢ significantly. With regu-
larization for both 3 and ¢, the overparameterization problem
in the time-varying baseline model is relieved substantially.
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We define ¢ = (I — ZZ") ¢ and hence:

P = [n Yy, 0 YNt

where

¢NJN]T

9

J:
_ _ 1 &
Yij =ty —ti, b= 7. j/E_l tijr.

As illustrated in Section 3.2, ¢;;’s can be considered as devia-
tion of baseline FBG level from «;. Therefore, it is reasonable
to assume that the mean deviation, %;, is close to zero. Fur-
thermore, as J;’s increase, Vi, the entries in ZZ' are closer
and closer to zero too. Based on these observations, we ap-
proximate I — ZZ T in (9) with I, and define the baseline
regularization model as:

2

1 _ - 8
“y-zyg-[x-2zX I
arg ming Hy g | ] M . a0

+A1 H/@||1 + A2 ||D6t||1 :

The approximation made in (10) offers substantial computa-
tional advantages in solving the problem, which we will fur-
ther illustrate in Section 4.

4 Optimization Procedure for BR

The baseline regularization model in (10) can be rewritten as
a generalized lasso [Tibshirani and Taylor, 2011] problem:

1 . 81|
argnﬁl’lilg Hy— Zy — [X —-ZX I] [t}

b 20 |7

However, due to the large volume of data in EHRs, solving
(11) directly using a generalized lasso solver might be slow
or even infeasible. The difficulty of directly solving (11) mo-
tivates us to consider the following optimization strategy.

Notice that 3 and t are separable in the lasso and fused
lasso penalty in (10), i.e. the penalty part of the BR model
in (10) is a summation of two functions that involves only 3
and ¢ respectively in each function. We therefore can perform
blockwise minimization over 3 and t alternatively [Tseng,
20011 in order to solve (10). Specifically, denote 3*) as the
estimation of 3 generated after the k" iteration, at iteration
k + 1, we consider ,G(k) as a constant and optimize with re-
spect to t for t(*+1) by solving the ¢-step subproblem:

The t-Step:

Ay
+hi

1

tW=y-Zy— (X -2X)p",

1 ) (12)
fOe1) _ arg min Hg(’“) - tH2 + X2 | Dstl, -

The problem in (12) is a fused lasso problem with iden-
tity design matrix, which can be solved efficiently by the
genlasso [Amold et al., 2014] package in R. Notice that
the reason why we have an identity design matrix in (12) is
due to the approximation made in (10). Had the approxima-
tion not been made, we need to solve a fused lasso problem



with a general design matrix, which is much less efficient than
solving the problem in (12).

After computing t**1) from (12), we fix t(*+1) and opti-
mize with respect to 3 for B(“*1) by solving the 3-step sub-
problem:

The 3-Step:
") =y — Zg —t+D A= (X - ZX),

13)

1 , 2
B(/H-l) — argﬂgn 5 H¢(k+1) — A,@H2 + M ||/8||1 :

The 3-step is an L, regularized linear model, which can be
solved efficiently by the glmnet [Friedman et al., 2010]
package in R. The blockwise minimization algorithm can
therefore iteratively alternate between the t-step and the (3-
step to solve for the BR model defined in (10). The algorithm
is summarized in Algorithm 1.

Algorithm 1 Blockwise Minimization

Require: y, X, Z, Ds, A\; >0, >0
Ensure: solution 3, t
1: Initialize t(©) = 0, solve

1 ) _
B = argmin 5 ||y — Zg — (X - ZX) B+ 18, -

2: fork < 0,1,2,--- do

3: Solve the t-Step in (12) for (k1)
4:  Solve the B-Step in (13) for B++1)
5: if stop criterion satisfied then

6: return B+1) ¢(k+1)

7: end if

8: end for

5 An Alternative Formulation of BR

Let § be given, we can define D;s accordingly. Consider the
following modification of the unregulated problem in (4):

|

which multiples D; with the residue in (4) and considers the
square of norm of the transformed residue. In (14), Ds Za =
0, and hence the problem in (14) is a-free. Equipped the
problem in (14) with the lasso and the fused lasso penalty,
and let v = Dst, we consider an optimization problem with
respect to 3 and ~y:

2
(87

B
t

(14)

9

1
argér,l'iBgQ‘|D5y—D5[Z X I][
2

.1 2
wgmin L 1Dsy —~ DiXB I3+ A1 181, + Xl

3

st. v=Dst, teR™
Note that we can verify that Dj is a row full rank matrix.
Therefore, Vv € R®, 3t € R", s.t. v = Dgt. This property

indicates that the equality constraint can always be satisfied
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and hence can be dropped, resulting in an Alternative formu-
lation of the BR model (ABR):

o1
arg min o |Dsy — DsXB — |5+ A 1B, + A2 |7l »

15)
which is also an L; regularized linear model that can be
solved efficiently. The intuition behind this modification is to
take the difference between a pair of adjacent records that are
close enough with each other in time from the same patient in
order to eliminate c for a parsimonious representation. How-
ever, in practice, the model in (15) generates different yet sen-
sible estimation of 3 than that generated by (10), which will
be further illustrated in Section 6.

6 Experiments

We conduct experiments to empirically evaluate the proposed
methods in two aspects:

e Application: we would like to demonstrate that our algo-
rithms are not only able to rediscover drugs with known
FBG-lowering indications (Section 6.2) but also able to
identify potential drugs that might be repositioned to con-

trol blood sugar (Section 6.3).

e Methodology: we will show that the incorporation and
regularization of time-varying baseline parameters in both
BR and ABR models help to improve predictive perfor-

mance compared with models without such parameters.

The time-invariant counterpart of BR can be derived by
setting ¢ = 0 in (10), degenerating to an L; regularized
linear model named Continuous Self-Controlled Case Series
(CSCCS) in [Kuang er al., 2016]:

1 _
argmin 5 ly — 2y — (X = 2X) Blf, + Xs118ll, - (16)

One can also set v = 0 in (15), resulting in yet another L,
regularized linear model named CSCCS for Adjacent records
(CSCCSA) [Kuang er al., 2016]:

1
argmin o | Dsy — DsXBll; + A |18l - (A7)

Notice that the model in (17) is still time-varying, because
the least square part of the objective function depends on §. It
essentially assumes that two adjacent records from the same
patient within § amount of time share the same FBG baseline
and the difference between the two measurements is only de-
pendent on their difference of drug exposure statuses. In our
experiments, we set 0 = 4 years. We present our experimen-
tal results in details in subsequent sections.

6.1 Dataset

EHRs from Marshfield Clinic are used in our experiments.
64515 patients are admitted in the cohort with 219306 FBG
measurements in total. 2980 drugs are considered in the ex-
perments.
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Figure 2: Precision at K among the top-forty drugs generated
by the four models
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Figure 3: Partial AUCs on the top-forty drugs generated by
the four models.
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Figure 4: ROC curves on the union list of drugs generated by
combining the top-forty drugs from each model

6.2 Rediscovering FBG-Lowering Drugs

Model Selection
Table 1 summarizes the configurations of A; and Ao of the
BR model defined in (10) and their corresponding number
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Table 1: A1, Ay Used in (10)

INDX A1 A2 # DRUGS
1 0.003923  291.141 205
2 0.003257  290.046 252
3 0.003923  228.185 197
4 0.003257 227.232 245
5 0.003923  177.043 196
6 0.003257 176.502 238
7 0.003923 161.502 194
8 0.003257 161.087 231

Table 2: Summary of Models Used in the Experiments

Name Definition Time-Varying
BR (10) Yes
ABR (15) Yes
CSCCS (16) No
CSCCSA 17) Yes

of drugs selected in our experiments. The pairs of A\; and A,
are chosen in a way to ensure that approximately two hundred
drugs or more are selected. We use Bayesian Information Cri-
terion (BIC) [Zou et al., 2007; Tibshirani and Taylor, 2011]
to select the best model from the eight candidates and use the
best model as a representative of BR. In this case, model 7 is
selected and shaded in gray in Table 1. For this model, 194
drugs are selected. We choose A3 in (16) adaptively so that
the number of drugs selected by (16) is also equal to 194. We
use this model as the representative of CSCCS.

For the ABR model, we first define r = i—f, where \; and

A2 are defined in (15). We let r range from 1/16 to 1 with an
incremental step length of ﬁ, resulting in 376 different r’s.
We choose A1 (and hence Ay because Ay = r A1) adaptively
so as to select two hundred drugs approximately for each 7.
Now that we have 376 pairs of distinct 3’s and +’s, one pair
for each r, we use BIC again to select the best model among
the 376 candidates. The minimum BIC is achieved when r =
0.075, and 201 drugs are selected in this case. We use this
model as a representative of ABR. To compare ABR with
its degenerated counterpart in (17), we tune A4 in (17) such
that 201 drugs are also chosen by (17). We use this model
as a representative of (17). After model selection, we have
four representatives, one for each model. Each representative
returns a list of approximately two hundred drugs. The four
models used in our experiments are summarized in Table 2.

Top-Forty Drugs

We sort the drugs returned by each model in ascending order
according to their coefficients that correspond to components
in 3. We then manually label the top-forty drugs of each
list, considering drugs with known FBG-lowering indications
as positives while others as negatives. The labeling process
is somewhat analogous to web search, where the search al-
gorithm should return a short list of potential results for fur-
ther human determination. In this scenario, the results at the
top K positions might matter the most. We hence report the
precision-at- K metric for each of the four models in Figure 2.



Table 3: Top-twenty potential drugs generated by BR

INDX CODE NAME SCORE
1 2919 DIVALPROEX SODIUM -1.818
2 8025 PROZAC -1.073
3 7768 PREMARIN -1.023
4 4616 HYDROXYCHLOROQUINE SULFATE -0.883
5 5204 LANCETS -0.873
6 1216 BLOOD SUGAR DIAGNOSTIC -0.816
7 5822 METHOTREXATE SODIUM -0.708
8 7963 PROPOXYPHENE NAP/ACETAMINOPHEN -0.684
9 10392 ZOLOFT -0.654
10 5636 MAVIK -0.631
11 3471 ESTROGEN CON/M-PROGEST ACET -0.583
12 5319 LEXAPRO -0.570
13 467 AMITRIPTYLINE -0.565
14 7831 PRILOSEC -0.545
15 2367 COUMADIN -0.474
16 2426 CYANOCOBALAMIN (VITAMIN B-12) -0.446
17 3686 FERROUS SULFATE -0.389
18 3646 FENOFIBRATE MICRONIZED -0.381
19 6610 NORGESTIMATE-ETHINYL ESTRADIOL -0.356

20 1455 CALCIUM CARBONATE/VITAMIN D3 -0.355

In Figure 2, all four models return a reasonable amount of
true positives at the top-forty positions, indicating their ca-
pabilities of identifying FBG-lowering drugs. We also no-
tice that introducing and regulating time-varying baseline pa-
rameters substantially improve the precision of BR at all K
thresholds, compared with CSCCS; while the integration of
such parameters does not change the performance of ABR
much in terms of precision, compared with CSCCSA. How-
ever, in Figure 3, we notice that ABR has a substantially
higher Area Under Curve (AUC) than CSCCSA, dominating
CSCCSA at every FPR threshold. This phenomenon suggests
that making more intrinsic time-varying baseline assumptions
in ABR might be potentially beneficial to classification per-
formance.

Union List

We now consider generating a union list of drugs by combin-
ing all the top-forty drugs from the four models. The Receiver
Operating Characteristics (ROC) curves of all models on the
union list are reported in Figure 4. For each model, if a drug
from the union list is not selected by the model, we consider
it as an example that will be identified as positive at the ev-
ery end, which results in the straight line parts of the curves
in the liberal region. In Figure 4, BR dominates CSCCS at
every FPR threshold, demonstrating the potential benefits of
incorporating time-varying baseline information. Although
the AUC of ABR is very close to that of CSCCSA, we no-
tice that ABR has a higher partial AUC than CSCCSA in the
conservative region, from which the operating points of most
medical classifiers are usually selected.

6.3 Identifying Potential Drugs

We now turn to discuss identifying drugs that have potential
glucose lowering effects. From experiments in Section 6.2,
we notice the substantial improvement of rediscovery perfor-
mance related to the introduction of the time-varying param-
eters. We therefore will focus on the results generated by the
two models with such parameters, BR and ABR. For each
of the two models, we follow the model selection procedure
described in Section 6.2. However, we only select approx-
imately one hundred drugs for each model and evaluate the
potential of the top-twenty drugs in each drug list. We ex-
clude all the records from patients that have any one of the
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Table 4: Top-twenty potential drugs generated by ABR

INDX CODE NAME SCORE
1 5204 LANCETS -1.610
2 2919 DIVALPROEX SODIUM -1.490
3 1216 BLOOD SUGAR DIAGNOSTIC -1.344
4 5319 LEXAPRO -1.232
5 5822 METHOTREXATE SODIUM -1.086
6 2426 CYANOCOBALAMIN (VITAMIN B-12) -0.715
7 8025 PROZAC -0.604
8 3686 FERROUS SULFATE -0.589
9 10392 ZOLOFT -0.529
10 7768 PREMARIN -0.526
11 7963 PROPOXYPHENE NAP/ACETAMINOPHEN -0.502
12 9034 SULFAMETHOXAZOLE/TRIMETHOPRIM -0.500
13 1455 CALCIUM CARBONATE/VITAMIN D3 -0.433
14 1200 BLOOD-GLUCOSE METER -0.372
15 10215 WELLBUTRIN SR -0.334
16 7831 PRILOSEC -0.327
17 8073 PSYLLIUM SEED (WITH SUGAR) -0.253
18 9531 TRAMADOL HCL -0.214
19 7496 PLAVIX -0.212

20 494 AMOXICILLIN/POTASSIUM CLAV -0.209

FBG-lowering drugs discovered in Section 6.2, and run our
algorithms only on the subset of data after exclusion. Table 3
and Table 4 summarize the findings from BR and ABR re-
spectively, with gray rows representing drugs discovered by
both methods. We evaluate the potential of each drug based
on literature review in the subsequent sections.

Potential Decrease

In both Table 3 and Table 4, for propoxyphene nap
and acetaminophen, a case has been reported relating to
propoxyphene-induced hypoglycemia [Shah et al., 2006].
Zoloft, which is a type of antidepressant, is related to increase
of insulin level [Kesim et al., 2011]. Lack of vitamin B12 is
related to hyperglycemia in a rat model reported by [Chow
and Stone, 1957], and diabetic patients with metformin pre-
scriptions might be vitamin B12 deficient [Ting et al., 2006].
In Table 3, Hydroxychloroquine sulfate is known
to cause severe hypoglycemia [SanofiAventisCanadalnc.,
2015]. Fenofibrate micronized might also be helpful to lower
FBG level, based on the findings in [Damci et al., 2003]. In
Table 4, Sulfamethoxazole and trimethoprim, or Bactrim, is
known to induce hypoglycemia [NIH, 2016]. Wellbutrin SR
is another antidepressant that might be potentially beneficial
to control blood sugar level [Lustman et al., 2007]. Psyl-
lium is also reported to improve glycemic control in a study
with type 2 diabetes male patients [Anderson et al., 1999]. A
recent study suggests that tramadol HCl might increase the
risk of hospitalization due to hypoglycemia [Fournier et al.,
2015]. Finally, Plavix is reported to cause hypoglycemia due
to interactions with Prandin [GovernmentOfCanada, 2015].

Mixed Evidence

In both Table 3 and Table 4, divalproex sodium might in-
crease blood sugar level, according to [DiabetesInControl,
2015]. Prozac could both increase or decrease blood glu-
cose level [DiabetesInControl, 2015]. A hyperglycemia case
has also been reported due to Lexapro [Zuccoli et al., 2013].
However, Lexapro is a type of antidepressants called Selec-
tive Serotonin Reuptake Inhibitor (SSRI), which is linked
to hypoglycemia in certain situations [Zammit, 2012]. The
effects of calcium carbonate and vitamin D3 on blood glu-
cose level have been widely studied, but mixed conclu-
sions are reported [De Boer et al., 2008; Mitri et al., 2011;



Mitri and Pittas, 2014].

6.4 BR versus ABR

In Section 6.3, from Table 3 and Table 4, we notice that BR
and ABR provide somewhat different potential drug lists. For
both lists, we can find literature support to substantiate the
blood sugar lowering potentials of many drugs. This exper-
iment indicates that both methods might be viable options
to aid the knowledge discovery process of drug reposition-
ing. On the other hand, in Section 6.2, although experiments
suggest that regulating time-varying baseline help to improve
the rediscovery performance, ABR outperforms BR (and the
other methods) in general in the rediscovery task. This obser-
vation points to several directions for future work that may
extend beyond the CDR application.

First, since the submission of this paper, we have discov-
ered an unpublished manuscript [Hess et al., 2013] that de-
scribes a modeling framework similar to BR that is applied
to econometric analysis. The empirical advantage we ob-
serve for ABR over BR in the present paper for one applica-
tion of longitudinal data analysis, CDR, suggests investigat-
ing whether ABR enjoys a similar advantage for some econo-
metric forecasting applications.

Second, CSCCS and CSCCSA are extensions—to pre-
dict continuous variables such as FBG, rather than binary
variables—of self-controlled case series, arguably the current
leading approach to adverse drug event discovery [Simpson
et al., 2013] from clinical data. Hence our results suggest
that ABR might have advantages for ADE discovery as well.
Testing this conjecture is a direction for further research.

More generally, an important direction for further work is
the application of ABR to areas involving longitudinal data,
especially when time intervals may be irregularly sampled as
in the EHR data we use for CDR. Another direction for future
research is to further validate the predictions of ABR for the
CDR application.

7 Conclusion

We have introduced the baseline regularization model and its
variant for the task of computational drug repositioning. Our
proposed methods take into account the high dimensionality,
irregularity, subject-heterogeneity and time-heterogeneity of
longitudinal observational data and generalize the standard
fixed effect model. Experimental results suggest that our
methods are not only able to rediscover drugs with confirmed
indications, but also able to identify drugs that might be po-
tentially helpful to control FBG level. We therefore believe
that the proposed methods can potentially aid the knowledge
discovery process of drug repositioning.
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